Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-461-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-461-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flash flood warnings in context: combining local knowledge and large-scale hydro-meteorological patterns
Agathe Bucherie
CORRESPONDING AUTHOR
International Research Institute for Climate and Society (IRI), Columbia University, New York, New York 10964, USA
IHE Delft Institute for Water Education, Delft, 2611 AX, the Netherlands
510, the Netherlands Red Cross, the Hague, 2593 HT, the Netherlands
Micha Werner
IHE Delft Institute for Water Education, Delft, 2611 AX, the Netherlands
Marc van den Homberg
510, the Netherlands Red Cross, the Hague, 2593 HT, the Netherlands
Simon Tembo
Malawi Red Cross Society, Lilongwe, 30096, Malawi
Related authors
No articles found.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
Nat. Hazards Earth Syst. Sci., 24, 309–329, https://doi.org/10.5194/nhess-24-309-2024, https://doi.org/10.5194/nhess-24-309-2024, 2024
Short summary
Short summary
We improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid, using only features which are globally available. We show that our two-stage model conserves the performance of the original and even has the potential to introduce savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Silvana Bolaños Chavarría, Micha Werner, Juan Fernando Salazar, and Teresita Betancur Vargas
Hydrol. Earth Syst. Sci., 26, 4323–4344, https://doi.org/10.5194/hess-26-4323-2022, https://doi.org/10.5194/hess-26-4323-2022, 2022
Short summary
Short summary
Using total water storage (TWS) from GRACE satellites, we assess the reliability of global hydrological and land surface models over a medium-sized tropical basin with a well-developed gauging network. We find the models poorly represent TWS for the monthly series, but they improve in representing seasonality and long-term trends. We conclude that GRACE provides a valuable dataset to benchmark global simulations of TWS change, offering a useful tool to improve global models in tropical basins.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021, https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Short summary
This research introduces a novel approach to estimate flood damage in Malawi by applying a machine learning model to UAV imagery. We think that the development of such a model is an essential step to enable the swift allocation of resources for recovery by humanitarian decision-makers. By comparing this method (EUR 10 140) to a conventional land-use-based approach (EUR 15 782) for a specific flood event, recommendations are made for future assessments.
Cited articles
Alam, A., Ahmed, B., and Sammonds, P.: Flash flood susceptibility assessment
using the parameters of drainage basin morphometry in SE Bangladesh, Quatern. Int., 575–576, 295–307, https://doi.org/10.1016/j.quaint.2020.04.047, 2020. a
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175,
https://doi.org/10.5194/hess-17-1161-2013, 2013. a
Alfieri, L., Berenguer, M., Knechtl, V., Liechti, K., Sempere-Torres, D., and
Zappa, M.: Flash Flood Forecasting Based on Rainfall Thresholds, in:
Handbook of Hydrometeorological Ensemble Forecasting, Springer, 1–38,
https://doi.org/10.1007/978-3-642-40457-3_49-1, 2015. a
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., Roo, A., Salamon, P.,
Wyser, K., and Feyen, L.: Global projections of river flood risk in a warmer
world, Earth's Future, 5, 171–182, https://doi.org/10.1002/2016EF000485, 2017. a
Alfieri, L., Cohen, S., Galantowicz, J., Schumann, G. J. P., Trigg, M. A.,
Zsoter, E., Prudhomme, C., Kruczkiewicz, A., Coughlan de Perez, E., Flamig,
Z., Rudari, R., Wu, H., Adler, R. F., Brakenridge, R. G., Kettner, A.,
Weerts, A., Matgen, P., Islam, S. A. K. M., de Groeve, T., and Salamon, P.: A global network for operational flood risk reduction, Environ. Sci. Policy, 84, 149–158, https://doi.org/10.1016/j.envsci.2018.03.014, 2018. a, b
Aonashi, K., Awaka, J., Hirose, M., Hozu, T., and Kubota, T.: GSMaP passive,
