Articles | Volume 23, issue 9
https://doi.org/10.5194/nhess-23-3065-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-23-3065-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Shallow and deep learning of extreme rainfall events from convective atmospheres
Institute of Earth and Environmental Science, University of Potsdam,
Potsdam, 14476, Germany
Maik Heistermann
Institute of Earth and Environmental Science, University of Potsdam,
Potsdam, 14476, Germany
Related authors
Erwin Rottler, Axel Bronstert, Gerd Bürger, and Oldrich Rakovec
Hydrol. Earth Syst. Sci., 25, 2353–2371, https://doi.org/10.5194/hess-25-2353-2021, https://doi.org/10.5194/hess-25-2353-2021, 2021
Short summary
Short summary
The mesoscale hydrological model (mHM) forced with an ensemble of climate projection scenarios was used to assess potential future changes in flood seasonality in the Rhine River basin. Results indicate that future changes in flood characteristics are controlled by increases in precipitation sums and diminishing snowpacks. The decreases in snowmelt can counterbalance increasing precipitation, resulting in only small and transient changes in streamflow maxima.
Till Francke and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 2783–2802, https://doi.org/10.5194/nhess-25-2783-2025, https://doi.org/10.5194/nhess-25-2783-2025, 2025
Short summary
Short summary
Brandenburg is among the driest federal states in Germany. The low groundwater recharge (GWR) is fundamental to both water supply and the support of natural ecosystems. In this study, we show that the decline of observed discharge and groundwater tables since 1980 can be explained by climate change in combination with an increasing leaf area index. Still, simulated GWR rates remain highly uncertain due to the uncertainty in precipitation trends.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025, https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation is generally hindered by not knowing the truth. We propose a virtual framework in which this truth is fully known and the sensor observations for cosmic ray neutron sensing, remote sensing, and hydrogravimetry are simulated. This allows for the rigorous testing of these virtual sensors to understand their effectiveness and limitations.
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025, https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Short summary
Forecasting rainfall over the next hour is an essential feature of early warning systems. Deep learning (DL) has emerged as a powerful alternative to conventional nowcasting technologies, but it still struggles to adequately predict impact-relevant heavy rainfall. We think that DL could do much better if the training tasks were defined more specifically and that such specification presents an opportunity to better align the output of nowcasting models with actual user requirements.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 4609–4615, https://doi.org/10.5194/nhess-24-4609-2024, https://doi.org/10.5194/nhess-24-4609-2024, 2024
Short summary
Short summary
Floods have caused significant damage in the past. To prepare for such events, we rely on historical data but face issues due to rare rainfall events, lack of data and climate change. Counterfactuals, or
what ifscenarios, simulate historical rainfall in different locations to estimate flood levels. Our new study refines this by deriving more-plausible local scenarios, using the June 2024 Bavaria flood as a case study. This method could improve preparedness for future floods.
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848, https://doi.org/10.5194/egusphere-2024-3848, 2024
Short summary
Short summary
The German federal state of Brandenburg is particularly prone to soil moisture droughts. To support the management of related risks, we introduce a novel soil moisture and drought monitoring network based on cosmic-ray neutron sensing technology. This initiative is driven by a collaboration of research institutions and federal state agencies, and it is the first of its kind in Germany to have started operation. In this brief communication, we outline the network design and share first results.
