Articles | Volume 24, issue 6
https://doi.org/10.5194/nhess-24-2093-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-2093-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Landslide Hazards Program, U.S. Geological Survey, Golden, CO 80401, USA
Samuel Bower
Department of Geology and Geography, West Virginia University, Morgantown, WV 26506, USA
Andrew Knapp
Colorado Department of Transportation, Denver, CO 80204, USA
Jason W. Kean
Landslide Hazards Program, U.S. Geological Survey, Golden, CO 80401, USA
Danielle W. vonLembke
Landslide Hazards Program, U.S. Geological Survey, Golden, CO 80401, USA
Matthew A. Thomas
Landslide Hazards Program, U.S. Geological Survey, Golden, CO 80401, USA
Jaime Kostelnik
Landslide Hazards Program, U.S. Geological Survey, Golden, CO 80401, USA
Katherine R. Barnhart
Landslide Hazards Program, U.S. Geological Survey, Golden, CO 80401, USA
Matthew Bethel
Merrick and Company, Greenwood Village, CO 80111, USA
Joseph E. Gartner
BGC Engineering, Inc., Golden, CO 80401, USA
Madeline Hille
BGC Engineering, Inc., Golden, CO 80401, USA
Dennis M. Staley
Landslide Hazards Program, U.S. Geological Survey, Anchorage, AK 99508, USA
Justin K. Anderson
Tongass National Forest, U.S. Forest Service, Petersburg, AK 99833, USA
Elizabeth K. Roberts
White River National Forest, U.S. Forest Service, Glenwood Springs, CO 81601, USA
Stephen B. DeLong
Earthquake Hazards Program, U.S. Geological Survey, Moffett Field, CA 94043, USA
Belize Lane
Dept. of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA
Paxton Ridgway
Dept. of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA
Brendan P. Murphy
School of Environmental Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
Related authors
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 24, 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024, https://doi.org/10.5194/nhess-24-1459-2024, 2024
Short summary
Short summary
Debris flows are a type of fast-moving landslide that start from shallow landslides or during intense rain. Infrastructure located downstream of watersheds susceptible to debris flows may be damaged should a debris flow reach them. We present and evaluate an approach to forecast building damage caused by debris flows. We test three alternative models for simulating the motion of debris flows and find that only one can forecast the correct number and spatial pattern of damaged buildings.
Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter
Nat. Hazards Earth Syst. Sci., 24, 1357–1379, https://doi.org/10.5194/nhess-24-1357-2024, https://doi.org/10.5194/nhess-24-1357-2024, 2024
Short summary
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023, https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Short summary
Debris flows often occur after wildfires. These debris flows move water, sediment, and wood. The wood can get stuck in channels, creating a dam that holds boulders, cobbles, sand, and muddy material. We investigated how the channel width and wood length influenced how much sediment is stored. We also used a series of equations to back calculate the debris flow speed using the breaking threshold of wood. These data will help improve models and provide insight into future field investigations.
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024, https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Short summary
The time it takes for a landscape to adjust to new environmental conditions is critical for understanding the impacts of past and future environmental changes. We used different computational models and methods and found that predicted times for a landscape to reach a stable condition vary greatly. Our results illustrate that reporting how timescales are measured is important. Modelers should ensure that the measurement technique addresses the question.
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024, https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Short summary
Fire can dramatically increase the risk of debris flows to downstream communities with little warning, but hazard assessments have not traditionally included estimates of inundation. We unify models developed by the scientific community to create probabilistic estimates of inundation area in response to rainfall at forecast lead times (≥ 24 h) needed for decision-making. This work takes an initial step toward a near-real-time postfire debris-flow inundation hazard assessment product.
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 24, 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024, https://doi.org/10.5194/nhess-24-1459-2024, 2024
Short summary
Short summary
Debris flows are a type of fast-moving landslide that start from shallow landslides or during intense rain. Infrastructure located downstream of watersheds susceptible to debris flows may be damaged should a debris flow reach them. We present and evaluate an approach to forecast building damage caused by debris flows. We test three alternative models for simulating the motion of debris flows and find that only one can forecast the correct number and spatial pattern of damaged buildings.
Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter
Nat. Hazards Earth Syst. Sci., 24, 1357–1379, https://doi.org/10.5194/nhess-24-1357-2024, https://doi.org/10.5194/nhess-24-1357-2024, 2024
Short summary
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Haley A. Canham, Belize A. Lane, Colin B. Phillips, and Brendan P. Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2023-2875, https://doi.org/10.5194/egusphere-2023-2875, 2024
Short summary
Short summary
The influence of watershed disturbances has proved challenging to isolate from natural streamflow variability. This study presents the RREDI toolkit, a novel time-series event separation method, and evaluates the influence of time-varying hydrologic controls relative to wildfire effects on event runoff response. Across watersheds and runoff metrics, water year type and season influenced rainfall-runoff response, and accounting for these controls enabled clearer detection of post-fire effects.
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023, https://doi.org/10.5194/esurf-11-1117-2023, 2023
Short summary
Short summary
Debris flows are mixtures of mud and rocks that can travel at high speeds across steep landscapes. Here, we propose a new model to describe how landscapes are shaped by debris flow erosion over long timescales. Model results demonstrate that the shapes of channel profiles are sensitive to uplift rate, meaning that it may be possible to use topographic data from steep channel networks to infer how erosion rates vary across a landscape.
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023, https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Short summary
Debris flows often occur after wildfires. These debris flows move water, sediment, and wood. The wood can get stuck in channels, creating a dam that holds boulders, cobbles, sand, and muddy material. We investigated how the channel width and wood length influenced how much sediment is stored. We also used a series of equations to back calculate the debris flow speed using the breaking threshold of wood. These data will help improve models and provide insight into future field investigations.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda
Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, https://doi.org/10.5194/esurf-8-379-2020, 2020
Short summary
Short summary
Landlab is a Python package to support the creation of numerical models in Earth surface dynamics. Since the release of the 1.0 version in 2017, Landlab has grown and evolved: it contains 31 new process components, a refactored model grid, and additional utilities. This contribution describes the new elements of Landlab, discusses why certain backward-compatiblity-breaking changes were made, and reflects on the process of community open-source software development.
Katherine R. Barnhart, Rachel C. Glade, Charles M. Shobe, and Gregory E. Tucker
Geosci. Model Dev., 12, 1267–1297, https://doi.org/10.5194/gmd-12-1267-2019, https://doi.org/10.5194/gmd-12-1267-2019, 2019
Short summary
Short summary
Terrainbento 1.0 is a Python package for modeling the evolution of the surface of the Earth over geologic time (e.g., thousands to millions of years). Despite many decades of effort by the geomorphology community, there is no one established governing equation for the evolution of topography. Terrainbento 1.0 thus provides 28 alternative models that support hypothesis testing and multi-model analysis in landscape evolution.
Charles M. Shobe, Gregory E. Tucker, and Katherine R. Barnhart
Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, https://doi.org/10.5194/gmd-10-4577-2017, 2017
Short summary
Short summary
Rivers control the movement of sediment and nutrients across Earth's surface. Understanding how rivers change through time is important for mitigating natural hazards and predicting Earth's response to climate change. We develop a new computer model for predicting how rivers cut through sediment and rock. Our model is designed to be joined with models of flooding, landslides, vegetation change, and other factors to provide a comprehensive toolbox for predicting changes to the landscape.