microwave precipitation retrieval algorithm: Algorithm description and
validation, J. Meteorol. Soc. Jpn., 87A, 119–136, 2009. a
Arabameri, A., Saha, S., Chen, W., Roy, J., Pradhan, B., and Bui, D. T.: Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques, J. Hydrol., 587, 125007,
https://doi.org/10.1016/j.jhydrol.2020.125007, 2020. a
Azmeri, Hadihardaja, I. K., and Vadiya, R.: Identification of flash flood
hazard zones in mountainous small watershed of Aceh Besar Regency, Aceh
Province, Indonesia, Egypt. J. Remote Sens. Space Sci., 19, 143–160, https://doi.org/10.1016/j.ejrs.2015.11.001, 2016. a, b
Bajabaa, S., Masoud, D. M., and Alamri, N.: Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques: case study of
Wadi Al Lith, Saudi Arabia, Arab. J. Geosci., 7, 2469–2481, https://doi.org/10.1007/s12517-013-0941-2, 2013. a
Basher, R.: Global early warning systems for natural hazards: systematic and
people-centred, Philos. T. Roy. Soc. A, 364, 2167–2182,
https://doi.org/10.1098/rsta.2006.1819, 2006. a, b
Bischiniotis, K., Van Den Hurk, B., Jongman, B., Coughlan De Perez, E.,
Veldkamp, T., De Moel, H., and Aerts, J.: The influence of antecedent
conditions on flood risk in sub-Saharan Africa, Nat. Hazards Earth Syst. Sci., 18, 271–285, https://doi.org/10.5194/nhess-18-271-2018, 2018. a
Braud, I., Vincendon, B., Anquetin, S., Ducrocq, V., and Creutin, J. D.: The
challenges of flash flood forecasting, Mobility in the Face of Extreme
Hydrometeorological Events 1: Defining the Relevant Scales of Analysis, Elsevier, 63–88, https://doi.org/10.1016/B978-1-78548-289-2.50003-3, 2018. a, b
Bucherie, A.: Karonga historical flood occurrences and impacts dataset (2000–2018), Zenodo [data set], https://doi.org/10.5281/zenodo.4661438, 2021. a, b
Byers, E., Gidden, M., Leclere, D., Balkovic, J., Burek, P., Ebi, K., Greve,
P., Grey, D., Havlik, P., Hillers, A., Johnson, N., Kahil, T., Krey, V.,
Langan, S., Nakicenovic, N., Novak, R., Obersteiner, M., Pachauri, S.,
Palazzo, A., Parkinson, S., Rao, N. D., Rogelj, J., Satoh, Y., Wada, Y.,
Willaarts, B., and Riahi, K.: Global exposure and vulnerability to
multi-sector development and climate change hotspots, Environ. Res. Lett., 13, e055012, https://doi.org/10.1088/1748-9326/aabf45, 2018. a
Calvel, A., Werner, M., van den Homberg, M., Cabrera Flamini, A., Streefkerk,
I., Mittal, N., Whitfield, S., Langton Vanya, C., and Boyce, C.:
Communication Structures and Decision Making Cues and Criteria to Support
Effective Drought Warning in Central Malawi, Front. Climate, 2, 578327, https://doi.org/10.3389/fclim.2020.578327, 2020. a
Chao, Y. S. and Wu, C. J.: Principal component-based weighted indices and a
framework to evaluate indices: Results from the Medical Expenditure Panel
Survey 1996 to 2011, PLoS ONE, 12, e0183997, https://doi.org/10.1371/journal.pone.0183997, 2017. a
Creutin, J. D. and Borga, M.: Radar hydrology modifies the monitoring of
flash-flood hazard, Hydrol. Process., 17, 1453–1456, https://doi.org/10.1002/hyp.5122, 2003. a, b
C3S: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global
climate, Copernicus Climate Change Service Climate Data Store,
https://cds.climate.copernicus.eu, last access: January 2019. a
Doswell, C. A. and Brooks, H. E.: Flash flood forecasting : An
ingredients-based methodology, Weather Forecast., 11, 560–581,
https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2, 1996. a
Drobot, S. and Parker, D. J.: Advances and challenges in flash flood warnings, Environ. Hazards, 7, 173–178, https://doi.org/10.1016/j.envhaz.2007.09.001, 2007. a, b
EM-DAT: The CRED OFDA International Disaster Database,
https://www.emdat.be/, last access: December 2018. a
Emerton, R. E., Stephens, E. M., Pappenberger, F., Pagano, T. C., Weerts, A. H., Wood, A. W., Salamon, P., Brown, J. D., Hjerdt, N., Donnelly, C., Baugh, C. A., and Cloke, H. L.: Continental and global scale flood forecasting systems, WIREs Water, 3, 391–418, https://doi.org/10.1002/wat2.1137, 2016. a, b, c, d
