Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-3993-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3993-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Skillful decadal prediction of German Bight storm activity
Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
International Max Planck Research School on Earth System Modelling, Hamburg, Germany
Sebastian Brune
Institute of Oceanography, Universität Hamburg, Hamburg, Germany
Patrick Pieper
Institute of Meteorology, Freie Universität Berlin, Berlin, Germany
Ralf Weisse
Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Johanna Baehr
Institute of Oceanography, Universität Hamburg, Hamburg, Germany
Related authors
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
Julianna Carvalho-Oliveira, Giorgia Di Capua, Leonard F. Borchert, Reik V. Donner, and Johanna Baehr
Weather Clim. Dynam., 5, 1561–1578, https://doi.org/10.5194/wcd-5-1561-2024, https://doi.org/10.5194/wcd-5-1561-2024, 2024
Short summary
Short summary
We demonstrate with a causal analysis that an important recurrent summer atmospheric pattern, the so-called East Atlantic teleconnection, was influenced by the extratropical North Atlantic in spring during the second half of the 20th century. This causal link is, however, not well represented by our evaluated seasonal climate prediction system. We show that simulations able to reproduce this link show improved surface climate prediction credibility over those that do not.
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3144, https://doi.org/10.5194/egusphere-2024-3144, 2024
Short summary
Short summary
We developed a simple yet effective model to predict storm surges in the German Bight, using wind data and a multiple linear regression approach. Trained on historical data from 1959 to 2022, our storm surge model demonstrates high predictive skill and performs as well as more complex models, despite its simplicity. It can predict both moderate and extreme storm surges, making it a valuable tool for future climate change studies.
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2664, https://doi.org/10.5194/egusphere-2024-2664, 2024
Short summary
Short summary
In recent years, the western Baltic Sea has experienced severe storm surges. By analysing the individual contributions and the total water level, these events can be put into a climate perspective. It was found that individual contributions were not exceptional in all events and no clear trend can be identified, often the combination of the individual contributions leads to the extreme events of recent years. This points to the importance of analysing composite events.
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024, https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
Short summary
Inland flooding is threatening coastal lowlands. If rainfall and storm surges coincide, the risk of inland flooding increases. We examine how such compound events are influenced by climate change. Data analysis and model-based scenario analysis show that climate change induces an increasing frequency and intensity of compounding precipitation and storm tide events along the North Sea coast. Overload of inland drainage systems will also increase if no timely adaptation measures are taken.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Yiyu Zheng, Maria Rugenstein, Patrick Pieper, Goratz Beobide-Arsuaga, and Johanna Baehr
Earth Syst. Dynam., 13, 1611–1623, https://doi.org/10.5194/esd-13-1611-2022, https://doi.org/10.5194/esd-13-1611-2022, 2022
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is one of the dominant climatic phenomena in the equatorial Pacific. Understanding and predicting how ENSO might change in a warmer climate is both societally and scientifically important. We use 1000-year-long simulations from seven climate models to analyze ENSO in an idealized stable climate. We show that ENSO will be weaker and last shorter under the warming, while the skill of ENSO prediction will unlikely change.
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022, https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
Tim Rohrschneider, Johanna Baehr, Veit Lüschow, Dian Putrasahan, and Jochem Marotzke
Ocean Sci., 18, 979–996, https://doi.org/10.5194/os-18-979-2022, https://doi.org/10.5194/os-18-979-2022, 2022
Short summary
Short summary
This paper presents an analysis of wind sensitivity experiments in order to provide insight into the wind forcing dependence of the AMOC by understanding the behavior of its depth scale(s).
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Xin Liu, Insa Meinke, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 22, 97–116, https://doi.org/10.5194/nhess-22-97-2022, https://doi.org/10.5194/nhess-22-97-2022, 2022
Short summary
Short summary
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events, it is often discussed whether the events were unusual. Such information is not readily available from observations but needs contextualization with long-term statistics. An approach that provides such information in near real time was developed and implemented for the German coast. It is shown that information useful for public and scientific debates can be provided in near real time.