Xiaoxiang Guan, Dung Viet Nguyen, Paul Voit, Bruno Merz, Maik Heistermann, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-143, https://doi.org/10.5194/nhess-2024-143, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We evaluated a multi-site stochastic regional weather generator (nsRWG) for its ability to capture the cross-scale extremity of high precipitation events (HPEs) in Germany. We generated 100 realizations of 72 years of daily synthetic precipitation data. The performance was assessed using WEI and xWEI indices, which measure event extremity across spatio-temporal scales. Results show nsRWG simulates well the extremity patterns of HPEs, though it overestimates short-duration, small-extent events.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 2147–2164, https://doi.org/10.5194/nhess-24-2147-2024, https://doi.org/10.5194/nhess-24-2147-2024, 2024
Short summary
Short summary
To identify flash flood potential in Germany, we shifted the most extreme rainfall events from the last 22 years systematically across Germany and simulated the consequent runoff reaction. Our results show that almost all areas in Germany have not seen the worst-case scenario of flood peaks within the last 22 years. With a slight spatial change of historical rainfall events, flood peaks of a factor of 2 or more would be achieved for most areas. The results can aid disaster risk management.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024, https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive technique used to obtain estimates of soil water content (SWC) at a horizontal footprint of around 150 m and a vertical penetration depth of up to 30 cm. However, typical CRNS applications require the local calibration of a function which converts neutron counts to SWC. As an alternative, we propose a generalized function as a way to avoid the use of local reference measurements of SWC and hence a major source of uncertainty.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Katharina Lengfeld, Paul Voit, Frank Kaspar, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 1227–1232, https://doi.org/10.5194/nhess-23-1227-2023, https://doi.org/10.5194/nhess-23-1227-2023, 2023
Short summary
Short summary
Estimating the severity of a rainfall event based on the damage caused is easy but highly depends on the affected region. A less biased measure for the extremeness of an event is its rarity combined with its spatial extent. In this brief communication, we investigate the sensitivity of such measures to the underlying dataset and highlight the importance of considering multiple spatial and temporal scales using the devastating rainfall event in July 2021 in central Europe as an example.
Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 809–822, https://doi.org/10.5194/nhess-23-809-2023, https://doi.org/10.5194/nhess-23-809-2023, 2023
Short summary
Short summary
Data-driven models are becoming more of a surrogate that overcomes the limitations of the computationally expensive 2D hydrodynamic models to map urban flood hazards. However, the model's ability to generalize outside the training domain is still a major challenge. We evaluate the performance of random forest and convolutional neural networks to predict urban floodwater depth and investigate their transferability outside the training domain.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 22, 2791–2805, https://doi.org/10.5194/nhess-22-2791-2022, https://doi.org/10.5194/nhess-22-2791-2022, 2022
Short summary
Short summary
To better understand how the frequency and intensity of heavy precipitation events (HPEs) will change with changing climate and to adapt disaster risk management accordingly, we have to quantify the extremeness of HPEs in a reliable way. We introduce the xWEI (cross-scale WEI) and show that this index can reveal important characteristics of HPEs that would otherwise remain hidden. We conclude that the xWEI could be a valuable instrument in both disaster risk management and research.
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 25, 4807–4824, https://doi.org/10.5194/hess-25-4807-2021, https://doi.org/10.5194/hess-25-4807-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a powerful technique for retrieving representative estimates of soil moisture in footprints extending over hectometres in the horizontal and decimetres in the vertical. This study, however, demonstrates the potential of CRNS to obtain spatio-temporal patterns of soil moisture beyond isolated footprints. To that end, we analyse data from a unique observational campaign that featured a dense network of more than 20 neutron detectors in an area of just 1 km2.
Erwin Rottler, Axel Bronstert, Gerd Bürger, and Oldrich Rakovec
Hydrol. Earth Syst. Sci., 25, 2353–2371, https://doi.org/10.5194/hess-25-2353-2021, https://doi.org/10.5194/hess-25-2353-2021, 2021
Short summary
Short summary
The mesoscale hydrological model (mHM) forced with an ensemble of climate projection scenarios was used to assess potential future changes in flood seasonality in the Rhine River basin. Results indicate that future changes in flood characteristics are controlled by increases in precipitation sums and diminishing snowpacks. The decreases in snowmelt can counterbalance increasing precipitation, resulting in only small and transient changes in streamflow maxima.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Cited articles
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y.,
Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., and
Farhan, L.: Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions, J. Big Data, 8, 53,
https://doi.org/10.1186/s40537-021-00444-8, 2021.
Bianco, S., Cadene, R., Celona, L., and Napoletano, P.: Benchmark Analysis
of Representative Deep Neural Network Architectures, IEEE Access, 6,
64270–64277, https://doi.org/10.1109/ACCESS.2018.2877890, 2018.
Brownlee, J.: Statistical Methods for Machine Learning: Discover how to
Transform Data into Knowledge with Python, Machine Learning Mastery, 291 pp., 2018.
