Articles | Volume 23, issue 9
https://doi.org/10.5194/nhess-23-3065-2023
https://doi.org/10.5194/nhess-23-3065-2023
Research article
 | 
18 Sep 2023
Research article |  | 18 Sep 2023

Shallow and deep learning of extreme rainfall events from convective atmospheres

Gerd Bürger and Maik Heistermann

Related authors

Projected changes in Rhine River flood seasonality under global warming
Erwin Rottler, Axel Bronstert, Gerd Bürger, and Oldrich Rakovec
Hydrol. Earth Syst. Sci., 25, 2353–2371, https://doi.org/10.5194/hess-25-2353-2021,https://doi.org/10.5194/hess-25-2353-2021, 2021
Short summary
Long-term changes in central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle
Erwin Rottler, Till Francke, Gerd Bürger, and Axel Bronstert
Hydrol. Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/hess-24-1721-2020,https://doi.org/10.5194/hess-24-1721-2020, 2020
Short summary
Seasonal drought prediction for semiarid northeastern Brazil: verification of six hydro-meteorological forecast products
José Miguel Delgado, Sebastian Voss, Gerd Bürger, Klaus Vormoor, Aline Murawski, José Marcelo Rodrigues Pereira, Eduardo Martins, Francisco Vasconcelos Júnior, and Till Francke
Hydrol. Earth Syst. Sci., 22, 5041–5056, https://doi.org/10.5194/hess-22-5041-2018,https://doi.org/10.5194/hess-22-5041-2018, 2018
Short summary
Effects of sample size on estimation of rainfall extremes at high temperatures
Berry Boessenkool, Gerd Bürger, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 17, 1623–1629, https://doi.org/10.5194/nhess-17-1623-2017,https://doi.org/10.5194/nhess-17-1623-2017, 2017
Short summary
Can local climate variability be explained by weather patterns? A multi-station evaluation for the Rhine basin
Aline Murawski, Gerd Bürger, Sergiy Vorogushyn, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4283–4306, https://doi.org/10.5194/hess-20-4283-2016,https://doi.org/10.5194/hess-20-4283-2016, 2016
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
How well are hazards associated with derechos reproduced in regional climate simulations?
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024,https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Reconstructing hail days in Switzerland with statistical models (1959–2022)
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024,https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024,https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024,https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Intense rains in Israel associated with the train effect
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024,https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary

Cited articles

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, J. Big Data, 8, 53, https://doi.org/10.1186/s40537-021-00444-8, 2021. 
Bianco, S., Cadene, R., Celona, L., and Napoletano, P.: Benchmark Analysis of Representative Deep Neural Network Architectures, IEEE Access, 6, 64270–64277, https://doi.org/10.1109/ACCESS.2018.2877890, 2018. 
Brownlee, J.: Statistical Methods for Machine Learning: Discover how to Transform Data into Knowledge with Python, Machine Learning Mastery, 291 pp., 2018. 
Bürger, G.: Convective Atmospheres: Linking Radar-based Event Descriptors and Losses From Flash Floods (CARLOFFF), Zenodo [code], https://doi.org/10.5281/zenodo.8146270, 2023. 
BVLC (Berkeley Vision and Learning Center): Caffe, Release 1.0, Zenodo [code], https://github.com/BVLC/caffe (last access: 11 September 2023), 2017. 
Download
Short summary
Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify reanalyzed daily atmospheric fields of convective indices according to CatRaRE, using conventional statistical and more recent machine learning algorithms, and apply them to present and future atmospheres. Increasing trends are projected for CatRaRE-type probabilities, from reanalyzed as well as from simulated atmospheric fields.
Altmetrics
Final-revised paper
Preprint