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Abstract. We evaluate the prediction skill of the Max Planck
Institute Earth System Model (MPI-ESM) decadal hindcast
system for German Bight storm activity (GBSA) on a mul-
tiannual to decadal scale. We define GBSA every year via
the most extreme 3-hourly geostrophic wind speeds, which
are derived from mean sea-level pressure (MSLP) data. Our
64-member ensemble of annually initialized hindcast sim-
ulations spans the time period 1960–2018. For this period,
we compare deterministically and probabilistically predicted
winter MSLP anomalies and annual GBSA with a lead time
of up to 10 years against observations. The model produces
poor deterministic predictions of GBSA and winter MSLP
anomalies for individual years but fair predictions for longer
averaging periods. A similar but smaller skill difference be-
tween short and long averaging periods also emerges for
probabilistic predictions of high storm activity. At long av-
eraging periods (longer than 5 years), the model is more
skillful than persistence- and climatology-based predictions.
For short aggregation periods (4 years and less), probabilis-
tic predictions are more skillful than persistence but insignif-
icantly differ from climatological predictions. We therefore
conclude that, for the German Bight, probabilistic decadal
predictions (based on a large ensemble) of high storm ac-
tivity are skillful for averaging periods longer than 5 years.
Notably, a differentiation between low, moderate, and high
storm activity is necessary to expose this skill.

1 Introduction

In low-lying coastal areas that are affected by mid-latitude
storms, coastal protection and management may greatly ben-
efit from predictions of storm activity on a decadal timescale.
Decadal predictions bridge the gap between seasonal predic-
tions and climate projections and may for example aid the
planning of construction and maintenance projects along the
coast. The German Bight in the southern North Sea repre-
sents an example of such an area, where the coastlines are
heavily and frequently affected by mid-latitude storms.

Climate projections suggest that many components of the
Earth system undergo changes that can be attributed to the
anthropogenic global warming (IPCC, 2021). For certain
types of extreme events, like heavy precipitation or heat
extremes, a link between the frequency of occurrence and
the change in Earth’s temperature has already been estab-
lished (e.g., Lehmann et al., 2015; Suarez-Gutierrez et al.,
2020; Seneviratne et al., 2021). For storm activity, studies
for the past century showed a lack of significant long-term
trends over the northeast Atlantic in general and the German
Bight in particular. Instead, storm activity in this region is
subject to a pronounced multidecadal variability (Schmidt
and von Storch, 1993; Alexandersson et al., 1998; Bärring
and von Storch, 2004; Matulla et al., 2008; Feser et al.,
2015; Wang et al., 2016; Krueger et al., 2019; Varino et al.,
2019; Krieger et al., 2020). This dominant internal variabil-
ity suggests a great potential for improved predictability in
moving from uninitialized emission-based climate projec-
tions towards initialized climate predictions. In this study, we
demonstrate that initialized climate predictions are useful to

Published by Copernicus Publications on behalf of the European Geosciences Union.



3994 D. Krieger et al.: Skillful decadal prediction of German Bight storm activity

predict German Bight storm activity (GBSA) on a multian-
nual to decadal timescale.

There have been considerable advancements in the field
of decadal predictions of climate extremes in recent years.
For example, the research project MiKlip (Mittelfristige
Klimaprognosen; Marotzke et al., 2016) focused on the de-
velopment of a global decadal prediction system based on
the Max Planck Institute Earth System Model (MPI-ESM)
under CMIP5 forcing. Using experiments from the MiKlip
project, Kruschke et al. (2014, 2016) found significant posi-
tive prediction skill for cyclone frequency in certain regions
of the North Atlantic sector and for certain prediction pe-
riods, even for ensembles of 10 or fewer members. While
Kruschke et al. (2016) used a probabilistic approach to cat-
egorize cyclone frequency into tercile-based categories, they
did not explicitly assess the skill of the model for each cate-
gory separately. Haas et al. (2015) found significant skill in
MPI-ESM for upper quantiles of wind speeds at lead times
of 1–4 years but also noted that the skill decreases with lead
time and is lower over the North Sea than over the adja-
cent land areas of Denmark, Germany, and the Netherlands.
Moemken et al. (2021) confirmed the capability of a dynam-
ically downscaled component of the MiKlip prediction sys-
tem for additional wind-related variables, such as winter sea-
son wind speed and a simplified winter season storm sever-
ity index (e.g., Pinto et al., 2012). However, Moemken et al.
(2021) noted that wind-based indices are usually less skillful
than variables based on temperature or precipitation and are
also heavily lead-time-dependent (Reyers et al., 2019). Fur-
thermore, the prediction skill of wind-based indices shows
strong spatial variability, which prevents any generalization
of the current state of prediction capabilities for regionally
confined climate extremes.