Bürger, G.: Convective Atmospheres: Linking Radar-based Event Descriptors and Losses From Flash Floods (CARLOFFF), Zenodo [code], https://doi.org/10.5281/zenodo.8146270, 2023.
BVLC (Berkeley Vision and Learning Center): Caffe, Release 1.0, Zenodo [code], https://github.com/BVLC/caffe (last access: 11 September 2023), 2017.
DKRZ (Deutsches Klimarechenzentrum): ESGF-CoG Node, https://esgf-data.dkrz.de, last access: 11 September 2023.
Doblas-Reyes, F. J., Sörensson, A. A., Almazroui, M., Dosio, A.,
Gutowski, W. J., Haarsma, R., Hamdi, R., Hewitson, B., Kwon, W.-T., Lamptey,
B. L., Maraun, D., Stephenson, T. S., Takayabu, I., Terray, L., Turner, A.,
and Zuo, Z.: Linking global to regional climate change, in: Climate Change
2021: The Physical Science Basis, Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
1363–1512, https://doi.org/10.1017/9781009157896.001, 2021.
European Environment Agency: Economic losses from climate-related extremes
in Europe, EEA, Copenhagen, Denmark, 29 pp., 2019.
Fosser, G., Kendon, E. J., Stephenson, D., and Tucker, S.:
Convection-Permitting Models Offer Promise of More Certain Extreme Rainfall
Projections, Geophys. Res. Lett., 47, e2020GL088151,
https://doi.org/10.1029/2020GL088151, 2020.
Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban,
N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S.,
Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C., Sharma, A., Villarini,
G., Wasko, C., and Zhang, X.: Anthropogenic intensification of
short-duration rainfall extremes, Nat. Rev. Earth. Environ., 2, 107–122,
https://doi.org/10.1038/s43017-020-00128-6, 2021.
Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., and Yacalis, G.: Could
Machine Learning Break the Convection Parameterization Deadlock?, Geophys.
Res. Lett., 45, 5742–5751, https://doi.org/10.1029/2018GL078202, 2018.
Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press, 800 pp., ISBN: 9780262035613, 2016.
Ham, Y.-G., Kim, J.-H., and Luo, J.-J.: Deep learning for multi-year ENSO
forecasts, Nature, 573, 568–572, https://doi.org/10.1038/s41586-019-1559-7, 2019.
Ham, Y.-G., Kim, J.-H., Kim, E.-S., and On, K.-W.: Unified deep learning
model for El Niño/Southern Oscillation forecasts by incorporating
seasonality in climate data, Sci. Bull., 66, 1358–1366,
https://doi.org/10.1016/j.scib.2021.03.009, 2021.
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image
Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016, IEEE, 770–778, https://doi.org/10.1109/CVPR.2016.90, 2016.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q.: Densely
Connected Convolutional Networks, in: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017, IEEE, 2261–2269, https://doi.org/10.1109/CVPR.2017.243, 2017.
Irrgang, C., Boers, N., Sonnewald, M., Barnes, E. A., Kadow, C., Staneva,
J., and Saynisch-Wagner, J.: Towards neural Earth system modelling by
integrating artificial intelligence in Earth system science, Nat. Mach.
Intell., 3, 667–674, https://doi.org/10.1038/s42256-021-00374-3, 2021.
Jekabsons, G.: M5PrimeLab: M5'regression tree, model tree, and tree ensemble
toolbox for Matlab/Octave, 2016.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., and Darrell, T.: Caffe: Convolutional Architecture for Fast
Feature Embedding, in: Proceedings of the 22nd ACM international conference
on Multimedia, Orlando, Florida, USA, 3–7 November 2014, Machinery, New York, NY, USA, 675–678, https://doi.org/10.1145/2647868.2654889, 2014.
Kendon, E. J., Prein, A. F., Senior, C. A., and Stirling, A.: Challenges and
outlook for convection-permitting climate modelling, Philos. T. R. Soc. A, 379, 20190547, https://doi.org/10.1098/rsta.2019.0547, 2021.
Klein, W. H., Lewis, B. M., and Enger, I.: Objective prediction of five-day
mean temperatures during winter, J. Atmos. Sci., 16, 672–682, 1959.