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam., 2, 867–891, https://doi.org/10.5194/wcd-2-867-2021, https://doi.org/10.5194/wcd-2-867-2021, 2021
Short summary
Short summary
Novel techniques from computer science are used to study extreme weather events. Inspired by the interactive 3-D visual analysis of the recently released ERA5 reanalysis data, we improve commonly used metrics for measuring polar winter storms and outbreaks of cold air. The software (Met.3D) that we have extended and applied as part of this study is freely available and can be used generically for 3-D visualization of a broad variety of atmospheric processes in weather and climate data.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Julianna Carvalho-Oliveira, Leonard Friedrich Borchert, Aurélie Duchez, Mikhail Dobrynin, and Johanna Baehr
Weather Clim. Dynam., 2, 739–757, https://doi.org/10.5194/wcd-2-739-2021, https://doi.org/10.5194/wcd-2-739-2021, 2021
Short summary
Short summary
This work questions the influence of the Atlantic Meridional Overturning Circulation, an important component of the climate system, on the variability in North Atlantic sea surface temperature (SST) a season ahead, particularly how this influence affects SST prediction credibility 2–4 months into the future. While we find this relationship is relevant for assessing SST predictions, it strongly depends on the time period and season we analyse and is more subtle than what is found in observations.
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Ina Teutsch, Ralf Weisse, Jens Moeller, and Oliver Krueger
Nat. Hazards Earth Syst. Sci., 20, 2665–2680, https://doi.org/10.5194/nhess-20-2665-2020, https://doi.org/10.5194/nhess-20-2665-2020, 2020
Short summary
Short summary
Rogue waves pose a threat to marine operations and structures. Typically, a wave is called a rogue wave when its height exceeds twice that of the surrounding waves. There is still discussion on the extent to which such waves are unusual. A new data set of about 329 million waves from the southern North Sea was analyzed. While data from wave buoys mostly corresponded to expectations from known distributions, radar measurements showed some deviations pointing towards higher rogue wave frequencies.
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020, https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Short summary
A new method for weather and climate forecast model evaluation with respect to observations is proposed. Individually added values are estimated for each model, together with shared information both models provide equally on the observations. Finally, shared model information, which is not present in the observations, is calculated. The method is applied to two examples from climate and weather forecasting, showing new perspectives for model evaluation.
Patrick Pieper, André Düsterhus, and Johanna Baehr
Hydrol. Earth Syst. Sci., 24, 4541–4565, https://doi.org/10.5194/hess-24-4541-2020, https://doi.org/10.5194/hess-24-4541-2020, 2020
Short summary
Short summary
The Standardized Precipitation Index (SPI) is a widely accepted drought index. SPI normalizes the precipitation distribution via a probability density function (PDF). However, which PDF properly normalizes SPI is still disputed. We suggest using a previously mostly overlooked PDF, namely the exponentiated Weibull distribution. The proposed PDF ensures the normality of the index. We demonstrate this – for the first time – for all common accumulation periods in both observations and simulations.
Nikolaus Groll and Ralf Weisse
Earth Syst. Sci. Data, 9, 955–968, https://doi.org/10.5194/essd-9-955-2017, https://doi.org/10.5194/essd-9-955-2017, 2017
Short summary
Short summary
A wave hindcast for the North Sea covering the period 1949–2014 using the third-generation spectral wave model WAM was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that, despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis.
Matthias Fischer, Daniela I. V. Domeisen, Wolfgang A. Müller, and Johanna Baehr
Earth Syst. Dynam., 8, 129–146, https://doi.org/10.5194/esd-8-129-2017, https://doi.org/10.5194/esd-8-129-2017, 2017
Short summary
Short summary
In a climate projection experiment with the Max Planck Institute Earth System Model (MPI-ESM), we find that a decline in the Atlantic Ocean meridional heat transport (OHT) is accompanied by a change in the seasonal cycle of the total OHT and its components. We found a northward shift of 5° and latitude-dependent shifts between 1 and 6 months in the seasonal cycle that are mainly associated with changes in the meridional velocity field rather than the temperature field.