In addition to the high variability in the decadal prediction
skill for wind-based indices, the depiction of near-surface
wind in models strongly depends on the selected parameter-
ization. Therefore, we circumvent the use of a wind-based
index for evaluating the prediction skill for regional storm
activity and focus on a proxy that is based on horizontal
differences of mean sea-level pressure (MSLP) and the re-
sulting mean geostrophic wind speed instead. The index was
first proposed by Schmidt and von Storch (1993) to avoid the
use of long-term wind speed records, which oftentimes show
inhomogeneities due to changes in the surroundings of the
measurement site, and has already been used to reconstruct
historical storm activity in the German Bight (e.g., Schmidt
and von Storch, 1993; Krieger et al., 2020). The geostrophic
storm activity index is based on the assumption that the
statistics of the geostrophic wind represent the statistics of
the near-surface wind, which was confirmed by Krueger and
von Storch (2011). The validity of the assumption is espe-
cially given over flat surfaces, like the open sea, where dis-
turbances from friction are negligible. We therefore draw on
the finding that the geostrophic wind-based index represents
a suitable proxy for near-surface storm activity and can be

used to derive some of the most relevant statistics of storm
activity in the German Bight. Furthermore, the index is par-
ticularly well suited for small regions, since calculating the
MSLP gradient over a small area allows for the detection of
small-scale variability in the pressure field, which is crucial
for estimating geostrophic wind statistics.

Besides the choice of variables, the ensemble size also
plays an important role in decadal prediction systems. The
experiments performed in MiKlip consisted of up to 10 mem-
bers in the first two model generations and 30 members in the
third generation (Marotzke et al., 2016). Sienz et al. (2016)
showed that larger ensembles generally result in better pre-
dictability, especially in areas with low signal-to-noise ratios.
However, Sienz et al. (2016) also noted the number of en-
semble members alone does not compensate for other po-
tential shortcomings of the model. In a more recent study,
Athanasiadis et al. (2020) found that larger ensemble sizes
increase the decadal prediction skill for the North Atlantic
Oscillation and high-latitude blocking. Furthermore, the use
of a large ensemble increases the reliability of probabilistic
predictions. The concept of a probabilistic approach is the
presumption that a change in the shape of the ensemble dis-
tribution can be used to predict likelihoods of actual changes
in climatic variables. In contrast to deterministic predictions,
probabilistic predictions are also able to provide uncertainty
information. With increasing ensemble size and a resulting
higher count of members in the tails of the predictive distri-
bution, probabilistic predictions for extreme events, i.e., pe-
riods with very high or low storm activity, become feasible
(e.g., Richardson, 2001; Mullen and Buizza, 2002). There-
fore, we build on these findings by increasing the ensemble
size in this study to a total of 64 members.