K. R. Barnhart, I. Overeem, and R. S. Anderson
The Cryosphere, 8, 1777–1799, https://doi.org/10.5194/tc-8-1777-2014, https://doi.org/10.5194/tc-8-1777-2014, 2014
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
Related subject area
Landslides and Debris Flows Hazards
Size scaling of large landslides from incomplete inventories
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
Temporal clustering of precipitation for detection of potential landslides
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Optimizing Rainfall-Triggered Landslide Thresholds to Warning Daily Landslide Hazard in Three Gorges Reservoir Area
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Brief Communication: Monitoring slope acceleration and impending failure with very high spatial and temporal resolution space borne Synthetic Aperture Radars
Predicting Deep-Seated Landslide Displacements in Mountains through the Integration of Convolutional Neural Networks and Age of Exploration-Inspired Optimizer
Addressing class imbalance in soil movement predictions
Assessing the impact of climate change on landslides near Vejle, Denmark, using public data
Analysis of three-dimensional slope stability combined with rainfall and earthquake
Assessing landslide damming susceptibility in Central Asia
Invited Perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Assessing locations susceptible to shallow landslide initiation during prolonged intense rainfall in the Lares, Utuado, and Naranjito municipalities of Puerto Rico
Evaluation of debris-flow building damage forecasts
Characteristics of debris-flow-prone watersheds and debris-flow-triggering rainstorms following the Tadpole Fire, New Mexico, USA
Morphological characteristics and conditions of drainage basins contributing to the formation of debris flow fans: an examination of regions with different rock strength using decision tree analysis
Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Space–time landslide hazard modeling via Ensemble Neural Networks
Optimization strategy for flexible barrier structures: investigation and back analysis of a rockfall disaster case in southwestern China
Comparison of conditioning factors classification criteria in large scale statistically based landslide susceptibility models
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling
Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling
Limit analysis of earthquake-induced landslides considering two strength envelopes
A new analytical method for stability analysis of rock blocks with basal erosion in sub-horizontal strata by considering the eccentricity effect
Rockfall monitoring with a Doppler radar on an active rockslide complex in Brienz/Brinzauls (Switzerland)
Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
The concept of event-size-dependent exhaustion and its application to paraglacial rockslides
Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Characteristics of debris flows recorded in the Shenmu area of central Taiwan between 2004 and 2021
Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard chain that occurred on 30 August 2020 in Ganluo, Southwest China
The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)
Accounting for the effect of forest and fragmentation in probabilistic rockfall hazard
Comprehensive landslide susceptibility map of Central Asia
The influence of large woody debris on post-wildfire debris flow sediment storage
Statistical modeling of sediment supply in torrent catchments of the northern French Alps
A data-driven evaluation of post-fire landslide susceptibility
Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models
Brief communication: The northwest Himalaya towns slipping towards potential disaster
Dynamic response and breakage of trees subject to a landslide-induced air blast
Debris-flow surges of a very active alpine torrent: a field database
Rainfall thresholds estimation for shallow landslides in Peru from gridded daily data
Instantaneous limit equilibrium back analyses of major rockslides triggered during the 2016–2017 central Italy seismic sequence
Deadly disasters in southeastern South America: flash floods and landslides of February 2022 in Petrópolis, Rio de Janeiro
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024, https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
Short summary
Catalogues of mapped landslides are useful for learning and forecasting how frequently they occur in relation to their size. Yet, rare and large landslides remain mostly uncertain in statistical summaries of these catalogues. We propose a single, consistent method of comparing across different data sources and find that landslide statistics disclose more about subjective mapping choices than trigger types or environmental settings.
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024, https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary
Short summary
This work examines the use of interferometric synthetic-aperture radar (InSAR) alongside in situ borehole measurements to assess the stability of deep-seated landslides for the case study of El Forn (Andorra). Comparing InSAR with borehole data suggests a key trade-off between accuracy and precision for various InSAR resolutions. Spatial interpolation with InSAR informed how many remote observations are necessary to lower error in a remote sensing re-creation of ground motion over the landslide.
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024, https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
Short summary
The initiation of debris flows is significantly influenced by rainfall-induced hydrological processes. We propose a novel framework based on an integrated hydrological and hydrodynamic model and aimed at estimating intensity–duration (ID) rainfall thresholds responsible for triggering debris flows. In comparison to traditional statistical approaches, this physically based framework is particularly suitable for application in ungauged catchments where historical debris flow data are scarce.
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024, https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary
Short summary
The Himalayan road network links remote areas, but fragile terrain and poor construction lead to frequent landslides. This study on the NH-7 in India's Uttarakhand region analyzed 300 landslides after heavy rainfall in 2022 . Factors like slope, rainfall, rock type and road work influence landslides. The study's model predicts landslide locations for better road maintenance planning, highlighting the risk from climate change and increased road use.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024, https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Short summary
The Revised Infinite Slope Model (RISM) is proposed using the equal differential unit method and correcting the deficiency of the safety factor increasing with the slope increasing when the slope is larger than 40°, as calculated using the Taylor slope infinite model. The intensity–duration (I–D) prediction curve of the rainfall-induced shallow loess landslides with different slopes was constructed and can be used in forecasting regional shallow loess landslides.
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-109, https://doi.org/10.5194/nhess-2024-109, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Our research enhances landslide prevention using advanced machine learning to forecast heavy rainfall-triggered landslides. By analyzing regions and employing various models, we identified optimal ways to predict high-risk rainfall events. Integrating multiple factors and models, including a neural network, significantly improves landslide predictions. Real data validation confirms our approach's reliability, aiding communities in mitigating landslide impacts and safeguarding lives and property.
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024, https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Short summary
Fire can dramatically increase the risk of debris flows to downstream communities with little warning, but hazard assessments have not traditionally included estimates of inundation. We unify models developed by the scientific community to create probabilistic estimates of inundation area in response to rainfall at forecast lead times (≥ 24 h) needed for decision-making. This work takes an initial step toward a near-real-time postfire debris-flow inundation hazard assessment product.
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1296, https://doi.org/10.5194/egusphere-2024-1296, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite SAR imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores SAR's potential for timely hazard assessment in remote regions, aiding disaster mitigation efforts effectively.
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-86, https://doi.org/10.5194/nhess-2024-86, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study enhances landslide prediction using advanced machine learning, including new algorithms inspired by historical explorations. The research accurately forecasts landslide movements by analyzing eight years of data from Taiwan's Lushan Mountain, improving early warnings and potentially saving lives and infrastructure. This integration marks a significant advancement in environmental risk management.
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024, https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary
Short summary
Our study focuses on predicting soil movement to mitigate landslide risks. We develop machine learning models with oversampling techniques to address the class imbalance in monitoring data. The dynamic ensemble model with K-means SMOTE (synthetic minority oversampling technique) achieves high precision, high recall, and a high F1 score. Our findings highlight the potential of these models with oversampling techniques to improve soil movement predictions in landslide-prone areas.
