Acworth, P., Broadie, M., and Glasserman, P.: A Comparison of Some Monte Carlo
and Quasi Monte Carlo Techniques for Option Pricing, in: Monte Carlo and Quasi-Monte Carlo Methods 1996, edited by: Niederreiter, H., Hellekalek, P., Larcher, G., and Zinterhof, P., Lecture Notes in Statistics, Springer, New York, 127,
https://doi.org/10.1007/978-1-4612-1690-2_1, 1998.
a
Chini, N. and Stansby, P.: Extreme values of coastal wave overtopping
accounting for climate change and sea level rise, Coastal Eng., 65,
27–37, 2006.
a,
b
De Michele, C., Salvadori, G., Passoni, G., and Vezzoli, R.: A multivariate
model of sea storms using copulas, Coastal Eng., 54, 734–751, 2007. a
de Moel, H., Asselman, N. E. M., and Aerts, J. C. J. H.: Uncertainty and sensitivity analysis of coastal flood damage estimates in the west of the Netherlands, Nat. Hazards Earth Syst. Sci., 12, 1045–1058,
https://doi.org/10.5194/nhess-12-1045-2012, 2012.
a
Goda, Y.: Random Seas and Design of Maritime Structures, vol. 15, World
Scientific Publishing Co.,
https://doi.org/10.1142/7425, 2000.
a,
b,
c,
d,
e,
f,
g
Hu, L.: Dependence patterns across financial markets: a mixed copula approach,
Applied Finance Economics, 16, 717–729, 2006. a
Hughes, S. and Nadal, N.: Laboratory study of combined wave overtopping and
storm surge overflow of a levee, Coastal Eng., 56, 244–259, 2008. a
Hughes, S., Thornton, C., der Meer, J. V., and Scholl, B.: Improvements in
describing wave overtopping processes, Coastal Eng., 1, 35, 2012.
a,
b
Laugel, A., Tiberi-Wadier, A.-L.,
Benoit, M., and Mattarolo, G.: ANEMOC-2, PARALIA [data set],
https://doi.org/10.5150/jngcgc.2014.013, last access: March 2023.
a
Liu, S. and Han, J.: Energy efficient stochastic computing with Sobol
sequences, Design, Automation & Test in Europe Conference & Exhibition, 2017, Lausanne, Switzerland,
650–653,
https://doi.org/10.23919/DATE.2017.7927069, 2017.
a,
b
Lorke, S., Borschein, A., Schüttrumpf, H., and Pohl, R.: Influence of wind and
current on wave run-up and wave overtopping, Final report., FlowDike-D, 2012. a
Mehrabani, M. and Chen, H.: Risk Assessment of Wave Overtopping of Sea Dykes
Due to Changing Environments, Conference on Flood Risk Assessment, March 2014, Swansea University, Wales, UK, 2015. a
Muraleedharan, G., Soares, C. G., and Lucas, C.: Characteristic and Moment
Generating Functions of Generalised Extreme Value Distribution (GEV), Sea
Level Rise, Coastal Engineering, Shorelines and Tides (Oceanography and Ocean
Engineering), 14, 269–276, 2011. a
Orcel, O., Sergent, P., and Ropert, F.: Trivariate copula to design coastal structures, Nat. Hazards Earth Syst. Sci., 21, 239–260,
https://doi.org/10.5194/nhess-21-239-2021, 2021.
a,
b,
c
Peterka, A.: Hydraulic design of stilling bassin and energy dissipators,
Engineering Monograph, 25, 222, PB95139457, 1958. a
Pörtner, H.-O., Roberts, D., Tignor, M., Poloczanska, E., Mintenbeck, K.,
Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A.,
and Rama, B. (Eds.): Climate Change 2022: Impacts, Adaptation, and Vulnerability.
Contribution of Working Group II to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
https://doi.org/10.1017/9781009325844, 2022.
a
Saltelli, A., Ratto, M., Terry, A., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana, M., and Tarantola, S.: Global Sensitivity Analysis, The Primer, John
Wiley and Sons, Ltd,
https://doi.org/10.1002/9780470725184, 2008.
a,
b
Sergent, P., Prevot, G., Mattarolo, G., Brossard, J., Morel, G., Mar, F.,
Benoit, M., Ropert, F., Kergadallan, X., Trichet, J., and Mallet, P.:
Stratégies d'adaptation des ouvrages de protection marine ou des modes
d'occupation du littoral vis-à-vis de la montée du niveau des mers et des
océans, Ministère de l'écologie, du développement durable, du transport
et du logement, 2015. a
Sobol', I.: Quasi-Monte Carlo methods, Prog. Nuclear Energ., 24, 55–61,
1990. a
Sobol', I.: On quasi-Monte Carlo integrations, Mathematics and Computers in
Simulation, 47, 103–112, 1998. a
Sobol, I.: Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates, Math. Comput. Simulat., 55,
271–280, 2001.
a,
b
Sobol', I. and Kucherenko, S.: On global sensitivity analysis of quasi-Monte
Carlo algorithms, Monte Carlo Methods and Applications, 11, 83–92, 2005. a
Tootoonchi, F., Sadegh, M., Haerter, J., Raty, O., Grabs, T., and Teutschbein,
C.: Copulas for hydroclimatic analysis: A practice-oriented overview, WIREs
Water, 9, e1579,
https://doi.org/10.1002/wat2.1579, 2022.
a
van der Meer, J.: The Wave Run-up Simulator. Idea, necessity, theoretical
background and design, Van der Meer Consulting Report vdm11355, 2011.
a,
b
van der Meer, J., Provoost, Y., and Steendam, G.: The wave run-up simulator,
theory and first pilot test, Proc. ICCE, 2012.
a,
b
van der Meer, J., Allsop, N., Bruce, T., de Rouck, J., Kortenhaus, A., Pullen,
T., Schüttrumpf, H., Troch, P., and Zanuttigh, B.: EurOtop. Manual on wave
overtopping of sea defences and related structures. An overtopping manual
largely based on European research, but for worldwide application,
http://www.overtopping-manual.com (last access: 20 September 2023), 2018.
a,
b,
c,
d
Wahl, T., Jensen, J., and Mudersbach, C.: A multivariate statistical model for
advanced storm surge analyses in the North Sea, Proceedings of 32rd
International Conference on Coastal Engineering,
https://doi.org/10.9753/icce.v32.currents.19, Shanghai, China, 2010.
a,
b