In this study, we assess the prediction skill for GBSA of a
64-member ensemble of yearly initialized decadal hindcasts,
i.e., forecasts for the past, based on the MPI-ESM. Since
GBSA is connected to the large-scale circulation (Krieger
et al., 2020), we first analyze the ability of the decadal pre-
diction system (DPS) to deterministically predict large-scale
MSLP in the North Atlantic by comparing model ensem-
ble mean output to data from the ERA5 reanalysis (Hers-
bach et al., 2020) (Sect. 3.1.1). In the German Bight, most
of the annual storm activity can be attributed to the win-
ter season. Therefore, we focus on the winter (December–
February, DJF) mean MSLP and quantify the quality of
deterministic predictions by correlating time series of pre-
dictions (ensemble mean) and observations. We show how
positive correlations emerge in predictions of both winter
MSLP and GBSA (Sect. 3.1.2). We then evaluate the skill
of the DPS for probabilistic predictions of MSLP and GBSA
(Sect. 3.2.1 and 3.2.2), expressed via the Brier skill score
(BSS; Brier, 1950), and discuss the advantages and limits of
our approach (Sect. 3.3). Concluding remarks are given in
Sect. 4.

Nat. Hazards Earth Syst. Sci., 22, 3993–4009, 2022 https://doi.org/10.5194/nhess-22-3993-2022



D. Krieger et al.: Skillful decadal prediction of German Bight storm activity 3995

2 Methods and data

2.1 The observational reference

We use the time series of annual GBSA from Krieger et al.
(2020) as an observational reference for the evaluation of pre-
diction skill. The time series is based on standardized annual
95th percentiles of geostrophic wind speeds over the German
Bight. The geostrophic winds are derived from triplets of
3-hourly MSLP observations at eight measurement stations
at or near the North Sea coast in Germany, Denmark, and
the Netherlands. MSLP measurements are provided by the
International Surface Pressure Databank (ISPD) version 3
(Cram et al., 2015; Compo et al., 2015), as well as the na-
tional weather services of Germany (Deutscher Wetterdienst;
DWD, 2019), Denmark (Danmarks Meteorologiske Institut;
Cappelen et al., 2019), and the Netherlands (Koninklijk Ned-
erlands Meteorologisch Instituut; KNMI, 2019). The time se-
ries of German Bight storm activity derived from observa-
tions covers the period 1897–2018.

Furthermore, we employ data from the ERA5 reanalysis
(Hersbach et al., 2020), which has recently been extended
backwards to 1950. The reanalysis data enable the predic-
tion skill assessment over areas where in situ observations
are incomplete or too infrequent, for example over the North
Atlantic Ocean.

2.2 MPI-ESM-LR decadal hindcasts

We investigate the decadal hindcasts of the MPI-ESM cou-
pled climate model in version 1.2 (Mauritsen et al., 2019),
run in low-resolution (LR) mode. The MPI-ESM-LR consists
of coupled models for ocean and sea ice (MPI-OM; Jung-
claus et al., 2013), atmosphere (ECHAM6; Stevens et al.,
2013), land surface (JSBACH; Reick et al., 2013; Schneck
et al., 2013), and ocean biogeochemistry (HAMOCC; Ilyina
et al., 2013). As we investigate the predictability of storm
activity, which is derived from mean sea-level pressure, we
focus on the atmospheric output given by the atmospheric
component ECHAM6. The LR mode of ECHAM6 has a hor-
izontal resolution of 1.875◦ (T63 grid), as well as 47 vertical
levels between 0.1 hPa and the surface (Stevens et al., 2013).
The horizontal extent of the grid boxes is approximately
210 km× 210 km at the Equator and 125 km× 210 km over
the German Bight, which is still fine enough for the German
Bight to cover multiple grid points. The model is forced by
external radiative boundary conditions, which correspond to
the historical CMIP6 forcing until 2014, and the SSP2–4.5
scenario starting in 2015 (contrary to CMIP5 and the RCP4.5
scenario used in the MiKlip experiments).