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024, https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Short summary
In our study, we analysed publicly available data in order to investigate the impact of climate change on landslides in Denmark. Our research indicates that the rising groundwater table due to climate change will result in an increase in landslide activity. Previous incidents of extremely wet winters have caused damage to infrastructure and buildings due to landslides. This study is the first of its kind to exclusively rely on public data and examine landslides in Denmark.
Jiao Wang, Zhangxing Wang, Guanhua Sun, and Hongming Luo
Nat. Hazards Earth Syst. Sci., 24, 1741–1756, https://doi.org/10.5194/nhess-24-1741-2024, https://doi.org/10.5194/nhess-24-1741-2024, 2024
Short summary
Short summary
With a simplified formula linking rainfall and groundwater level, the rise of the phreatic surface within the slope can be obtained. Then, a global analysis method that considers both seepage and seismic forces is proposed to determine the safety factor of slopes subjected to the combined effect of rainfall and earthquakes. By taking a slope in the Three Gorges Reservoir area as an example, the safety evolution of the slope combined with both rainfall and earthquake is also examined.
Carlo Tacconi Stefanelli, William Frodella, Francesco Caleca, Zhanar Raimbekova, Ruslan Umaraliev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 1697–1720, https://doi.org/10.5194/nhess-24-1697-2024, https://doi.org/10.5194/nhess-24-1697-2024, 2024
Short summary
Short summary
Central Asia regions are marked by active tectonics, high mountains with glaciers, and strong rainfall. These predisposing factors make large landslides a serious threat in the area and a source of possible damming scenarios, which endanger the population. To prevent this, a semi-automated geographic information system (GIS-)based mapping method, centered on a bivariate correlation of morphometric parameters, was applied to give preliminary information on damming susceptibility in Central Asia.
Benjamin B. Mirus, Thom A. Bogaard, Roberto Greco, and Manfred Stähli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1219, https://doi.org/10.5194/egusphere-2024-1219, 2024
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this article, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Rex L. Baum, Dianne L. Brien, Mark E. Reid, William H. Schulz, and Matthew J. Tello
Nat. Hazards Earth Syst. Sci., 24, 1579–1605, https://doi.org/10.5194/nhess-24-1579-2024, https://doi.org/10.5194/nhess-24-1579-2024, 2024
Short summary
Short summary
We mapped potential for heavy rainfall to cause landslides in part of the central mountains of Puerto Rico using new tools for estimating soil depth and quasi-3D slope stability. Potential ground-failure locations correlate well with the spatial density of landslides from Hurricane Maria. The smooth boundaries of the very high and high ground-failure susceptibility zones enclose 75 % and 90 %, respectively, of observed landslides. The maps can help mitigate ground-failure hazards.
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 24, 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024, https://doi.org/10.5194/nhess-24-1459-2024, 2024
Short summary
Short summary
Debris flows are a type of fast-moving landslide that start from shallow landslides or during intense rain. Infrastructure located downstream of watersheds susceptible to debris flows may be damaged should a debris flow reach them. We present and evaluate an approach to forecast building damage caused by debris flows. We test three alternative models for simulating the motion of debris flows and find that only one can forecast the correct number and spatial pattern of damaged buildings.
Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter
Nat. Hazards Earth Syst. Sci., 24, 1357–1379, https://doi.org/10.5194/nhess-24-1357-2024, https://doi.org/10.5194/nhess-24-1357-2024, 2024
Short summary
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024, https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Short summary
Morphological conditions of drainage basins that classify the presence or absence of debris flow fans were analyzed in areas with different rock strength using decision tree analysis. The relief ratio is the most important morphological factor regardless of the geology. However, the thresholds of morphological parameters needed for forming debris flow fans differ depending on the geology. Decision tree analysis is an effective tool for evaluating the debris flow risk for each geology.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024, https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Short summary
We developed three rock bridge models to analyze 3D stability and deformation behaviors of the Tizicao landslide and found that the contact surface model with high strength parameters combines advantages of the intact rock mass model in simulating the deformation of slopes with rock bridges and the modeling advantage of the Jennings model. The results help in choosing a rock bridge model to simulate landslide stability and reveal the influence laws of rock bridges on the stability of landslides.
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024, https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Short summary
We propose a modeling approach capable of recognizing slopes that may generate landslides, as well as how large these mass movements may be. This protocol is implemented, tested, and validated with data that change in both space and time via an Ensemble Neural Network architecture.
Li-Ru Luo, Zhi-Xiang Yu, Li-Jun Zhang, Qi Wang, Lin-Xu Liao, and Li Peng
Nat. Hazards Earth Syst. Sci., 24, 631–649, https://doi.org/10.5194/nhess-24-631-2024, https://doi.org/10.5194/nhess-24-631-2024, 2024
Short summary
Short summary
We performed field investigations on a rockfall near Jiguanshan National Forest Park, Chengdu. Vital information was obtained from an unmanned aerial vehicle survey. A finite element model was created to reproduce the damage evolution. We found that the impact kinetic energy was below the design protection energy. Improper member connections prevent the barrier from producing significant deformation to absorb energy. Damage is avoided by improving the ability of the nets and ropes to slide.
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-29, https://doi.org/10.5194/nhess-2024-29, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with five statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Sudhanshu Dixit, Srikrishnan Siva Subramanian, Piyush Srivastava, Ali P. Yunus, Tapas Ranjan Martha, and Sumit Sen
Nat. Hazards Earth Syst. Sci., 24, 465–480, https://doi.org/10.5194/nhess-24-465-2024, https://doi.org/10.5194/nhess-24-465-2024, 2024
Short summary
Short summary
Rainfall intensity–duration (ID) thresholds can aid in the prediction of natural hazards. Large-scale sediment disasters like landslides, debris flows, and flash floods happen frequently in the Himalayas because of their propensity for intense precipitation events. We provide a new framework that combines the Weather Research and Forecasting (WRF) model with a regionally distributed numerical model for debris flows to analyse and predict intense rainfall-induced landslides in the Himalayas.
Jacob B. Woodard, Benjamin B. Mirus, Nathan J. Wood, Kate E. Allstadt, Benjamin A. Leshchinsky, and Matthew M. Crawford
Nat. Hazards Earth Syst. Sci., 24, 1–12, https://doi.org/10.5194/nhess-24-1-2024, https://doi.org/10.5194/nhess-24-1-2024, 2024
Short summary
Short summary
Dividing landscapes into hillslopes greatly improves predictions of landslide potential across landscapes, but their scaling is often arbitrarily set and can require significant computing power to delineate. Here, we present a new computer program that can efficiently divide landscapes into meaningful slope units scaled to best capture landslide processes. The results of this work will allow an improved understanding of landslide potential and can help reduce the impacts of landslides worldwide.