Engelbrecht, F., Adegoke, J., Bopape, M. J., Naidoo, M., Garland, R., Thatcher, M., McGregor, J., Katzfey, J., Werner, M., Ichoku, C., and Gatebe, C.: Projections of rapidly rising surface temperatures over Africa under low
mitigation, Environ. Res. Lett., 10, 085004, https://doi.org/10.1088/1748-9326/10/8/085004, 2015. a
Farhan, Y., Anaba, O., and Salim, A.: Morphometric Analysis and Flash Floods
Assessment for Drainage Basins of the Ras En Naqb Area, South Jordan Using
GIS, J. Geosci. Environ. Protect., 04, 9–33, https://doi.org/10.4236/gep.2016.46002, 2016. a
FloodList: Reporting floods and flooding news since 2008, Funded by
Copernicus, the European System for Earth Monitoring,
https://floodlist.com/, last access: December 2018. a
Georgakakos, K. P.: A generalized stochastic hydrometeorological model for
flood and flash-flood forecasting: 1. Formulation, Water Resour. Res., 22, 2083–2095, https://doi.org/10.1029/WR022i013p02083, 1986. a
Georgakakos, K. P.: Analytical results for operational flash flood guidance,
J. Hydrol., 317, 81–103, https://doi.org/10.1016/j.jhydrol.2005.05.009, 2005. a
Gray, D. M.: Interrelationships of watershed characteristics, J. Geophys. Res., 66, 1215–1223, https://doi.org/10.1029/JZ066i004p01215, 1961. a
Gründemann, G. J., Werner, M., and Veldkamp, T. I.: The potential of global reanalysis datasets in identifying flood events in Southern Africa,
Hydrol. Earth Syst. Sci., 22, 4667–4683, https://doi.org/10.5194/hess-22-4667-2018, 2018. a
Hapuarachchi, H. A., Wang, Q. J., and Pagano, T. C.: A review of advances in
flash flood forecasting, Hydrol. Process., 25, 2771–2784, https://doi.org/10.1002/hyp.8040, 2011. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hoeppe, P.: Trends in weather related disasters – Consequences for insurers
and society, Weather Clim. Extrem., 11, 70–79, https://doi.org/10.1016/j.wace.2015.10.002, 2015. a
Horton, B. Y. R. E.: Erosional development of streams and their drainage
basins; Hydrophysical approach to quantitative morphology, B. Geol. Soci. Am., 56, 275–370, 1945. a
ICA: Malawi Integrated Context Analysis, Tech. rep., WFP,
https://documents.wfp.org/stellent/groups/public/documents/communications/wfp264472.pdf
(last access: April 2019), 2014. a
IFPRI: IFPRI Key Facts Series: Poverty May 2019 Background to the Integrated
Household Surveys (IHS), Tech. Rep., https://www.ifpri.org/publication/ifpri-key-facts-series-poverty
last access: June 2019. a
IFRC-GO: Disaster Response and Preparedness Operation Database. International
Federation of the Red Cross, https://go.ifrc.org/, last access: December 2018. a
Jarvis, A., Reuter, H., Nelson, A., and Guevara, E.: Hole-filled SRTM for the
globe version 3 from the CGIAR-CSI SRTM 90 m database, http://srtm.csi.cgiar.org (last access: December 2018), 2008. a
Javelle, P., Fouchier, C., Arnaud, P., and Lavabre, J.: Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture
estimations, J. Hydrol., 394, 267–274, https://doi.org/10.1016/j.jhydrol.2010.03.032, 2010. a
Jonkman, S. N.: Global Perspectives on Loss of Human Life Caused by Floods,
Nat. Hazards, 34, 151–175, https://doi.org/10.1007/s11069-004-8891-3, 2005. a
Jubach, R. and Sezin Tokar, A.: International severe weather and flash flood
hazard early warning systems-leveraging coordination, cooperation, and
partnerships through a hydrometeorological project in Southern Africa, Water, 8, 1–11, https://doi.org/10.3390/w8060258, 2016. a, b
Karmokar, S. and De, M.: Flash flood risk assessment for drainage basins in
the Himalayan foreland of Jalpaiguri and Darjeeling Districts, West Bengal,
Model. Earth Syst. Environ., 6, 2263–2289, https://doi.org/10.1007/s40808-020-00807-9, 2020. a
Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., and Thielen, J.: Technical review of large-scale hydrological models for implementation in
operational flood forecasting schemes on continental level, Environ. Model. Softw., 75, 68–76, https://doi.org/10.1016/j.envsoft.2015.09.009, 2015. a
Kirpich, Z. P.: Time of concentration of small agricultural watersheds, Civ.