The ensemble members are initialized every 1 November
from 1960 to 2019. The initialization and ensemble genera-
tion scheme is based on a system developed and tested within
MiKlip (the “EnKF” system in Polkova et al., 2019). For
our study it has been updated from CMIP5 to CMIP6 ex-

ternal forcing and extended from 16 to 80 ensemble mem-
bers. The basis of this scheme is formed by a 16-member
ensemble assimilation, which from 1958 to 2019 assimilates
the observed oceanic and atmospheric state into the model
(Brune and Baehr, 2020). In particular, an oceanic ensemble
Kalman filter is used with an implementation of the Paral-
lel Data Assimilation Framework (Nerger and Hiller, 2013),
and atmospheric nudging is applied. All 80 ensemble mem-
bers of the predictions are directly initialized from the 16-
ensemble member assimilation, with five different perturba-
tions applied to the horizontal diffusion coefficient in the up-
per stratosphere to generate the total amount of 5× 16= 80
ensemble members. For example, hindcast members 1, 17,
33, 49, and 65 are all initialized from assimilation member 1
but with a different perturbation in the upper stratosphere (no
perturbation for member 1, four different non-zero pertur-
bations for the other members). Since we require 3-hourly
output (see Sect. 2.2.2), which is not available for the first
16 members of the 80-member ensemble, we constrict our
analysis to the remaining 64 members. In the following, we
will refer to these members as members 1–64. Due to the ob-
servational time series of German Bight storm activity from
Krieger et al. (2020) ending in 2018, we only evaluate hind-
cast predictions until 2018. For example, the last run consid-
ered in the evaluation for lead year 10 predictions is the one
initialized in 2008, whereas the lead year 1 evaluation takes
all runs initialized until 2017 into account.

2.2.1 Definition of lead times

All hindcast runs are integrated for 10 years and 2 months,
each covering a time span from November of the initializa-
tion year (lead year 0) to December of the 10th following
year (lead year 10). For consistency, we only consider full
calendar years for the comparison, leaving us with 10 com-
plete years per initialization year and ensemble member. The
10 individual prediction years are hereinafter defined as lead
year i, with i denoting the difference in calendar years be-
tween the prediction and the initialization. By this defini-
tion, lead year 1 covers months 3–14 of each integration, lead
year 2 covers months 15–26, and so on. Lead year ranges are
defined as time averages of multiple subsequent lead years i
through j within a model run and are called lead years i–j in
this study. To compare hindcast predictions for certain lead
year ranges to observations, we average annual observations
over the same time period (see Supplement for more details).

It should be noted that winter (DJF) means are always la-
beled by the year that contains the months of January and
February. A DJF prediction for lead year 4 therefore con-
tains the December from lead year 3 plus the January and
February from lead year 4. Likewise, a DJF prediction for
lead years 4–10 contains every December from lead years 3
through 9, as well as every January and February from lead
years 4 through 10.
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In this study, we aim at drawing general conclusions about
the prediction skill for North Atlantic MSLP anomalies for
long and short averaging periods. Therefore, we focus on
lead years 4–10, as well as lead year 7, as examples for
long and short averaging periods for the prediction skill for
MSLP anomalies, respectively. The choice of lead years 4–
10 is based on selecting a sufficiently long averaging period
that is representative of the characteristics of multi-year aver-
ages. Lead year 7 is chosen as it marks the center year within
the lead year 4–10 period. We would like to note that the
choice of lead years 4–10 and 7 is arbitrary, but we also an-
alyze other comparable lead year periods (e.g., 2–8 and 5) to
ensure sufficient robustness of our conclusions. However, we
refrain from explicitly showing results for every lead time for
reasons of brevity. For German Bight storm activity, which
does not contain spatial information, we show the skill for
all combinations of lead year ranges.

2.2.2 Geostrophic wind and German Bight storm
activity

For our analysis, we use 3-hourly MSLP over the North At-
lantic basin, including the German Bight. As 3-hourly MSLP
is only available as an output variable for the ensemble mem-
bers 33–64 but not for 1–32, we use surface pressure p, sur-
face geopotential 8, and surface temperature T output from
the model and apply a height correction. Following Alexan-
dersson et al. (1998) and Krueger et al. (2019), the equation
for the reduction of p to the MSLP p0 reads

p0 = p ·

(
1−

08
g

T

)M·g
R·0

, (1)

with the Earth’s gravitational acceleration g =

9.80665 m s−2, the assumed wet-adiabatic lapse
rate 0 = 0.0065 K m−1, the molar mass of air
M = 28.9647 g mol−1, and the gas constant of air
R = 8.3145 J mol−1 K−1. A consistency check between
ensemble members 1–32 (manually reduced to sea level)
and 33–64 (MSLP available as model output) resulted in
negligible differences in MSLP (not shown). Therefore, we
assume that the pressure reduction does not significantly in-
fluence our results and treat the entire 64-member ensemble
as a homogeneous entity.