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 23, 3805–3821, https://doi.org/10.5194/nhess-23-3805-2023, https://doi.org/10.5194/nhess-23-3805-2023, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
Di Wu, Yuke Wang, and Xin Chen
EGUsphere, https://doi.org/10.5194/egusphere-2023-2318, https://doi.org/10.5194/egusphere-2023-2318, 2023
Short summary
Short summary
This paper proposed 3D limit analysis for seismic stability of soil slopes to address the influence of earthquake on slope stabilities with nonlinear and linear criteria. Comparison results illustrated that the use of linear envelope leads to the non-negligible overestimation of steep slope stability and this overestimation will be significant with the increasing earthquake. Earthquake has a smaller influence on slope slip surface with nonlinear envelope than that with linear envelope.
Xushan Shi, Bo Chai, Juan Du, Wei Wang, and Bo Liu
Nat. Hazards Earth Syst. Sci., 23, 3425–3443, https://doi.org/10.5194/nhess-23-3425-2023, https://doi.org/10.5194/nhess-23-3425-2023, 2023
Short summary
Short summary
A 3D stability analysis method is proposed for biased rockfall with external erosion. Four failure modes are considered according to rockfall evolution processes, including partial damage of underlying soft rock and overall failure of hard rock blocks. This method is validated with the biased rockfalls in the Sichuan Basin, China. The critical retreat ratio from low to moderate rockfall susceptibility is 0.33. This method could facilitate rockfall early identification and risk mitigation.
Marius Schneider, Nicolas Oestreicher, Thomas Ehrat, and Simon Loew
Nat. Hazards Earth Syst. Sci., 23, 3337–3354, https://doi.org/10.5194/nhess-23-3337-2023, https://doi.org/10.5194/nhess-23-3337-2023, 2023
Short summary
Short summary
Rockfalls and their hazards are typically treated as statistical events based on rockfall catalogs, but only a few complete rockfall inventories are available today. Here, we present new results from a Doppler radar rockfall alarm system, which has operated since 2018 at a high frequency under all illumination and weather conditions at a site where frequent rockfall events threaten a village and road. The new data set is used to investigate rockfall triggers in an active rockslide complex.
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023, https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary
Short summary
Rockslides are a major hazard in mountainous regions. In formerly glaciated regions, the disposition mainly arises from oversteepened topography and decreases through time. However, little is known about this decrease and thus about the present-day hazard of huge, potentially catastrophic rockslides. This paper presents a new theoretical framework that explains the decrease in maximum rockslide size through time and predicts the present-day frequency of large rockslides for the European Alps.
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
Nat. Hazards Earth Syst. Sci., 23, 2987–3013, https://doi.org/10.5194/nhess-23-2987-2023, https://doi.org/10.5194/nhess-23-2987-2023, 2023
Short summary
Short summary
Landslides are often observed on coastlines following large earthquakes, but few studies have explored this occurrence. Here, statistical modelling of landslides triggered by the 2016 Kaikōura earthquake in New Zealand is used to investigate factors driving coastal earthquake-induced landslides. Geology, steep slopes, and shaking intensity are good predictors of landslides from the Kaikōura event. Steeper slopes close to the coast provide the best explanation for a high landslide density.
Yi-Min Huang
Nat. Hazards Earth Syst. Sci., 23, 2649–2662, https://doi.org/10.5194/nhess-23-2649-2023, https://doi.org/10.5194/nhess-23-2649-2023, 2023
Short summary
Short summary
Debris flows are common hazards in Taiwan, and debris-flow early warning is important for disaster responses. The rainfall thresholds of debris flows are analyzed and determined in terms of rainfall intensity, accumulated rainfall, and rainfall duration, based on case histories in Taiwan. These thresholds are useful for disaster management, and the cases in Taiwan are useful for global debris-flow databases.
Davide Notti, Martina Cignetti, Danilo Godone, and Daniele Giordan
Nat. Hazards Earth Syst. Sci., 23, 2625–2648, https://doi.org/10.5194/nhess-23-2625-2023, https://doi.org/10.5194/nhess-23-2625-2023, 2023
Short summary
Short summary
We developed a cost-effective and user-friendly approach to map shallow landslides using free satellite data. Our methodology involves analysing the pre- and post-event NDVI variation to semi-automatically detect areas potentially affected by shallow landslides (PLs). Additionally, we have created Google Earth Engine scripts to rapidly compute NDVI differences and time series of affected areas. Datasets and codes are stored in an open data repository for improvement by the scientific community.
Li Wei, Kaiheng Hu, Shuang Liu, Nan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md Abdur Rahim
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-75, https://doi.org/10.5194/nhess-2023-75, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
The damage patterns of the buildings were classified into three types: (I) buried by primary debris flow, (II) inundated by secondary dam-burst flood, and (III) buried by debris flow and inundated by dam-burst flood sequentially. The threshold of the impact pressures in Zones II and III where vulnerability is equal to 1 are 88 kPa and 106 kPa, respectively. Heavy damage occurs at an impact pressure greater than 40 kPa, while slight damage occurs below 20 kPa.
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023, https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
Short summary
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development, and river blockage hit an alpine valley in Austria during summer 2019. We analyze the environmental conditions initiating the process chain and identify the rapid evolution of a thermokarst channel network as the main driver. Our results highlight the need to account for permafrost degradation in debris flow hazard assessment studies.
Camilla Lanfranconi, Paolo Frattini, Gianluca Sala, Giuseppe Dattola, Davide Bertolo, Juanjuan Sun, and Giovanni Battista Crosta
Nat. Hazards Earth Syst. Sci., 23, 2349–2363, https://doi.org/10.5194/nhess-23-2349-2023, https://doi.org/10.5194/nhess-23-2349-2023, 2023
Short summary
Short summary
This paper presents a study on rockfall dynamics and hazard, examining the impact of the presence of trees along slope and block fragmentation. We compared rockfall simulations that explicitly model the presence of trees and fragmentation with a classical approach that accounts for these phenomena in model parameters (both the hazard and the kinetic energy change). We also used a non-parametric probabilistic rockfall hazard analysis method for hazard mapping.
Ascanio Rosi, William Frodella, Nicola Nocentini, Francesco Caleca, Hans Balder Havenith, Alexander Strom, Mirzo Saidov, Gany Amirgalievich Bimurzaev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 23, 2229–2250, https://doi.org/10.5194/nhess-23-2229-2023, https://doi.org/10.5194/nhess-23-2229-2023, 2023
Short summary
Short summary
This work was carried out within the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) project and is focused on the first landslide susceptibility analysis at a regional scale for Central Asia. The most detailed available landslide inventories were implemented in a random forest model. The final aim was to provide a useful tool for reduction strategies to landslide scientists, practitioners, and administrators.
