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Supplemental information

We generally assume the multivariate predictor vector is x and the binary predictand is y.

The Shallow models

Lasso regression (LASSO)

In Lasso regression, the log-likelihood function of y given β, log ℓ(y; β), is maximized with an additional penalty term 
λ for the size of the parameters: 

∑ log ℓ(y ; β)−λ|β|1 (S1)

With λ→0 one obtains the classical maximum-likelihood estimate, and a 
growing λ squeezes the coefficients β towards zero; the optimum λ is 
found using cross-validation (but limited to the calibration set). We use 
the penalized toolbox (McIlhagga, 2016). A typical result is shown in Fig-
ure S1. It shows the successive disappearance of predictors with increas-
ing regularity and how the cross-validated model error changes with 
that; its minimum is achieved with 14 predictors.

Random Forest (TREE)

Random forests are obtained from bootstrapped averaging (’bagging’) of 
ensembles of decision trees, where the individual trees are obtained from 
resampling the data; each decision tree is grown following the ’M5 
method’. For details and the corresponding software see the M5PrimeLab 
package, cf. http://www.cs.rtu.lv/jekabsons/regression.html. Here we use 
the M5PrimeLab toolbox of Gints Jēkabsons, cf. http://www.cs.rtu.lv/jek-
absons/regression.html, with 200 trees to build (instead of the default 
100). A typical tree for a case with 81 principal components as predictors 
is shown in Figure S2. To convert the final class prediction into a proba-
bilistic one we simply calculate frequencies from the class predictions of 
the single trees.

Neural net (NNET)

This is a simple feed-forward backpropagation net with merely 2 layers, 
one with 7 and one with 3 nodes (neurons); the numbers are based on 
very basic testing, cf. https://octave.sourceforge.io/nnet. The result is sto-

chastic, so we employ an ensemble of 20 realizations and calculate the class frequencies from the single predictions.

Logistic regression (NLS)

To generally map x to a probability we combine a normal linear mapping, given by a parameter vector β, with the sig-
moid function 

x ↦
1

1+e−β x (S2)

Following ordinary regression, the following expression needs to be minimized:

∑ ( 1
1+e−βx − y )

2

(S3)

for which a classical optimization procedure can be applied (here: Levenberg-Marquardt).

Figure S1. Result of Lasso regression. The 
panels show the dependency of three re-
gression indicators on the imposed regu-
larity (often denoted λ), the active predic-
tors (top), the number of predictors (mid-
dle), and the corresponding cross-valida-
tion error.
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Training CNNs with Caffe

Caffe is a framework for the training of CNNs, developed at the Berkeley AI Research (BAIR) and Berkeley Vision and 
Learning Center (BVLC), cf. https://github.com/BVLC/caffe. Because of its Matlab/Octave interface it was easily im-
plemented in our programming framework at https://gitlab.dkrz.de/b324017/carlofff; all that was needed was two text 
files, a solver and a network file, containing a few crucial parameters that had to be adapted to the new context. The 
main body of their content could be left intact; for example, we generally use the stochastic gradient decent solver 
Adam and the softmax function for converting to probabilities, similar to the NLS approach above. Table S1 lists the 
hyperparameters (cf. https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto#L164-L165). All default 
settings can be inspected under https://gitlab.dkrz.de/b324017/carlofff/-/tree/master/models, with the model specific 
settings in the respective directory. No extra data split was done for the hyperparameter tuning, so the validation data 
are not fully independent. However, because the sole tuning criterion was not model skill but learning convergence, 
this should be negligible.

DWD warning level 3 vs. 5-year return period

Given that of the total of 175200 = 20×365×24 hours from 2001 to 2020, about 27000 are listed as extreme, the likeli-
hood of seeing any extreme event in Germany is pG = 27000/175200 = 15%. The average size (in pixels) of a CatRaRE 
event is a=133, while all of Germany covers aG=900×1100 = 990000 pixels. If all CatRaRE events can be taken as inde-

pendent, then the probability of an event per pixel is p = 1−(1−pG )aG /a = 2.25×10−5
.