J. Baehr and R. Piontek
Geosci. Model Dev., 7, 453–461, https://doi.org/10.5194/gmd-7-453-2014, https://doi.org/10.5194/gmd-7-453-2014, 2014
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Subseasonal forecasts of heat waves in West African cities
Impacts on and damage to European forests from the 2018–2022 heat and drought events
Brief communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Examining the Eastern European extreme summer temperatures of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
How well are hazards associated with derechos reproduced in regional climate simulations?
Reconstructing hail days in Switzerland with statistical models (1959–2022)
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Intense rains in Israel associated with the train effect
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
The Record-Breaking Precipitation Event of December 2022 in Portugal
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Assimilation of temperature and relative humidity observations from personal weather stations in AROME-France
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Improving seasonal predictions of German Bight storm activity
A satellite view of the exceptionally warm summer of 2022 over Europe
Application of machine learning to forecast agricultural drought impacts for large scale sub-seasonal drought monitoring in Brazil
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Compound winter low wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Amplified potential for vegetation stress under climate-change-induced intensifying compound extreme events in the Greater Mediterranean Region
Assimilation of surface pressure observations from personal weather stations in AROME-France
An open-source radar-based hail damage model for buildings and cars
Linkages between atmospheric rivers and humid heat across the United States
A data-driven framework for assessing climatic impact-drivers in the context of food security
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
High-resolution projections of ambient heat for major European cities using different heat metrics
Heat wave characteristics: evaluation of regional climate model performances for Germany
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Joona Cornér, Clément Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria A. Sinclair
Nat. Hazards Earth Syst. Sci., 25, 207–229, https://doi.org/10.5194/nhess-25-207-2025, https://doi.org/10.5194/nhess-25-207-2025, 2025
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETCs) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025, https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Short summary
The present study addresses the predictability of heat waves at subseasonal timescales in West African cities over the period 2001–2020. Two models, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models, were evaluated using two reanalyses: ERA5 and MERRA. The results suggest that at subseasonal timescales, the forecast models provide a better forecast than climatology, but the hit rate and false alarm rate are sub-optimal.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025, https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Short summary
Forecasting rainfall over the next hour is an essential feature of early warning systems. Deep learning (DL) has emerged as a powerful alternative to conventional nowcasting technologies, but it still struggles to adequately predict impact-relevant heavy rainfall. We think that DL could do much better if the training tasks were defined more specifically and that such specification presents an opportunity to better align the output of nowcasting models with actual user requirements.
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 24, 4683–4706, https://doi.org/10.5194/nhess-24-4683-2024, https://doi.org/10.5194/nhess-24-4683-2024, 2024
Short summary
Short summary
Eastern Europe's heat wave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heat waves (HWs): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period, and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024, https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Short summary
A historic derecho in the USA is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of US dollars of damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions, resulting in large variation in the simulated hazards. The variation using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024, https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past hail days in Switzerland from 1959–2022. This new time series reveals a significant increase in hail day occurrences over the last 7 decades. We link this trend to increases in moisture and instability variables in the models. This time series can now be used to unravel the complexities of Swiss hail occurrence and to understand what drives its year-to-year variability.
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-130, https://doi.org/10.5194/nhess-2024-130, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Here we investigate the synoptic evolution associated with the occurrence of an atmospheric river leading to a 24 h record-breaking extreme precipitation event (120.3 mm) in Lisbon, Portugal, on 13 December 2022. The synoptic background allowed the formation, on 10 December, of an atmospheric river associated with a deep extratropical cyclone and with a high moisture content and an inflow of moisture, due to the warm conveyor belt, throughout its life cycle. The system made landfall on day 12.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
EGUsphere, https://doi.org/10.5194/egusphere-2024-1673, https://doi.org/10.5194/egusphere-2024-1673, 2024
Short summary
Short summary
The use of numerical weather prediction models enables the forecasting of hazardous weather situations. The incorporation of new temperature and relative humidity observations from personal weather stations into the French limited-area model is evaluated in this study. This leads to the improvement of the associated near-surface variables of the model during the first hours of the forecast. Examples are provided for a sea breeze case during a heatwave and a fog episode.