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023, https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Short summary
Debris flows often occur after wildfires. These debris flows move water, sediment, and wood. The wood can get stuck in channels, creating a dam that holds boulders, cobbles, sand, and muddy material. We investigated how the channel width and wood length influenced how much sediment is stored. We also used a series of equations to back calculate the debris flow speed using the breaking threshold of wood. These data will help improve models and provide insight into future field investigations.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Elsa S. Culler, Ben Livneh, Balaji Rajagopalan, and Kristy F. Tiampo
Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023, https://doi.org/10.5194/nhess-23-1631-2023, 2023
Short summary
Short summary
Landslides have often been observed in the aftermath of wildfires. This study explores regional patterns in the rainfall that caused landslides both after fires and in unburned locations. In general, landslides that occur after fires are triggered by less rainfall, confirming that fire helps to set the stage for landslides. However, there are regional differences in the ways in which fire impacts landslides, such as the size and direction of shifts in the seasonality of landslides after fires.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Yaspal Sundriyal, Vipin Kumar, Neha Chauhan, Sameeksha Kaushik, Rahul Ranjan, and Mohit Kumar Punia
Nat. Hazards Earth Syst. Sci., 23, 1425–1431, https://doi.org/10.5194/nhess-23-1425-2023, https://doi.org/10.5194/nhess-23-1425-2023, 2023
Short summary
Short summary
The NW Himalaya has been one of the most affected terrains of the Himalaya, subject to disastrous landslides. This article focuses on two towns (Joshimath and Bhatwari) of the NW Himalaya, which have been witnessing subsidence for decades. We used a slope stability simulation to determine the response of the hillslopes accommodating these towns under various loading conditions. We found that the maximum displacement in these hillslopes might reach up to 20–25 m.
Yu Zhuang, Aiguo Xing, Perry Bartelt, Muhammad Bilal, and Zhaowei Ding
Nat. Hazards Earth Syst. Sci., 23, 1257–1266, https://doi.org/10.5194/nhess-23-1257-2023, https://doi.org/10.5194/nhess-23-1257-2023, 2023
Short summary
Short summary
Tree destruction is often used to back calculate the air blast impact region and to estimate the air blast power. Here we established a novel model to assess air blast power using tree destruction information. We find that the dynamic magnification effect makes the trees easier to damage by a landslide-induced air blast, but the large tree deformation would weaken the effect. Bending and overturning are two likely failure modes, which depend heavily on the properties of trees.
Suzanne Lapillonne, Firmin Fontaine, Frédéric Liebault, Vincent Richefeu, and Guillaume Piton
Nat. Hazards Earth Syst. Sci., 23, 1241–1256, https://doi.org/10.5194/nhess-23-1241-2023, https://doi.org/10.5194/nhess-23-1241-2023, 2023
Short summary
Short summary
Debris flows are fast flows most often found in torrential watersheds. They are composed of two phases: a liquid phase which can be mud-like and a granular phase, including large boulders, transported along with the flow. Due to their destructive nature, accessing features of the flow, such as velocity and flow height, is difficult. We present a protocol to analyse debris flow data and results of the Réal torrent in France. These results will help experts in designing models.
Carlos Millán-Arancibia and Waldo Lavado-Casimiro
Nat. Hazards Earth Syst. Sci., 23, 1191–1206, https://doi.org/10.5194/nhess-23-1191-2023, https://doi.org/10.5194/nhess-23-1191-2023, 2023
Short summary
Short summary
This study is the first approximation of regional rainfall thresholds for shallow landslide occurrence in Peru. This research was generated from a gridded precipitation data and landslide inventory. The analysis showed that the threshold based on the combination of mean daily intensity–duration variables gives the best results for separating rainfall events that generate landslides. Through this work the potential of thresholds for landslide monitoring at the regional scale is demonstrated.
Luca Verrucci, Giovanni Forte, Melania De Falco, Paolo Tommasi, Giuseppe Lanzo, Kevin W. Franke, and Antonio Santo
Nat. Hazards Earth Syst. Sci., 23, 1177–1190, https://doi.org/10.5194/nhess-23-1177-2023, https://doi.org/10.5194/nhess-23-1177-2023, 2023
Short summary
Short summary
Stability analyses in static and seismic conditions were performed on four rockslides that occurred during the main shocks of the 2016–2017 central Italy seismic sequence. These results also indicate that specific structural features of the slope must carefully be accounted for in evaluating potential hazards on transportation infrastructures in mountainous regions.
Enner Alcântara, José A. Marengo, José Mantovani, Luciana R. Londe, Rachel Lau Yu San, Edward Park, Yunung Nina Lin, Jingyu Wang, Tatiana Mendes, Ana Paula Cunha, Luana Pampuch, Marcelo Seluchi, Silvio Simões, Luz Adriana Cuartas, Demerval Goncalves, Klécia Massi, Regina Alvalá, Osvaldo Moraes, Carlos Souza Filho, Rodolfo Mendes, and Carlos Nobre
Nat. Hazards Earth Syst. Sci., 23, 1157–1175, https://doi.org/10.5194/nhess-23-1157-2023, https://doi.org/10.5194/nhess-23-1157-2023, 2023
Short summary
Short summary
The municipality of Petrópolis (approximately 305 687 inhabitants) is nestled in the mountains 68 km outside the city of Rio de Janeiro. On 15 February 2022, the city of Petrópolis in Rio de Janeiro, Brazil, received an unusually high volume of rain within 3 h (258 mm). This resulted in flash floods and subsequent landslides that caused 231 fatalities, the deadliest landslide disaster recorded in Petrópolis. This work shows how the disaster was triggered.
Cited articles
Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A., and Westerling, A. L.: Increasing synchronous fire danger in forests of the western United States, Geophys. Res. Lett., 48, e2020GL091377, https://doi.org/10.1029/2020GL091377, 2021.
Adams, D. K. and Comrie, A. C.: The North American Monsoon, B. Am. Meteorol. Soc., 78, 2197–2213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2, 1997.
Alessio, P., Dunne, T., and Morell, K.: Post-wildfire Generation of Debris-flow Slurry by Rill Erosion on Colluvial Hillslopes, J. Geophys. Res.-Earth, 126, e2021JF006108, https://doi.org/10.1029/2021JF006108, 2021.
Allen, J. L. and Shaw, C. A.: Proterozoic geology and Phanerozoic reactivation of the newly recognized Grizzly Creek shear zone, Glenwood Canyon, Colorado, Geological Society of America, https://doi.org//10.1130/2007.fld010(03), 2008.
Arcement, G. J. and Schneider, V. R.: Guide for selecting Manning's roughness coefficients for natural channels and flood plains, USGS, https://doi.org/10.3133/wsp2339, 1989.
Barnhart, K. R., Jones, R. P., George, D. L., McArdell, B. W., Rengers, F. K., Staley, D. M., and Kean, J. W.: Multi-Model Comparison of Computed Debris Flow Runout for the 9 January 2018 Montecito, California Post-Wildfire Event, J. Geophys. Res.-Earth, 126, e2021JF006245, https://doi.org/10.1029/2021JF006245, 2021.
Blevins, J.: The final phase of restoration in Glenwood Canyon turns to debris-choked Colorado River, The Colorado Sun, 6 December 2021, https://coloradosun.com/2021/12/06/cdot-glenwood-canyon-colorado-river-restoration-i70/#:~:text=The final phase of restoration,Glenwood Canyon in July deluge (last access: 11 December 2021), 2021.
Brogan, D. J., Nelson, P. A., and MacDonald, L. H.: Reconstructing extreme post-wildfire floods: a comparison of convective and mesoscale events, Earth Surf. Proc. Land., 42, 2505–2522, https://doi.org/10.1002/esp.4194, 2017.
