Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-3993-2022
https://doi.org/10.5194/nhess-22-3993-2022
Research article
 | 
14 Dec 2022
Research article |  | 14 Dec 2022

Skillful decadal prediction of German Bight storm activity

Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr

Related authors

CMIP6 Multi-model Assessment of Northeast Atlantic and German Bight Storm Activity
Daniel Krieger and Ralf Weisse
EGUsphere, https://doi.org/10.5194/egusphere-2025-111,https://doi.org/10.5194/egusphere-2025-111, 2025
Short summary
Improving seasonal predictions of German Bight storm activity
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024,https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary

Cited articles

Alexandersson, H., Schmith, T., Iden, K., and Tuomenvirta, H.: Long-term variations of the storm climate over NW Europe, The Global Atmosphere and Ocean System, 97–120, 1998. a, b, c
Athanasiadis, P. J., Yeager, S., Kwon, Y.-O., Bellucci, A., Smith, D. W., and Tibaldi, S.: Decadal predictability of North Atlantic blocking and the NAO, npj Clim. Atmos. Sci., 3, 20, https://doi.org/10.1038/s41612-020-0120-6, 2020. a, b
Bärring, L. and von Storch, H.: Scandinavian storminess since about 1800, Geophys. Res. Lett., 31, L20202, https://doi.org/10.1029/2004GL020441, 2004. a
Brier, G. W.: Verification of forecasts expressed in terms of probability, Mon. Weather Rev., 78, 1–3, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2, 1950. a, b
Brune, S. and Baehr, J.: Preserving the coupled atmosphere–ocean feedback in initializations of decadal climate predictions, Wiley Interdisciplin. Rev.: Clim. Change, 11, e637, https://doi.org/10.1002/wcc.637, 2020. a
Download
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
Share
Altmetrics
Final-revised paper
Preprint