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1742, https://doi.org/10.5194/egusphere-2024-1742, 2024
Short summary
Short summary
Extreme rainfall comprises a major hydro-hazard for New Zealand, and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographic setting.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Short summary
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024, https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Short summary
The study provides an in-depth analysis of a severe downburst event in Sânnicolau Mare, Romania, utilizing an analytical model and optimization algorithm. The goal is to explore a multitude of generating solutions and to identify potential alternatives to the optimal solution. Advanced data analysis techniques help to discern three main distinct storm scenarios. For this particular event, the best overall solution from the optimization algorithm shows promise in reconstructing the downburst.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
Joseph William Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-60, https://doi.org/10.5194/nhess-2024-60, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
In Brazil, drought is of national concern and can have major consequences for agriculture. Here, we determine how to develop forecasts for drought impacts on vegetation health using machine learning. Results aim to inform future developments in operational drought monitoring at the National Center for Monitoring and Early Warning of Natural Disasters in Brazil (CEMADEN). This information is essential for disaster preparedness and planning of future actions to support areas affected by drought.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024, https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
Short summary
This paper presents the development and verification of FOREWARNS, a novel method for regional-scale forecasting of surface water flooding. We detail outcomes from a workshop held with UK forecast users, who indicated they valued the forecasts and would use them to complement national guidance. We use results of objective forecast tests against flood observations over northern England to show that this confidence is justified and that FOREWARNS meets the needs of UK flood responders.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
François Collet, Margot Bador, Julien Boé, Laurent Dubus, and Bénédicte Jourdier
EGUsphere, https://doi.org/10.5194/egusphere-2024-903, https://doi.org/10.5194/egusphere-2024-903, 2024
Short summary
Short summary
The objective of this study is to characterize the observed evolution of compound winter low wind and cold events impacting the French electricity system. The frequency of compound events exhibits a high interannual variability and a decrease over the 1950–2022 period. We further show that the regional atmospheric circulation is an important driver of compound events occurence, but do not strongly contributes to the observed decrease.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098, https://doi.org/10.5194/nhess-24-1079-2024, https://doi.org/10.5194/nhess-24-1079-2024, 2024
Short summary
Short summary
Large hail devastates crops and property and can injure and kill people and livestock. Hail reports are collected by individual countries, so understanding where and when large hail occurs across Europe is an incomplete undertaking. We use the European Severe Weather Database to evaluate the quality of reports by year and by country since 2000. Despite its short record, the dataset appears to represent aspects of European large-hail climatology reliably.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024, https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
Short summary
Improvements in numerical weather prediction models make it possible to warn of hazardous weather situations. The incorporation of new observations from personal weather stations into the French limited-area model is evaluated. It leads to a significant improvement in the modelling of the surface pressure field up to 9 h ahead. Their incorporation improves the location and intensity of the heavy precipitation event that occurred in the South of France in September 2021.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
Marcos Roberto Benso, Roberto Fray Silva, Gabriela Gesualdo Chiquito, Antonio Mauro Saraiva, Alexandre Cláudio Botazzo Delbem, Patricia Angélica Alves Marques, and Eduardo Mario Mendiondo
EGUsphere, https://doi.org/10.5194/egusphere-2023-3002, https://doi.org/10.5194/egusphere-2023-3002, 2024
Short summary
Short summary
The production of food is susceptible to several climate hazards such as droughts, excessive rainfall, and heat waves. In this paper, we present a methodology that uses artificial intelligence for assessing the impact of climate risks on food production. Our methodology helps us to automatically select the most relevant indices and critical thresholds of these indices that when surpassed can increase the danger of crop yield loss.