Brooks, A. P., Shellberg, J. G., Knight, J., and Spencer, J.: Alluvial gully erosion: an example from the Mitchell fluvial megafan, Queensland, Australia, Earth Surf. Proc. Land., 34, 1951–1969, https://doi.org/10.1002/esp.1883, 2009.
Cannon, S., Kirkham, R. M., and Parise, M.: Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado, Geomorphology, 39, 171–188, https://doi.org/10.1016/S0169-555X(00)00108-2, 2001.
Cannon, S., Gartner, J. E., Holland-Sears, A., Thurston, B. M., and Gleason, J. A.: Debris-flow response of basins burned by the 2002 Coal Seam and Missionary Ridge fires, Colorado, Engineering Geology in Colorado–Contributions, Trends, and Case Histories, in: Engineering Geology in Colorado – Contributions, Trends, and Case Histories: Association of Engineering Geologists Special Publication 14, Colorado Geological Survey Special Publication 55, on CD-ROM, edited by: Boyer, D. D., Santi, P. M., and Rogers, W. P., AEG Special Publication, 2003.
Cannon, S., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L.: Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology, 96, 250–269, https://doi.org/10.1016/j.geomorph.2007.03.019, 2008.
Castellano, C., Kalansky, J., and Ralph, F. M.: 2021 North American Monsoon Recap, https://cw3e.ucsd.edu/2021-north-american-monsoon-recap/, last access: 5 June 2023.
De Graff, J. V., Shelmerdine, B., Gallegos, A., and Annis, D.: Uncertainty associated with evaluating rockfall hazard to roads in burned areas, Environ. Eng. Geosci., 21, 21–33, https://doi.org/10.2113/gseegeosci.21.1.21, 2015.
DeBano, L. F.: The role of fire and soil heating on water repellency in wildland environments: a review, J. Hydrol., 231, 195–206, https://doi.org/10.1016/S0022-1694(00)00194-3, 2000.
DeBano, L. F., Rice, R. M., and Conrad, C. E.: Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff, U. S. Forest Service Research Paper (RP-145), 1979.
Dennison, P. E., Brewer, S. C., Arnold, J. D., and Moritz, M. A.: Large wildfire trends in the western United States, 1984–2011, Geophys. Res. Lett., 41, 2928–2933, https://doi.org/10.1002/2014GL059576, 2014.
DiBiase, R. A. and Lamb, M. P.: Vegetation and wildfire controls on sediment yield in bedrock landscapes, Geophys. Res. Lett., 40, 1093–1097, https://doi.org/10.1002/grl.50277, 2013.
DiBiase, R. A., Heimsath, A. M., and Whipple, K. X.: Hillslope response to tectonic forcing in threshold landscapes, Earth Surf. Proc. Land., 37, 855–865, https://doi.org/10.1002/esp.3205, 2012.
DiBiase, R. A., Lamb, M. P., Ganti, V., and Booth, A. M.: Slope, grain size, and roughness controls on dry sediment transport and storage on steep hillslopes, J. Geophys. Res.-Earth, 122, 941–960, https://doi.org/10.1002/2016JF003970, 2017.
Ebel, B. A.: Simulated unsaturated flow processes after wildfire and interactions with slope aspect, Water Resour. Res., 49, 8090–8107, https://doi.org/10.1002/2013WR014129, 2013.
Erku, R.: Railway reopens through Glenwood Canyon to freight travel following debris flows, https://www.postindependent.com/
news/railway-reopens-through-glenwood-canyon-to-freight-travel-following-debris-flows/, last access: 4 August 2021a.
Erku, R.: Silt water treatment plant feeling effects of Glenwood Canyon mudslides months later, https://www.postindependent.
com/news/silt-water-treatment-plant-feeling-effects-of-glenwood-canyon-mudslides-months-later/, last access: 20 December 2021b.
Erku, R.: Steady revegetation on Glenwood Canyon burn scar is a ray of sunshine for interstate commerce, https://www.
postindependent.com/news/steady-revegetation-on-glenwood-canyon-burn-scar-a-ray-of-sunshine-for-interstate-commerce/, last access: 22 April 2023.
Gartner, J. E., Cannon, S., and Santi, P. M.: Empirical models for predicting volumes of sediment deposited by debris flows and sediment-laden floods in the transverse ranges of southern California, Eng. Geol., 176, 45–56, https://doi.org/10.1016/j.enggeo.2014.04.008, 2014.
Graber, A. and Santi, P.: Inferring rockfall frequency-magnitude relationships and talus accumulation times from lichenometric study of talus deposits, Glenwood Canyon, CO, USA, Geomorphology, 408, 108253, https://doi.org/10.1016/j.geomorph.2022.108253, 2022.
Graber, A. and Santi, P.: UAV-photogrammetry rockfall monitoring of natural slopes in Glenwood Canyon, CO, USA: background activity and post-wildfire impacts, Landslides, 20, 229–248, https://doi.org/10.1007/s10346-022-01974-9, 2023.
Guasti, G. U., Caprinali, A., and Majorca, L.: Rockfall and Debris Flow Hazards After Summer Wildfires in Cerreto Sannita, Benevento, Italy, in: Landslide Science and Practice, edited by: Margottini, C., Canuti, P., and Sassa, K., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-31337-0_28, 2013.
Hoch, O. J., McGuire, L. A., Youberg, A. M., and Rengers, F. K.: Hydrogeomorphic Recovery and Temporal Changes in Rainfall Thresholds for Debris Flows Following Wildfire, J. Geophys. Res.-Earth, 126, e2021JF006374, https://doi.org/10.1029/2021JF006374, 2021.
Kean, J. W., Staley, D. M., and Cannon, S.: In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions, J. Geophys. Res.-Earth, 116, F04019. https://doi.org/10.1029/2011JF002005, 2011.
Kean, J. W., McGuire, L., Rengers, F. K., Smith, J. B., and Staley, D. M.: Amplification of postwildfire peak flow by debris, Geophys. Res. Lett., 43, 8545–8553, https://doi.org/10.1002/2016GL069661, 2016.
Kean, J. W., Staley, D. M., Lancaster, J. T., Rengers, F. K., Swanson, B. J., Coe, J. A., Hernandez, J. L., Sigman, A. J., Allstadt, K. E., and Lindsay, D. N.: Inundation, flow dynamics, and damage in the 9 January 2018 Montecito debris-flow event, California, USA: Opportunities and challenges for post-wildfire risk assessment, Geosphere, 15, 1140–1163, https://doi.org/10.1130/GES02048.1, 2019.
Kirkham, R. M., Streufert, R. K., Cappa, J. A., Shaw, C. A., Allen, J. L., and Schroeder, T. J. I.: Geologic Map of the Glenwood Springs Quadrangle, Garfield County, Colorado, https://coloradogeologicalsurvey.org/publications/geologic-map-glenwood-springs-quadrangle-garfield-colorado-2 (last access: 12 June 2024), 2009.
Klock, G. O. and Helvey, J. D.: Debris flows following wildfire in north central Washington, PB US Natl. Tech. Inf. Serv., 1976.
Lamb, M. P., Scheingross, J. S., Amidon, W. H., Swanson, E., and Limaye, A.: A model for fire-induced sediment yield by dry ravel in steep landscapes., J. Geophys. Res., 116, F03006, https://doi.org/10.1029/2010JF001878, 2011.