Figure S2. One sample model tree with 81 predictors (principal components), taken from an ensemble of 200 random 
trees.

x34<=5

x34<=
-3e+01

M1

x1<=
-1e+01

x60<=
3

M2

x75<=
0.6

M3 M4

x31<=
2

x1<=
5

x81<=
-0.5

M5

x67<=
-5

M6

x25<=
-0.4

x47<=
0.3

x28<=
0.2

x23<=
1

x70<=
1

M7 M8

M9

M10

M11

x63<=
-6

M12

x44<=
-5

M13

x56<=
0.3

M14

x64<=
-5

x25<=
-0.05

M15 M16

M17

x73<=
-1

x71<=
-0.8

M18

x32<=
-0.2

x24<=
0.3

M19 M20

M21

x74<=
-1

x29<=
0.08

M22 M23

x46<=
3

x72<=
0.7

x5<=
-1

x70<=
0.3

M24

x29<=
-0.2

M25 M26

M27

x59<=
-1

M28

x77<=
-0.1

M29

x74<=
-1

M30

x59<=
-0.6

M31

x51<=
-2

x2<=
-8

M32 M33

M34

x75<=
-0.5

M35

x42<=
1e+01

M36 M37

M38

x1<=
7

x36<=
3

x28<=
0.001

x78<=
0.6

x26<=
0.6

x15<=
1

x2<=
-1

M39 M40

M41

M42

M43

x17<=
0.5

x60<=
-0.4

M44 M45

M46

x71<=
-0.1

M47

x6<=
1

x75<=
2

M48M49

x40<=
-3

M50 M51

x34<=
2e+01

x53<=
-0.5

x40<=
-0.8

M52

x32<=
-0.07

M53

x27<=
-0.3

M54

x29<=
-0.1

M55 M56

x11<=
1

x65<=
-1

M57

x65<=
-0.9

M58

x7<=
-0.4

x72<=
-0.2

M59

x71<=
-0.3

M60

x56<=
-1

x44<=
2

M61 M62

M63

M64

x25<=
0.07

x74<=
0.4

M65 M66

M67

M68

(135)

(104)

(17) (2)

(46)

(17)

(9) (4)

(7)

(13)

(22) (9)

(9)

(36)

(4) (8)

(11)

(18)

(8) (2)

(10) (12) (6)

(23)

(5) (13)

(61) (8)

(10)

(4)

(4)

(4) (3)

(15)

(5)

(14) (2)

(18)

(9) (3)

(13)

(13)

(16)

(9) (14)

(25)

(34)

(24) (2) (3) (9)

(88)

(29)

(10)

(2) (6)

(35)

(7)

(13)

(5)

(2) (2)

(11)

(23)

(2) (4)

(11)

(108)

https://gitlab.dkrz.de/b324017/carlofff/-/tree/master/models
https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto#L164-L165
https://gitlab.dkrz.de/b324017/carlofff
https://github.com/BVLC/caffe
http://bair.berkeley.edu/


0.2 0.3 0.4 0.5

0.2

0.3

0.4

0.5

ETS with cape

ET
S 

w
it

h
ou

t 
ca

pe

0.42 0.44 0.46 0.48 0.5 0.52

0.35

0.4

0.45

0.5

ETS

cr
os

se
nt

ro
py

LASSO
TREE
NNET
NLS

Simple
ResNet
LeNet-5
CIFAR-10
AlexNet
GoogLeNet
ALL-CNN
DenseNet
Logreg

Figure S3. Like Fig. 3 using different realizations.



Table S1. Tuned hyperparameters for the networks, as modified from the original sources.

max_iter power batch_size base_lr

LeNet-5 1000 3 100 0.001

AlexNet 500 3 50 0.001

CIFAR-10 1000 3 10 0.001

ALL-CNN 1000 0.5 100 0.0017

GoogLeNet 500 3 10 0.001

ResNet 300 3 100 0.001

DenseNet 500 3 10 0.001

Simple 1000 3 100 0.001

Logreg 1000 3 100 0.001



Figure S4. Similar to Fig. 6, for the remaining models (first half).
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Figure S5. Fig. S4 continued.
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Figure S6. Like Figure 7, for the remaining models.
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Figure S7. Fig. S6 continued.
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