Eng., 10, 362, 1940. a
Kubota, T., Shige, S., Hashizume, H., Aonashi, K., Takahashi, N., Ushio, T.,
and Kachi, M.: Global Precipitation Map using Satelliteborne Microwave
Radiometers by the GSMaP Project: Production and Validation, in: International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 45, 2259–2275, https://doi.org/10.1109/IGARSS.2006.668, 2007. a
Lavers, D. A., Harrigan, S., Andersson, E., Richardson, D. S., Prudhomme, C.,
and Pappenberger, F.: A vision for improving global flood forecasting, Environ. Res. Lett., 14, 121002, https://doi.org/10.1088/1748-9326/ab52b2, 2019. a, b
Lefale, P. F.: Ua 'afa le Aso Stormy weather today: Traditional ecological
knowledge of weather and climate. The Samoa experience, Climatic Change, 100, 317–335, https://doi.org/10.1007/s10584-009-9722-z, 2010. a
Linsey, R. K., Kohler, M. A., and Pauhlus, J. L. H.: Hydrology for engineers, 3rd Edn., McGraw-Hill, New York, https://www.mendeley.com/catalogue/b109a1db-5807-34e5-a767-03b2b5852b9c/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId={c4e049fe-b229-4203-a6be-2f3690382903}, (last access: February 2022), 1982. a
Luther, J., Hainsworth, A., Tang, X., Harding, J., Torres, J., and Fanchiotti, M.: Advancing Culture of Living with Landslides, volume 1 ISDR-ICL Sendai Partnerships 2015–2025, Adv. Cult. Liv. Landslide., https://doi.org/10.1007/978-3-319-59469-9, 2017. a
Martin, N. and Rice, J.: Emergency communications and warning systems,
Disast. Prevent. Manage., 21, 529–540, https://doi.org/10.1108/09653561211278671, 2012. a
McSweeney, C., New, M., and Lizcano, G.: The UNDP Climate Change Country
Profiles, B. Am. Meteorol. Soc., 91, 157–166, https://doi.org/10.1175/2009BAMS2826.1, 2010. a
Meléndez-Landaverde, E. R., Werner, M., and Verkade, J.: Exploring
protective decision-making in the context of impact-based flood warnings, J. Flood Risk Manage., 13, 1–11, https://doi.org/10.1111/jfr3.12587, 2020. a
Melton, M. A.: An analysis of the relations among elements of climate, surface properties, and geomorphology, Office of Naval Research Technical Report No. 11, https://doi.org/10.7916/d8-0rmg-j112, 1957. a
Miller, V. C.: A quantitative geomorphic study of drainage basin
characteristics in the Clinch Mountain area, Virginia and Tennessee, Dept. of Geology, Columbia University, New York, 389–402, https://www.worldcat.org/title/quantitative-geomorphic-study-of-drainage-basin-characteristics
(last access: February 2022), 1953. a
Molinari, D. and Handmer, J.: A behavioural model for quantifying flood
warning effectiveness, J. Flood Risk Manage., 4, 23–32,
https://doi.org/10.1111/j.1753-318X.2010.01086.x, 2011. a
Morss, R. E., Demuth, J. L., Lazo, J. K., Dickinson, K., Lazrus, H., and
Morrow, B. H.: Understanding public hurricane evacuation decisions and
responses to forecast and warning messages, Weather Forecast., 31, 395–417, https://doi.org/10.1175/WAF-D-15-0066.1, 2016. a
Munich RE: NatCatSERVICE disaster database,
https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html
(last access: December 2018), 2004. a
Nicholson, S. E., Klotter, D., and Chavula, G.: A detailed rainfall climatology for Malawi, Southern Africa, Int. J. Climatol., 34, 315–325, 2014. a
Nyasa Times: Malawi breaking online news, https://www.nyasatimes.com/, last access: March 2019. a
Okamoto, K., Ushio, T., and Iguchi, T.: The Global Satellite Mapping of
Precipitation (GSMaP) project, in: 25th IGARSS Proceedings, 5, 3414–3416,
https://doi.org/10.1109/IGARSS.2005.1526575, 2005. a
Orlove, B., Roncoli, C., Kabugo, M., and Majugu, A.: Indigenous climate
knowledge in southern Uganda: The multiple components of a dynamic regional
system, Climatic Change, 100, 243–265, https://doi.org/10.1007/s10584-009-9586-2, 2010. a
Oruonye, E.: Morphometry and Flood in Small Drainage Basin: Case Study of