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019.
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet classification
with deep convolutional neural networks, Commun. ACM, 60, 84–90,
https://doi.org/10.1145/3065386, 2017.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D.: Backpropagation Applied to Handwritten Zip Code
Recognition, Neural Comput., 1, 541–551, https://doi.org/10.1162/neco.1989.1.4.541, 1989.
Lengfeld, K., Walawender, E., Winterrath, T., and Becker, A.: CatRaRE: A
Catalogue of radar-based heavy rainfall events in Germany derived from 20
years of data, Meteorol. Z., 30, 469–487, https://doi.org/10.1127/metz/2021/1088, 2021.
Lengfeld, K., Walawender, E., Winterrath, T., Weigl, E., and Becker, A.: Starkregenereignisse Version 2022.01 mit Überschreitung der DWD-Warnstufe 3 für Unwetter basierend auf RADKLIM-RW Version 2017.002, Parameter und Polygone der Starkregenereignisse in Deutschland, Version v2022.01, Deutscher Wetterdienst [data set], https://doi.org/10.5676/DWD/CatRaRE_W3_Eta_v2022.01, 2022.
Lepore, C., Abernathey, R., Henderson, N., Allen, J. T., and Tippett, M. K.:
Future Global Convective Environments in CMIP6 Models, Earth's Future, 9,
e2021EF002277, https://doi.org/10.1029/2021EF002277, 2021.
Leutwyler, D., Lüthi, D., Ban, N., Fuhrer, O., and Schär, C.:
Evaluation of the convection-resolving climate modeling approach on
continental scales, J. Geophys. Res.-Atmos., 122, 5237–5258,
https://doi.org/10.1002/2016JD026013, 2017.
Lucas-Picher, P., Argüeso, D., Brisson, E., Tramblay, Y., Berg, P.,
Lemonsu, A., Kotlarski, S., and Caillaud, C.: Convection-permitting modeling
with regional climate models: Latest developments and next steps, WIREs Clim. Change, 12, e731, https://doi.org/10.1002/wcc.731, 2021.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekçi, Ö., Yu, R., and Zhou, B. (Eds.): Summary for
policymakers, in: Climate Change 2021: The Physical Science Basis,
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 3–32,
https://doi.org/10.1017/9781009157896.001, 2021.
McIlhagga, W.: penalized: A MATLAB Toolbox for Fitting Generalized Linear
Models with Penalties, J. Stat. Softw., 72, 1–21, https://doi.org/10.18637/jss.v072.i06, 2016.
Müller, M. and Kaspar, M.: Event-adjusted evaluation of weather and climate extremes, Nat. Hazards Earth Syst. Sci., 14, 473–483, https://doi.org/10.5194/nhess-14-473-2014, 2014.
O'Gorman, P. A. and Dwyer, J. G.: Using Machine Learning to Parameterize
Moist Convection: Potential for Modeling of Climate, Climate Change, and
Extreme Events, J. Adv. Model. Earth Sy., 10, 2548–2563, https://doi.org/10.1029/2018MS001351, 2018.
Pan, B., Hsu, K., AghaKouchak, A., and Sorooshian, S.: Improving Precipitation Estimation Using Convolutional Neural Network, Water Resour.
Res., 55, 2301–2321, https://doi.org/10.1029/2018WR024090, 2019.
Purr, C., Brisson, E., and Ahrens, B.: Convective rain cell characteristics
and scaling in climate projections for Germany, Int. J. Climatol., 41,
3174–3185, https://doi.org/10.1002/joc.7012, 2021.
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent
subgrid processes in climate models, P. Natl. Acad. Sci. USA, 115, 9684–9689, https://doi.org/10.1073/pnas.1810286115, 2018.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204,
https://doi.org/10.1038/s41586-019-0912-1, 2019.
Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M.,
Leufen, L. H., Mozaffari, A., and Stadtler, S.: Can deep learning beat
numerical weather prediction?, Philos. T. Roy. Soc. A, 379, 20200097,
https://doi.org/10.1098/rsta.2020.0097, 2021.
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di
Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto,
I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and
climate extreme events in a changing climate, in: Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekçi, Ö., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 1513–1766,
https://doi.org/10.1017/9781009157896.001, 2021.