Larsen, I. J., MacDonald, L. H., Brown, E., Rough, D., Welsh, M. J., Pietraszek, J. H., Libohova, Z., de Dios Benavides-Solorio, J., and Schaffrath, K.: Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing?, Soil Sci. Soc. Am. J., 73, 1393–1407, https://doi.org/10.2136/sssaj2007.0432, 2009.
Mejía-Navarro, M., Wohl, E. E., and Oaks, S. D.: Geological Hazards, Vulnerability, and Risk Assessment Using GIS: Model for Glenwood Springs, Colorado, Geomorphol. Nat. Hazards, 1994, 331–254, https://doi.org/10.1016/b978-0-444-82012-9.50025-6, 1994.
Melzner, S., Shtober-Zisu, N., Katz, O., and Wittenberg, L.: Brief communication: Post-wildfire rockfall risk in the eastern Alps, Nat. Hazards Earth Syst. Sci., 19, 2879–2885, https://doi.org/10.5194/nhess-19-2879-2019, 2019.
Meyer, G. A., Pierce, J. L., Wood, S. H., and Jull, A. T.: Fire, storms, and erosional events in the Idaho batholith, Hydrol. Process., 15, 3025–3038, https://doi.org/10.1002/hyp.389, 2001.
Moody, J. A. and Ebel, B. A.: Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire, Catena, 93, 58–63, https://doi.org/10.1016/j.catena.2012.01.006, 2012.
Mueller, S. E., Thode, A. E., Margolis, E. Q., Yocom, L. L., Young, J. D., and Iniguez, J. M.: Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015, Forest Ecol. Manag., 460, 117861, https://doi.org/10.1016/j.foreco.2019.117861, 2020.
Murphy, B. P., Yocom, L. L., and Belmont, P.: Beyond the 1984 perspective: Narrow focus on modern wildfire trends underestimates future risks to water security, Earths Future, 6, 1492–1497, https://doi.org/10.1029/2018EF001006, 2018.
Murphy, B. P., Czuba, J. A., and Belmont, P.: Post-wildfire sediment cascades: A modeling framework linking debris flow generation and network-scale sediment routing, Earth Surf. Proc. Land., 44, 2126–2140, https://doi.org/10.1002/esp.4635, 2019.
National Oceanic and Atmospheric Administration: Climate at a glance: National Centers for Environmental Information (NCEI), https://www.ncei.noaa.gov/, last access: 31 July 2023.
Neary, D. G., Gottfried, G. J., and Ffolliott, P. F.: Fires and floods: post-fire watershed responses, in: Proceedings of the 4th International Conference on Forest Fire Research: Forest Fire Research and Wildland Fire Safety, 18–23 November 2002, Rotterdam, the Netherlands, Millpress, https://www.frames.gov/catalog/2454 (last access: 12 June 2024), 2002.
NRCS Soils: Natural Resources Conservation Service, Citing Web Soil Survey as a Source of Soils Data, http://websoilsurvey.sc.egov.usda.gov/, last access: 22 December 2021.
Nyman, P., Sheridan, G., Smith, H. G., and Lane, P. N. J.: Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia, Geomorphology, 125, 383–401, https://doi.org/10.1016/j.geomorph.2010.10.016, 2011.
Nyman, P., Box, W. A., Stout, J. C., Sheridan, G. J., Keesstra, S. D., Lane, P. N., and Langhans, C.: Debris-flow-dominated sediment transport through a channel network after wildfire, Earth Surf. Proc. Land., 45, 1155–1167, https://doi.org/10.1002/esp.4785, 2020.
Otarola, M.: “The Whole Car Went Black:” What It Was Like Being Trapped In The I-70 Glenwood Canyon Mudslide, https://www.cpr.org/2021/08/03/i-70-glenwood-canyon-mudslide-trapped-tunnel/, last access: 3 December 2021.
Parise, M. and Cannon, S.: Wildfire impacts on the processes that generate debris flows in burned watersheds, Nat. Hazards, 61, 217–227, https://doi.org/10.1007/s11069-011-9769-9, 2012.
Parsons, A., Robichaud, P. R., Lewis, S. A., Napper, C., and Clark, J. T.: Field guide for mapping post-fire soil burn severity, Gen. Tech. Rep. RMRS-GTR-243, US Department of Agriculture, Forest Service, Rocky Mountain Research Station Fort Collins, CO, 49 pp., https://doi.org/10.2737/RMRS-GTR-243, 2010.
Pelletier, J. D. and Orem, C. A.: How do sediment yields from post-wildfire debris-laden flows depend on terrain slope, soil burn severity class, and drainage basin area? Insights from airborne-LiDAR change detection, Earth Surf. Proc. Land., 39, 1822–1832, https://doi.org/10.1002/esp.3570, 2014.
Planet Application Program Interface: In Space for Life on Earth: https://api.planet.com, last access: 10 December 2021.
Prochaska, A. B., Santi, P. M., and Higgins, J. D.: Debris basin and deflection berm design for fire-related debris-flow mitigation, Environ. Eng. Geosci., 14, 297–313, https://doi.org/10.2113/gseegeosci.14.4.297, 2008.
Rengers, F. K., Tucker, G. E., and Mahan, S. A.: Episodic bedrock erosion by gully-head migration, Colorado High Plains, USA, Earth Surf. Proc. Land., 41, 1574–1582, https://doi.org/10.1002/esp.3929, 2016.
Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., and Youberg, A. M.: Progress in simplifying hydrologic model parameterization for broad applications to post-wildfire flooding and debris-flow hazards, Earth Surf. Proc. Land., 44, 3078–3092, https://doi.org/10.1002/esp.4697, 2019.
Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., Dobre, M., Robichaud, P. R., and Swetnam, T.: Movement of sediment through a burned landscape: Sediment volume observations and model comparisons in the San Gabriel Mountains, California, USA, J. Geophys. Res.-Earth, 126, e2020JF006053, https://doi.org/10.1029/2020JF006053, 2021.
Rengers, F. K., Bethel, M., Group, R., Vessely, M., and Anderson, S.: Airborne Lidar Data (2016 and 2021) Airborne Lidar Data (2016 and 2021) Capturing Debris Flow Erosion and Deposition after the Grizzly Creek Fire in Glenwood Canyon, Colorado, U.S. Geological Survey data release [data set], https://doi.org/10.5066/P99OT77K, 2023a.
Rengers, F. K., Bower, S. J., Knapp, A., Kean, J. W., Staley, D. M., Banta, J. R., and Williams, C.: Debris Flow, Precipitation, and Volume Measurements in the Grizzly Creek Burn Perimeter June 2021–September 2022, Glenwood Canyon, Colorado, U.S. Geological Survey data release [data set], https://doi.org/10.5066/P9Z7RROL, 2023b.
Rutter, A. J., Kershaw, K. A., Robins, P. C., and Morton, A. J.: A predictive model of rainfall interception in forests. 1. Derivation of the model from observations in a plantation of Corsican pine, Agr. Meteorol., 9, 367–384, 1971.