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Cited articles
Athanasiadis, P. J., Yeager, S., Kwon, Y.-O., Bellucci, A., Smith, D. W., and
Tibaldi, S.: Decadal predictability of North Atlantic blocking and the NAO,
npj Clim. Atmos. Sci., 3, 20, https://doi.org/10.1038/s41612-020-0120-6, 2020. a, b
Bärring, L. and von Storch, H.: Scandinavian storminess since about 1800,
Geophys. Res. Lett., 31, L20202, https://doi.org/10.1029/2004GL020441, 2004. a
Brier, G. W.: Verification of forecasts expressed in terms of probability,
Mon. Weather Rev., 78, 1–3,
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2, 1950. a, b
Brune, S. and Baehr, J.: Preserving the coupled atmosphere–ocean feedback in
initializations of decadal climate predictions, Wiley Interdisciplin. Rev.: Clim. Change, 11, e637, https://doi.org/10.1002/wcc.637, 2020. a
Brune, S., Pohlmann, H., Müller, W. A., Nielsen, D. M., Hövel, L., Koul, V., and Baehr, J.: MPI-ESM-LR_1.2.01p5 decadal predictions localEnKF large ensemble: 3-hourly mean surface atmosphere values members 17 to 80, DOKU at DKRZ [data set], http://hdl.handle.net/21.14106/42fdc24ed1c5558f9394225f128969cacd5a6eb5, last access: 9 December 2022. a
Cappelen, J., Laursen, E. V., and Kern-Hansen, C.: DMI Report 19-02 Denmark
– DMI Historical Climate Data Collection 1768–2018, Tech. Rep. tr19-02,
Danish Meteorological Institute, https://www.dmi.dk/fileadmin/user_upload/Rapporter/TR/2019/DMIRep19-02.pdf,
last access: 19 May 2019. a
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Allan, R. J., McColl, C., Yin, X., Vose, R. S., Matsui, N., Ashcroft, L., Auchmann, R., Benoy, M., Bessemoulin, P., Brandsma, T., Brohan, P., Brunet, M., Comeaux, J., Cram, T. A., Crouthamel, R., Groisman, P. Y., Hersbach, H., Jones, P. D., Jonsson, T., Jourdain, S., Kelly, G., Knapp, K. R., Kruger, A., Kubota, H., Lentini, G.,
Lorrey, A., Lott, N., Lubker, S. J., Luterbacher, J., Marshall, G. J., Maugeri, M., Mock, C. J., Mok, H. Y., Nordli, O., Przybylak, R., Rodwell, M. J., Ross, T. F., Schuster, D., Srnec, L., Valente, M. A., Vizi, Z., Wang, X. L., Westcott, N., Woollen, J. S., and Worley, S. J.: The International Surface Pressure Databank version 3, NCAR/UCAR, https://doi.org/10.5065/D6D50K29, 2015. a
Cram, T. A., Compo, G. P., Yin, X., Allan, R. J., McColl, C., Vose, R. S.,
Whitaker, J. S., Matsui, N., Ashcroft, L., Auchmann, R., Bessemoulin, P.,
Brandsma, T., Brohan, P., Brunet, M., Comeaux, J., Crouthamel, R., Gleason,
B. E., Groisman, P. Y., Hersbach, H., Jones, P. D., Jonsson, T., Jourdain, S., Kelly, G., Knapp, K. R., Kruger, A., Kubota, H., Lentini, G., Lorrey, A.,
Lott, N., Lubker, S. ., Luterbacher, J., Marshall, G. J., Maugeri, M., Mock,
C. J., Mok, H. Y., Nordli, O., Rodwell, M. J., Ross, T. F., Schuster, D.,
Srnec, L., Valente, M. A., Vizi, Z., Wang, X. L., Westcott, N., Woollen, J. S., and Worley, S.J.: The International Surface Pressure Databank version 2, Geosci. Data J., 2, 31–46, https://doi.org/10.1002/gdj3.25, 2015.