We generate time series of German Bight storm activ-
ity (GBSA) in the MPI-ESM-LR hindcast runs. Owing to the
low resolution of the model, we choose the three closest grid
points that span a triangle encompassing the German Bight
(Fig. 1). The coordinates of the selected grid points are spec-
ified in Table 1. The grid points are selected so that the re-
sulting triangle is sufficiently close to an equilateral triangle.
This requirement is necessary to avoid a large error propa-
gation of pressure uncertainties, which would cause a shift
in the wind direction towards the main axis of the triangle
(Krieger et al., 2020). We use 3-hourly MSLP data from the

Table 1. Coordinates of the three grid points used for storm activity
calculation in the model.

Grid point Latitude (◦ N) Longitude (◦ E)

North 55.02 9.38
West 53.16 5.63
Southeast 53.16 9.38

Figure 1. Map of northwestern Europe, showing the location of the
German Bight triangle.

decadal hindcast ensemble at the three corner points of the
triangle and derive geostrophic winds from the MSLP gradi-
ent on a plane through these three points, following Alexan-
dersson et al. (1998).

GBSA is defined as the standardized annual 95th per-
centiles of 3-hourly geostrophic wind speeds. For each
combination of ensemble member, initialization year, and
forecast lead year, we determine the 95th percentile of
geostrophic wind speed (exemplarily shown for one combi-
nation in Fig. 2). The percentile-based approach incorporates
both the number and the strength of storms, thereby ensur-
ing that both years with many weaker storms and years with
fewer but stronger storms are represented as high-activity
years. However, the proxy is not able to differentiate whether
high storm activity is caused by a large number of storms
or by their high wind speed. The annual 95th percentiles
of geostrophic wind speed take on values between 18 and
29 m s−1 with an average of 22.87 m s−1 (Fig. 3), which is
close to the observational average of 22.19 m s−1 derived by
Krieger et al. (2020) for the period 1897–2018.

We accomplish the standardization by first calculating the
mean and standard deviation of annual 95th percentiles of
geostrophic wind speeds from the runs initialized in 1960–
2009 for lead year 1 and each member. We then subtract the
means from the annual 95th percentiles and divide by the
standard deviations. Since the lead year 1 predictions started
in 1960–2009 cover the period of 1961–2010, our standard-
ization period matches the reference time frame used for
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Figure 2. Exemplary distribution of predicted 3-hourly geostrophic
wind speeds for lead year 1 from member 17, initialized in 1960.
The vertical line marks the 95th percentile, which is used in the
calculation of storm activity.

storm activity calculation in Krieger et al. (2020). The re-
sulting time series of lead year 4–10 and 7 ensemble mean
predictions of GBSA, as well as the corresponding time se-
ries of observed GBSA, are shown exemplarily in Fig. A1.

While the analysis of GBSA only uses MSLP data from
three grid points in the German Bight, we also analyze the
prediction skill for MSLP anomalies over the entire North
Atlantic.

2.3 Evaluation of model performance

In this study, we evaluate the model’s performance for both
deterministic and probabilistic predictions. First, we evaluate
deterministic predictions to quantify the ability of the model
to capture the variability in GBSA. Second, we analyze prob-
abilistic predictions to examine whether the large ensemble
is able to skillfully differentiate between extremes and non-
extremes. These two prediction types require different eval-
uation metrics.