Mayogwoi River Basin in Jalingo, Taraba State Nigeria, J. Geogr. Environ. Earth Sci. Int., 5, 1–12, https://doi.org/10.9734/jgeesi/2016/23379, 2016. a
O'Sullivan, J. J., Bradford, R. A., Bonaiuto, M., De Dominicis, S., Rotko,
P., Aaltonen, J., Waylen, K., and Langan, S. J.: Enhancing flood resilience
through improved risk communications, Nat. Hazards Earth Syst. Sci., 12, 2271–2282, https://doi.org/10.5194/nhess-12-2271-2012, 2012. a
Parker, D. J., Priest, S. J., and Tapsell, S. M.: Understanding and enhancing
the public's behavioural response to flood warning information, Meteorol. Appl., 16, 103–114, https://doi.org/10.1002/met.119, 2009. a
Patton, P. C. and Baker, V. R.: Morphometry and floods in small drainage
basins subject to diverse hydrogeomorphic controls, Water Resour. Res., 12, 941–952, https://doi.org/10.1029/WR012i005p00941, 1976. a, b
Perera, D., Seidou, O., Agnihotri, J., Mehmood, H., and Mohamed Rasmy, A. W.:
Challenges and Technical Advances in Flood Early Warning Systems (FEWSs),
in: Flood Impact Mitigation and Resilience Enhancement, Intechopen, 1–18,
https://doi.org/10.5772/intechopen.93069, 2020. a
Pham, B. T., Avand, M., Janizadeh, S., Phong, T. V., Al-Ansari, N., Ho, L. S., Das, S., Le, H. V., Amini, A., Bozchaloei, S. K., Jafari, F., and Prakash, I.: GIS based hybrid computational approaches for flash flood susceptibility assessment, Water, 12, 683, https://doi.org/10.3390/w12030683, 2020. a
Plotz, R. D., Chambers, L. E., and Finn, C. K.: The best of both worlds: A
decision-making framework for combining traditional and contemporary forecast
systems, J. Appl. Meteorol. Clim., 56, 2377–2392, https://doi.org/10.1175/JAMC-D-17-0012.1, 2017. a, b, c, d
Poolman, E., Rautenbach, H., and Vogel, C.: Application of probabilistic
precipitation forecasts from a deterministic model towards increasing the
lead-time of flash flood forecasts in South Africa, Water SA, 40, 729,
https://doi.org/10.4314/wsa.v40i4.18, 2014. a
ReliefWeb: Humanitarian information service, Provided by the United Nations
Office for the Coordination of Humanitarian Affairs (OCHA), https://reliefweb.int/disasters, last access: March 2019. a
Rogelis, M. C. and Werner, M.: Regional debris flow susceptibility analysis in mountainous peri-urban areas through morphometric and land cover indicators, Nat. Hazards Earth Syst. Sci., 14, 3043–3064,
https://doi.org/10.5194/nhess-14-3043-2014, 2014. a, b
Roujean, J. L., Leon-Tavares, J., Smets, B., Claes, P., Camacho De Coca, F.,
and Sanchez-Zapero, J.: Surface albedo and toc-r 300 m products from PROBA-V
instrument in the framework of Copernicus Global Land Service, Remote Sens. Environ., 215, 57–73, https://doi.org/10.1016/j.rse.2018.05.015, 2018. a
Sai, F., Cumiskey, L., Weerts, A., Bhattacharya, B., and Haque Khan, R.: Towards impact-based flood forecasting and warning in Bangladesh: a case study at the local level in Sirajganj district, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2018-26, 2018. a
Šakić Trogrlić, R., Wright, G., Duncan, M., van den Homberg, M., Adeloye, A., Mwale, F., and Mwafulirwa, J.: Characterising Local Knowledge across the Flood Risk Management Cycle: A Case Study of Southern Malawi, Sustainability, 11, 6, https://doi.org/10.3390/su11061681, 2019. a, b, c
Salit, F., Zaharia, L., and Beltrando, G.: Assessment of the warning system
against floods on a rural area: the case of the lower Siret River (Romania),
Nat. Hazards Earth Syst. Sci., 13, 409–416, https://doi.org/10.5194/nhess-13-409-2013, 2013. a
Schumm, S. A.: Evolution of drainage systems and slopes in badlands at Perth
Amboy, New Jersey, GSA Bull., 67, 597–646,
https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2, 1956. a, b, c
Shah, M. A. R., Douven, W., Werner, M., and Leentvaar, J.: Flood warning