a
DWD: Climate Data Center,
https://opendata.dwd.de/climate_environment/CDC/, last access: 11 March 2019. a
Epstein, E. S.: A Scoring System for Probability Forecasts of Ranked
Categories, J. Appl. Meteorol., 8, 985–987, 1969. a
Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., and Xia, L.:
Storminess over the North Atlantic and northwestern Europe – A review, Q. J. Roy. Meteorol. Soc., 141, 350–382, https://doi.org/10.1002/qj.2364, 2015. a
Fisher, R. A.: Frequency Distribution of the Values of the Correlation
Coefficient in Samples from an Indefinitely Large Population, Biometrika, 10, 507–521, https://doi.org/10.2307/2331838, 1915. a
Haas, R., Reyers, M., and Pinto, J. G.: Decadal predictability of regional-scale peak winds over Europe using the Earth System Model of the
Max-Planck-Institute for Meteorology, Meteorol. Z., 25, 739–752, https://doi.org/10.1127/metz/2015/0583, 2015. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thápaut, J.-N.: ERA5 monthly averaged data on pressure levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.6860a573, 2019. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and
Núñez-Riboni, I.: Global ocean biogeochemistry model HAMOCC: Model
architecture and performance as component of the MPI–Earth system model in
different CMIP5 experimental realizations, J. Adv. Model. Earth Syst., 5, 287–315, https://doi.org/10.1029/2012MS000178, 2013. a
IPCC (Ed.): Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, ISBN 9781009157896, https://doi.org/10.1017/9781009157896, 2021. a
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., and Storch, J. S.: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI–Earth system model, J. Adv. Model. Earth Syst., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013. a
KNMI: KNMI Data Centre, https://dataplatform.knmi.nl/, last access: 20 August 2019. a
Krieger, D. and Brune, S.: MPI-ESM-LR1.2 decadal hindcast ensemble 3-hourly German Bight MSLP, DOKU at DKRZ [data set], http://hdl.handle.net/21.14106/04bc4cb2c0871f37433a73ee38189690955e1f90 (last access: 9 December 2022), 2022a. a
Krieger, D. and Brune, S.: MPI-ESM-LR1.2 decadal hindcast ensemble seasonal mean North Atlantic MSLP, DOKU at DKRZ [data set], http://hdl.handle.net/21.14106/d3a13dc153db18a6de49fd9758b794ec0508e5c0
(last access: 9 December 2022), 2022b. a
Krieger, D. and Brune, S.: MPI-ESM-LR1.2 decadal hindcast ensemble yearly German Bight storm activity, DOKU at DKRZ [data set], http://hdl.handle.net/21.14106/e14ca8b63ccb46f2b6c9ed56227a0ac097392d0d
(last access: 9 December 2022), 2022c. a
Krueger, O. and von Storch, H.: Evaluation of an Air Pressure-Based Proxy for
Storm Activity, J. Climate, 24, 2612–2619, https://doi.org/10.1175/2011JCLI3913.1, 2011. a
Krueger, O., Feser, F., and Weisse, R.: Northeast Atlantic Storm Activity and
Its Uncertainty from the Late Nineteenth to the Twenty-First Century, J. Climate, 32, 1919–1931, https://doi.org/10.1175/JCLI-D-18-0505.1, 2019. a, b
Kruschke, T., Rust, H. W., Kadow, C., Leckebusch, G. C., and Ulbrich, U.:
Evaluating decadal predictions of northern hemispheric cyclone frequencies,
Tellus A, 66, 22830, https://doi.org/10.3402/tellusa.v66.22830, 2014. a, b
Kunsch, H. R.: The Jackknife and the Bootstrap for General Stationary
Observations, Ann. Stat., 17, 1217–1241, https://doi.org/10.1214/aos/1176347265, 1989. a
Lahiri, S. N.: Empirical Choice of the Block Size, Springer, New York, NY, 175–197, https://doi.org/10.1007/978-1-4757-3803-2_7, 2003. a