Sørland, S. L., Brogli, R., Pothapakula, P. K., Russo, E., Van de Walle, J., Ahrens, B., Anders, I., Bucchignani, E., Davin, E. L., Demory, M.-E., Dosio, A., Feldmann, H., Früh, B., Geyer, B., Keuler, K., Lee, D., Li, D., van Lipzig, N. P. M., Min, S.-K., Panitz, H.-J., Rockel, B., Schär, C., Steger, C., and Thiery, W.: COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review, Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, 2021.
Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M.: Striving
for Simplicity: The All Convolutional Net, arXiv [preprint], https://doi.org/10.48550/arXiv.1412.6806, 21 December 2014.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., and Rabinovich, A.: Going deeper with convolutions, in:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015, IEEE, 1–9, https://doi.org/10.1109/CVPR.2015.7298594, 2015.
Taszarek, M., Allen, J. T., Marchio, M., and Brooks, H. E.: Global
climatology and trends in convective environments from ERA5 and rawinsonde
data, npj Clim. Atmos. Sci., 4, 1–11, https://doi.org/10.1038/s41612-021-00190-x, 2021.
Ukkonen, P. and Mäkelä, A.: Evaluation of Machine Learning
Classifiers for Predicting Deep Convection, J. Adv. Model. Earth Sy., 11, 1784–1802, https://doi.org/10.1029/2018MS001561, 2019.
Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K.,
Coppola, E., Corre, L., van Meijgaard, E., Nogherotto, R., Sandstad, M.,
Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O. B., Ciarlo, J.
M., Demory, M.-E., Giorgi, F., Jacob, D., Jones, R. G., Keuler, K.,
Kjellström, E., Lenderink, G., Levavasseur, G., Nikulin, G., Sillmann,
J., Solidoro, C., Sørland, S. L., Steger, C., Teichmann, C.,
Warrach-Sagi, K., and Wulfmeyer, V.: Evaluation of the Large EURO-CORDEX
Regional Climate Model Ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032344, https://doi.org/10.1029/2019JD032344, 2021.
Wang, R. and Yu, R.: Physics-Guided Deep Learning for Dynamical Systems: A
Survey, arXiv [preprint], https://doi.org/10.48550/arXiv.2107.01272, 3 March 2022.
Wang, X., Han, Y., Xue, W., Yang, G., and Zhang, G. J.: Stable climate simulations using a realistic general circulation model with neural network parameterizations for atmospheric moist physics and radiation processes, Geosci. Model Dev., 15, 3923–3940, https://doi.org/10.5194/gmd-15-3923-2022, 2022.
Weyn, J. A., Durran, D. R., Caruana, R., and Cresswell-Clay, N.:
Sub-Seasonal Forecasting With a Large Ensemble of Deep-Learning Weather
Prediction Models, J. Adv. Model. Earth Sy., 13, e2021MS002502,
https://doi.org/10.1029/2021MS002502, 2021.
Widmer, G. and Kubat, M.: Learning in the presence of concept drift and
hidden contexts, Mach. Learn., 23, 69–101, 1996.
Willard, J., Jia, X., Xu, S., Steinbach, M., and Kumar, V.: Integrating
Scientific Knowledge with Machine Learning for Engineering and Environmental
Systems, arXiv [preprint], https://doi.org/10.48550/arXiv.2003.04919, 13 March 2022.
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A.,
Lengfeld, K., Walawender, E., Weigl, E., and Becker, A.: Radar climatology
(RADKLIM) version 2017.002; gridded precipitation data for Germany:
Radar-based gauge-adjusted one-hour precipitation sum (RW) (1), Deutscher Wetterdienst (DWD) [data set],
https://doi.org/10.5676/DWD/RADKLIM_RW_V2017.002, 2018.
Short summary
Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify reanalyzed daily atmospheric fields of convective indices according to CatRaRE, using conventional statistical and more recent machine learning algorithms, and apply them to present and future atmospheres. Increasing trends are projected for CatRaRE-type probabilities, from reanalyzed as well as from simulated atmospheric fields.
Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and...
Altmetrics
Final-revised paper
Preprint