Rutter, A. J., Morton, A. J., and Robins, P. C.: A predictive model of rainfall interception in forests. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands, J. Appl. Ecol., 12, 367–380, https://doi.org/10.2307/2401739, 1975.
Santi, P. M. and Macaulay, B.: Water and sediment supply requirements for post-wildfire debris flows in the western United States, Environ. Eng. Geosci., 27, 73–85, 2021.
Santi, P. M. and Rengers,F. K.: 9.32 – Wildfire and Landscape Change, in: Treatise on Geomorphology, 2nd Edn., edited by: Shroder, J. (J.) F., Academic Press, 765–797, ISBN 9780128182352, https://doi.org/10.1016/B978-0-12-818234-5.00017-1, 2022.
Santi, P. M., deWolfe, V. G., Higgins, J. D., Cannon, S. H., and Gartner, J. E.: Sources of debris flow material in burned areas, Geomorphology, 96, 310–321, https://doi.org/10.1016/j.geomorph.2007.02.022, 2008.
Schwartz, G. E. and Alexander, R. B.: Soils Data for the Conterminous United States Derived from the NRCS State Soil Geographic (STATSGO) Database, U. S. Geological Survey, https://doi.org/10.5066/P94JAULO, 1995.
Sentinel Hub: Citing Sentinel Hub EO Browser as a Source of Landsat and Sentinel Data, https://docs.sentinel-hub.com/api/latest/data/ (last access: 14 December 2023), 2023.
Staley, D. M., Kean, J. W., Cannon, S., Schmidt, K. M., and Laber, J. L.: Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California, Landslides, 10, 547–562, https://doi.org/10.1007/s10346-012-0341-9, 2013.
Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. M., Tillery, A. C., and Youberg, A. M.: Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States, US Department of the Interior, US Geological Survey, https://doi.org/10.3133/ofr20161106, 2016.
Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. L., Tillery, A. C., and Youberg, A. M.: Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States, Geomorphology, 278, 149–162, https://doi.org/10.1016/j.geomorph.2016.10.019, 2017.
Stroud, J.: Glenwood Canyon assessment sets course for limited I-70 reopening “in days, not weeks,” after debris removal, basic repairs, https://www.postindependent.com/news/glenwood-
canyon-assessment-sets-course-for-limited-i-70-reopening-after-debris-removal-basic-repairs/, last access: 20 August 2021a.
Stroud, J.: Travelers stranded during second Glenwood Canyon closure Thursday night, hole up at tunnels until they could be escorted out safely, https://www.vaildaily.com/news/travelers-
stranded-during-second-glenwood-canyon-closure-thursday-night-hole-up-at-tunnels-until-they-could-be-escorted-out-safely/, last access: 13 December 2021b.
Stroud, J.: Where are all those rocks going? Glenwood Canyon work progresses to debris removal after completion of roadway repairs this month, https://www.postindependent.com/news/
where-are-all-those-rocks-goingglenwood-canyon-work-progresses-to-debris-removal-after-completion-of-roadway-repairs-this-month/, last access: 25 December 2021c.
Stroud, J.: Legacy of Grizzly Creek Fire, 2021 rains reshape recreation in Glenwood Canyon, https://www.postindependent.
com/news/legacy-of-grizzly-creek-fire-2021-rains-reshape-recreation-in-glenwood-canyon/, last access: 13 July 2022.
Tang, H., McGuire, L. A., Rengers, F. K., Kean, J. W., Staley, D. M., and Smith, J. B.: Developing and Testing Physically Based Triggering Thresholds for Runoff-Generated Debris Flows, Geophys. Res. Lett., 46, 8830–8839, https://doi.org/10.1029/2019GL083623, 2019a.
Tang, H., McGuire, L. A., Rengers, F. K., Kean, J. W., Staley, D. M., and Smith, J. B.: Evolution of debris flow initiation mechanisms and sediment sources during a sequence of post-wildfire rainstorms, J. Geophys. Res., 124, 1572–1595, https://doi.org/10.1029/2018JF004837, 2019b.
Thomas, M. A., Rengers, F. K., Kean, J. W., McGuire, L. A., Staley, D. M., Barnhart, K. R., and Ebel, B. A.: Postwildfire soil-hydraulic recovery and the persistence of debris flow hazards, J. Geophys. Res.-Earth, 126, e2021JF006091, https://doi.org/10.1029/2021JF006091, 2021.
Thomas, M. A., Lindsay, D. N., Cavagnaro, D. B., Kean, J. W., McCoy, S. W., and Graber, A. P.: The Rainfall Intensity-Duration Control of Debris Flows After Wildfire, Geophys. Res. Lett., 50, e2023GL103645, https://doi.org/10.1029/2023GL103645, 2023.
Tillery, A. C. and Rengers, F. K.: Controls on debris-flow initiation on burned and unburned hillslopes during an exceptional rainstorm in southern New Mexico, USA, Earth Surf. Proc. Land., 45, 1051–1066, https://doi.org/10.1002/esp.4761, 2019.
United States Forest Service: Grizzly Creek Fire Burned Area Report, U. S. Department of Agriculture, Forest Service, 2020.
U.S. Geological Survey: Grizzly Creek (White River National Forest, CO) Post-Wildfire Debris Flow Hazard Assessment, https://landslides.usgs.gov/hazards/postfire_debrisflow/detail.php?objectid=294 (last access: 12 January 2021), 2020.
Warrick, J. A., Vos, K., East, A. E., and Vitousek, S.: Fire (plus) flood (equals) beach: coastal response to an exceptional river sediment discharge event, Sci. Rep., 12, 1–15, https://doi.org/10.1038/s41598-022-07209-0, 2022.
Wells, W. G.: The effects of fire on the generation of debris flows in southern California, Reviews in Engineering Geology, 7, 105–114, https://doi.org/10.1130/REG7-p105, 1987.
Westerling, A. L.: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring, Philos. T. Roy. Soc. B, 371, 20150178, https://doi.org/10.1098/rstb.2015.0178, 2016.
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and earlier spring increase western US forest wildfire activity, Science, 313, 940–943, https://doi.org/10.1126/science.1128834, 2006.
Williams, C. H., Silins, U., Spencer, S. A., Wagner, M. J., Stone, M., and Emelko, M. B.: Net precipitation in burned and unburned subalpine forest stands after wildfire in the northern Rocky Mountains, Int. J. Wildland Fire, 28, 750–760, https://doi.org/10.1071/WF18181, 2019.
Wohl, E. E. and Pearthree, P. P.: Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona, Geomorphology, 4, 273–292, https://doi.org/10.1016/0169-555X(91)90010-8, 1991.
Short summary
Every year the U.S. Geological Survey produces 50–100 postfire debris-flow hazard assessments using models for debris-flow likelihood and volume. To refine these models they must be tested with datasets that clearly document rainfall, debris-flow response, and debris-flow volume. These datasets are difficult to obtain, but this study developed and analyzed a postfire dataset with more than 100 postfire storm responses over a 2-year period. We also proposed ways to improve these models.
Every year the U.S. Geological Survey produces 50–100 postfire debris-flow hazard assessments...
Altmetrics
Final-revised paper
Preprint