Lehmann, J., Coumou, D., and Frieler, K.: Increased record-breaking
precipitation events under global warming, Climatic Change, 132, 501–515,
https://doi.org/10.1007/s10584-015-1434-y, 2015. a
Liu, R. Y. and Singh, K.: Moving blocks jackknife and bootstrap capture weak dependence, in: Exploring the Limits of Bootstrap, edited by: LePage, R. and Billard, L., Wiley, 225–248, ISBN 978-0-471-53631-4, 1992. a
Marotzke, J., Müller, W. A., Vamborg, F. S. E., Becker, P., Cubasch, U.,
Feldmann, H., Kaspar, F., Kottmeier, C., Marini, C., Polkova, I., Prömmel, K., Rust, H. W., Stammer, D., Ulbrich, U., Kadow, C., Köhl, A., Kröger, J., Kruschke, T., Pinto, J. G., Pohlmann, H., Reyers, M., Schröder, M., Sienz, F., Timmreck, C., and Ziese, M.: MiKlip: A National Research Project on Decadal Climate Prediction, B. Am. Meteorol. Soc., 97, 2379–2394, https://doi.org/10.1175/BAMS-D-15-00184.1, 2016. a, b
Matulla, C., Schöner, W., Alexandersson, H., von Storch, H., and Wang,
X. L.: European storminess: late nineteenth century to present, Clim. Dynam., 31, 125–130, https://doi.org/10.1007/s00382-007-0333-y, 2008. a
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T.,
Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S.,
Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B.,
Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp,
M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T.,
Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., Vrese,
P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.:
Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and
Its Response to Increasing CO2, J. Adv. Model. Earth Syst., 11, 998–1038, https://doi.org/10.1029/2018MS001400, 2019. a
Moemken, J., Feldmann, H., Pinto, J. G., Buldmann, B., Laube, N., Kadow, C.,
Paxian, A., Tiedje, B., Kottmeier, C., and Marotzke, J.: The regional MiKlip
decadal prediction system for Europe: Hindcast skill for extremes and
user-oriented variables, Int. J. Climatol., 27, 100226, https://doi.org/10.1002/joc.6824, 2021. a, b, c
Mullen, S. L. and Buizza, R.: The Impact of Horizontal Resolution and Ensemble Size on Probabilistic Forecasts of Precipitation by the ECMWF Ensemble Prediction System, Weather Forecast., 17, 173–191,
https://doi.org/10.1175/1520-0434(2002)017<0173:TIOHRA>2.0.CO;2, 2002. a
Murphy, A. H.: On the “Ranked Probability Score”, J. Appl. Meteorol. Clim., 8, 988–989, https://doi.org/10.1175/1520-0450(1969)008<0988:OTPS>2.0.CO;2, 1969. a
Murphy, A. H.: A Note on the Ranked Probability Score, J. Appl. Meteorol. Clim., 10, 155–156, https://doi.org/10.1175/1520-0450(1971)010<0155:ANOTRP>2.0.CO;2, 1971. a
Murphy, A. H.: Climatology, Persistence, and Their Linear Combination as
Standards of Reference in Skill Scores, Weather Forecast., 7, 692–698,
https://doi.org/10.1175/1520-0434(1992)007<0692:CPATLC>2.0.CO;2, 1992. a
Nerger, L. and Hiller, W.: Software for ensemble-based data assimilation
systems – Implementation strategies and scalability, Comput. Geosci., 55, 110–118, https://doi.org/10.1016/j.cageo.2012.03.026, 2013. a
Pinto, J. G., Karremann, M. K., Born, K., Della-Marta, P. M., and Klawa, M.:
Loss potentials associated with European windstorms under future climate
conditions, Clim. Res., 54, 1–20, https://doi.org/10.3354/cr01111, 2012. a
Polkova, I., Brune, S., Kadow, C., Romanova, V., Gollan, G., Baehr, J.,
Glowienka-Hense, R., Greatbatch, R. J., Hense, A., Illing, S., Köhl, A.,