2.3.1 Anomaly correlation

For deterministic predictions, we calculate Pearson’s
anomaly correlation coefficient (ACC) between predicted
and observed quantities:

ACC=

N∑
i=1

(
fi − f

)
(oi − o)√

N∑
i=1

(
fi − f

)2 N∑
i=1
(oi − o)

2

, (2)

with the predicted and observed quantities fi and oi , as well
as the long-term averages of predictions and observations f
and o. The ACC can take on values from 1 to−1, with 1 indi-
cating a perfect correlation, 0 equating to no correlation, and
−1 showing a perfect anticorrelation. The statistical signifi-
cance of the ACC is determined through a 1000-fold moving

block bootstrapping with replacement (Kunsch, 1989; Liu
and Singh, 1992), where the 0.025 and 0.975 quantiles of
bootstrapped correlations define the range of the 95 % con-
fidence interval. The block length is set to k = 4, following
the suggestion of k =O

(
N

1
3

)
(Lahiri, 2003) for a number

of data points N between 50 and 60, depending on the vari-
able and the length of the averaging period. The mean ACC
is calculated by applying a Fisher z transformation (Fisher,
1915) to the bootstrapped correlations, averaging over all val-
ues in z space, and transforming the average back to the
original space. The transformation of correlations ACC to
z scores z and its inverse are defined as z= arctanh(ACC)
and ACC= tanh(z), where tanh and arctanh are the hyper-
bolic tangent function and its inverse, respectively.

2.3.2 Brier skill score

Probabilistic predictions are evaluated against a reference
prediction (see Sect. 2.5) by employing the strictly proper
Brier skill score (BSS; Brier, 1950). The BSS is a skill met-
ric for dichotomous predictions and is defined as

BSS= 1−
BS

BSref
, (3)

where BS and BSref denote the Brier scores of the probabilis-
tic model prediction and a reference prediction, respectively.
This definition results in positive BSS values whenever the
model performs better than the chosen reference and neg-
ative values when the reference outperforms the model. A
perfect prediction would score a BSS of 1. The statistical sig-
nificance of the BSS is calculated through a 1000-fold boot-
strapping with replacement. We perform the bootstrapping in
temporal space by selecting random blocks with replacement
but do not bootstrap across the ensemble space. In this study,
we use a significance level of 5 % to test whether model per-
formance is significantly different from the reference.

The Brier score BS is defined as

BS=
1
N

N∑
i=1

(Fi −Oi)
2, (4)

with the number of predictions N , the predicted probabil-
ity of an event Fi , and the event occurrence Oi . The pre-
dicted probability Fi is determined by the number of ensem-
ble members that predict the event divided by the total en-
semble size of 64. Note thatOi always takes on a value of ei-
ther 1 or 0, depending on whether the event happened or not.
Because the BS is calculated as the normalized mean square
error in the probability space, it is negatively oriented with a
range of 0 to 1, i.e., better predictions score lower BS values.
A prediction based on flipping a two-sided coin (Fi = 0.5)
would score a BS of 0.25.

We are interested in the skill of probabilistic predictions of
periods of high, moderate, and low storm activity, as well as
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Figure 3. Violin plot of the distribution of annual 95th percentiles of geostrophic wind speeds from all members and all initializations,
separated by lead year. Lead years increase from left to right along the x axis. The width of the violin indicates the normalized density for a
certain wind speed. Horizontal dashes mark maxima, means, and minima for each lead year.

high, moderate, and low winter MSLP anomalies. To differ-
entiate between events and non-events, the BS needs thresh-
olds, which we set to 1 and−1. We define high-activity peri-
ods as time steps above 1, low-activity periods as time steps
below −1, and moderate-activity periods as the remaining
time steps. Since the BSS can only assess the skill of dichoto-
mous predictions, we evaluate each of the three respective
categories (high, moderate, low) separately. This methodol-
ogy differs from Kruschke et al. (2016), as we do not evaluate
one three-category forecast but three two-category forecasts
instead.