responses of farmer households: a case study in Uria Union in the Brahmaputra
flood plain, Bangladesh, J. Flood Risk Manage., 5, 258–269,
https://doi.org/10.1111/j.1753-318X.2012.01147.x, 2012. a
Smith, G.: Flash Flood potential: determining the hydrologic response of FFMP
basins to heavy rain by analysing their physiographic characteristics, A
white paper available from the NWS Colorado Basin River Forecast Center web
site at http://www.cbrfc.noaa.gov/papers/ffp_wpap.pdf (last access: July 2021), 2003. a, b, c, d
Strahler, A. N.: Quantitative analysis of watershed geomorphology, Eos Trans. Am. Geophys. Union, 38, 913–920, https://doi.org/10.1029/TR038i006p00913, 1957. a
The Nation: Nation Publications Limited (NPL) Newspaper,
https://www.mwnation.com/, last access: March 2019. a
The University Corporation for Atmospheric Research and SENAMI-Cusco: Flash
Flood Early Warning System Reference Guide, Flash Flood Early Warning System
Reference Guide, COMET – NOAA Report,
http://www.meted.ucar.edu/communities/hazwarnsys/ffewsrg/FF_EWS.pdf (last access: March 2019), 2010. a
Tincu, R., Lazar, G., and Lazar, I.: Modified flash flood potential index in
order to estimate areas with predisposition to water accumulation, Open
Geosci., 10, 593–606, https://doi.org/10.1515/geo-2018-0047, 2018. a, b, c
Tong, A., Sainsbury, P., and Craig, J.: Consolidated criteria for reporting
qualitative research (COREQ): a 32-item checklist for interviews and focus
groups, Int. J. Qual. Health Care, 19, 349–357, https://doi.org/10.1093/intqhc/mzm042, 2007. a
UNICEF: UNICEF Malawi blog, https://unicefmalawi.blog/, last access: March 2019. a
UNISDR: Sendai framework for disaster risk reduction 2015–2030, Tech. rep.,
United Nations International Strategy for Disaster Reduction,
http://www.wcdrr.org/uploads/Sendai_Framework_for_Disaster_Risk_Reduction_2015-2030.pdf
(last access: July 2021), 2015. a
USAID: Conducting Key Informant Interviews, in: Performance Monitoring &
Evaluation TIPS, Tech. rep., Center for Development Information and
Evaluation, Washington, DC, https://pdf.usaid.gov/pdf_docs/PNABS541.pdf (last access: July 2021), 1996. a
Vincent, K., Conway, D., Dougill, A. J., Pardoe, J., Archer, E., Bhave, A. G., Henriksson, R., Mittal, N., Mkwambisi, D., Rouhaud, E., and Tembo-Nhlema, D.: Re-balancing climate services to inform climate-resilient planning – A
conceptual framework and illustrations from sub-Saharan Africa, Clim. Risk
Manage., 29, 100242, https://doi.org/10.1016/j.crm.2020.100242, 2020.
a, b
Werner, M. and Cranston, M.: Understanding the Value of Radar Rainfall
Nowcasts in Flood Forecasting and Warning in Flashy Catchments, Meteorol. Appl., 16, 41–55, https://doi.org/10.1002/met.125, 2009. a
Zevenbergen, L. W. and Thorne, C. R.: Quantitative analysis of land surface
topography, Earth Surf. Proc. Land., 12, 47–56, https://doi.org/10.1002/esp.3290120107, 1987. a
Zogg, J. and Deitsch, K.: The Flash Flood Potential Index at WFO Des Moines,
Iowa – NOAA – NWS, Tech. rep.,
http://www.crh.noaa.gov/Image/dmx/hydro/FFPI/FFPI_WriteUp.pdf
(last access: June 2019), 2013. a
Short summary
Local communities in northern Malawi have well-developed knowledge of the conditions leading to flash floods, spatially and temporally. Scientific analysis of catchment geomorphology and global reanalysis datasets corroborates this local knowledge, underlining the potential of these large-scale scientific datasets. Combining local knowledge with contemporary scientific datasets provides a common understanding of flash flood events, contributing to a more people-centred warning to flash floods.
Local communities in northern Malawi have well-developed knowledge of the conditions leading to...
Altmetrics
Final-revised paper
Preprint