Kröger, J., Müller, W. A., Pankatz, K., and Stammer, D.: Initialization and Ensemble Generation for Decadal Climate Predictions: A Comparison of Different Methods, J. Adv. Model. Earth Syst., 11, 149–172, https://doi.org/10.1029/2018MS001439, 2019. a
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth Syst., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013. a
Reyers, M., Feldmann, H., Mieruch, S., Pinto, J. G., Uhlig, M., Ahrens, B.,
Früh, B., Modali, K., Laube, N., Moemken, J., Müller, W., Schädler, G., and Kottmeier, C.: Development and prospects of the regional MiKlip decadal prediction system over Europe: predictive skill, added value of regionalization, and ensemble size dependency, Earth Syst. Dynam., 10, 171–187, https://doi.org/10.5194/esd-10-171-2019, 2019. a
Richardson, D. S.: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size, Q. J. Roy. Meteorol. Soc., 127, 2473–2489, https://doi.org/10.1002/qj.49712757715, 2001. a
Schmidt, H. and von Storch, H.: German Bight storms analysed, Nature, 365,
791, https://doi.org/10.1038/365791a0, 1993. a, b, c
Schneck, R., Reick, C. H., and Raddatz, T.: Land contribution to natural CO 2
variability on time scales of centuries, J. Adv. Model. Earth Syst., 5, 354–365, https://doi.org/10.1002/jame.20029, 2013. a
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca,
A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I.,
Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and
Climate Extreme Events in a Changing Climate, in: Climate Change 2021: The
Physical Science Basis, Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: IPCC, Cambridge University Press, https://doi.org/10.1017/9781009157896.013, 2021. a
Sienz, F., Müller, W. A., and Pohlmann, H.: Ensemble size impact on the
decadal predictive skill assessment, Meteorol. Z., 25, 645–655, https://doi.org/10.1127/metz/2016/0670, 2016. a, b, c
Smith, D. M., Eade, R., Scaife, A. A., Caron, L.-P., Danabasoglu, G., DelSole, T. M., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Hermanson, L., Kharin, V., Kimoto, M., Merryfield, W. J., Mochizuki, T., Müller, W. A., Pohlmann, H., Yeager, S., and Yang, X.: Robust skill of decadal climate predictions, npj Clim. Atmos. Sci., 2, 1366,
https://doi.org/10.1038/s41612-019-0071-y, 2019. a, b
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI–M Earth System Model: ECHAM6, J. Adv. Model. Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015, 2013. a, b
Suarez-Gutierrez, L., Müller, W. A., Li, C., and Marotzke, J.: Dynamical
and thermodynamical drivers of variability in European summer heat extremes,
Clim. Dynam. 54, 4351–4366, https://doi.org/10.1007/s00382-020-05233-2, 2020. a
Varino, F., Arbogast, P., Joly, B., Riviere, G., Fandeur, M.-L., Bovy, H., and Granier, J.-B.: Northern Hemisphere extratropical winter cyclones
variability over the 20th century derived from ERA-20C reanalysis, Clim.
Dynam., 52, 1027–1048, https://doi.org/10.1007/s00382-018-4176-5, 2019. a
Wang, X. L., Feng, Y., Chan, R., and Isaac, V.: Inter-comparison of
extra-tropical cyclone activity in nine reanalysis datasets, Atmos. Res., 181, 133–153, https://doi.org/10.1016/j.atmosres.2016.06.010, 2016. a
Wilks, D. S. (Ed.): Chapter 8 – Forecast Verification, in: Statistical Methods in the Atmospheric Sciences, vol. 100 of International Geophysics, Academic Press, 301–394, https://doi.org/10.1016/B978-0-12-385022-5.00008-7, 2011. a
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
Accurate predictions of storm activity are desirable for coastal management. We investigate how...
Altmetrics
Final-revised paper
Preprint