2.4 Re-standardization of multi-year averages

Winter MSLP anomalies and GBSA time series are standard-
ized before the analysis. To keep the evaluation of multi-year
averaging periods consistent with that of single lead years,
we re-standardize all time series after applying the moving
average. We do this since the thresholds of our probabilistic
prediction categories require the underlying data to be nor-
mally distributed with a mean of 0 and a standard deviation
of 1 by definition. For spatial fields, we perform the standard-
izations and skill calculations grid-point-wise. As GBSA is
based on the mean MSLP gradient of a plane through three
grid points, we treat its spatial information like that of a sin-
gle grid point and calculate skill metrics only once for the
entire plane.

2.5 Reference forecasts

The BSS evaluates the skill of probabilistic predictions
against a reference prediction. In this study, we use both a
deterministic persistence prediction and a probabilistic cli-
matological random prediction as a baseline against which
we test the prediction skill of the MPI-ESM-LR, which is a
common practice in climate model evaluation (e.g., Murphy,
1992).

The deterministic persistence prediction of storm activity
is generated by taking the average observed storm activity
of n years before the initialization year of the model run.
n is defined to be equal to the length of the predicted lead
year range. For example, a lead year 4–10 prediction (n= 7)
initialized in 1980 is compared to the persistence predic-
tion based on the observed average of the years 1973–1979,
whereas a lead year 7 prediction (n= 1) from the same ini-
tialization is compared to the persistence prediction based on
the observed storm activity of 1979. Persistence predictions
of winter MSLP are generated likewise but use ERA5 reanal-
ysis data instead of direct observations. We note that since
the persistence prediction is not probabilistic, it can be either
correct or incorrect in a given year, which corresponds to the
term (Fi−Oi) in Eq. (4) taking on a value of either 0 (correct)
or 1 (incorrect).

The probabilistic climatological random prediction uses
the climatological frequencies of observed events (e.g.,
Wilks, 2011). As our time series of winter MSLP anomalies
and GBSA are normally distributed by definition, the clima-
tological frequencies can be derived from the Gaussian nor-
mal distribution. For instance, a climatological random pre-
diction for high storm activity, which is defined via a thresh-
old of 1 standard deviation above the mean, would always
predict a fixed occurrence probability of Fi = 1−8(1)=
0.1587. Here, 8(x) describes the cumulative distribution
function of the normal distribution. 8(x) gives the proba-
bility that a sample drawn from the Gaussian normal distri-
bution at random is smaller or equal to µ+ xσ , with µ and
σ denoting the mean and standard deviation of the distribu-
tion, respectively.
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Figure 4. Grid-point-wise anomaly correlation coefficient (ACC) between the deterministic hindcast ensemble mean prediction of winter
mean (DJF) MSLP anomalies and ERA5 reanalysis data for lead years 4–10 (a) and lead year 7 (b). The German Bight is marked by a red
dot. Anomalies are calculated for each member individually and averaged over the entire ensemble afterwards. Stippling indicates significant
correlations (p ≤ 0.05).

3 Results and discussion

3.1 Deterministic predictions

3.1.1 Mean sea-level pressure

Since geostrophic storm activity is an MSLP-based index,
we first investigate the correlation between the model’s deter-
ministic predictions of winter (DJF) MSLP and data from the
ERA5 reanalysis product, expressed as the grid-point-wise
anomaly correlation coefficient (ACC). For lead year 4–10
winter MSLP anomalies, the ACCs are positive over larger
parts of the subtropical Atlantic, as well as northeastern
Canada and Greenland (Fig. 4a). Negative ACCs emerge in
a circular area west of the British Isles. Over the German
Bight, however, the ACC for winter MSLP anomalies is in-
significant. The pattern over the subtropical Atlantic Ocean
agrees with the multi-model study by Smith et al. (2019),
who found significant skill for winter MSLP in similar re-
gions at lead years 2–9. Smith et al. (2019), however, also
found skill over Scandinavia, where our DPS fails to provide
any evidence of skill for long averaging periods. The ACC
pattern of lead years 4–10 is also present for most other lead
year ranges with averaging periods of 5 or more years (not
shown).

For the single lead year 7, the ACC is negative over Scan-
dinavia. Across the rest of the spatial domain, the absolute
values of the ACC are lower for lead year 7 (Fig. 4b) than
for lead years 4–10, but the pattern shows some similarity.
Again, the ACC is insignificant over the German Bight, indi-
cating an insufficient skill to properly predict winter MSLP
anomalies. The characteristics of the ACC distribution in
Fig. 4b also hold for other single lead years, suggesting that
longer averaging periods generally result in higher absolute

correlations, for regions with both positive and negative cor-
relation values.

3.1.2 Storm activity

We find that the ACC between ERA5 and DPS predictions
for winter MSLP is significantly positive in certain regions of
the North Atlantic, especially when averaged over multiple
prediction years, but falls short of being significant over the
German Bight. Still, the general predictive capabilities of the
DPS for winter MSLP motivates the investigation of GBSA
predictability. Figure 5 shows the deterministic predictability
of GBSA, expressed as the ACC between the model ensem-
ble mean and observations for all possible lead time combi-
nations. Here, single lead years are displayed along the di-
agonal, while the length of the averaging period increases
towards the bottom right corner. The ACC for GBSA is in-
significant for most single prediction years (except for lead
years 1, 5, 7, and 8), but it increases towards longer averaging
periods. The ACC exhibits a clear dependence on the length
of the averaging period, with lead years 1–10 showing the
highest overall ACC among all lead year ranges (r = 0.71).
Apart from lead years 2–3 and 9–10, the ensemble mean
tends to become more skillful with longer averaging periods
and shows significant positive ACCs for all multi-year pre-
diction periods. This stands in clear contrast to the results for
winter MSLP predictions, where the model failed to produce
significant ACCs for both short and long averaging periods
in the German Bight (compare Fig. 3.1.1).

Similar to the predictability of winter MSLP (Sect. 3.1.1),
we find a dependency of GBSA predictability on the length
of the averaging window. Again, we argue that this may
be caused by smoothing out the short-term variability that
is apparent in reconstructed time series of annual GBSA
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Figure 5. Anomaly correlation coefficients between the determinis-
tic DPS forecasts and observations of German Bight storm activity
for all combinations of start (y axis) and end lead years (x axis).
Numbers in boxes indicate those correlation coefficients that are
significantly different from 0 (p ≤ 0.05).

(Krieger et al., 2020). However, the ACC is notably indepen-
dent of the lead time. We would expect a deterioration of the
ACC with increasing temporal distance from the initializa-
tion, i.e., along the diagonal in Fig. 5. Instead, we observe a
relative hotspot of predictability for lead year ranges of 2 to
4 years that start at lead years 3 and 4 (i.e., lead years 3–4
till 3–6 and 4–5 till 4–7). These ranges demonstrate higher
predictability than comparable ranges closer to the present.

3.2 Probabilistic predictions

Since the deterministic predictions investigated so far are
based on the ensemble mean, they do not take the ensem-
ble spread into account. Therefore, we now make use of the
large ensemble size to also generate probabilistic predictions
for high-, moderate-, and low-storm-activity events, as well
as high, moderate, and low winter MSLP anomaly events.
We expect the DPS to be skillful in predicting probabilities
since the large ensemble size allows us to detect changes in
the shape of the ensemble distribution.

3.2.1 Mean sea-level pressure

When predicting positive winter MSLP anomalies (Fig. 6a
and b), the DPS significantly outperforms persistence
(BSS> 0) over large parts of the central North Atlantic and
Europe for both lead years 4–10 and 7. Over the North Sea,
however, the BSS of the model is indistinguishable from 0 for
lead years 4–10, indicating very limited skill to correctly pre-
dict positive winter MSLP anomalies. For lead year 7 predic-
tions of positive winter MSLP anomalies, the BSS is slightly

higher over the North Sea, with a higher model skill than that
of persistence for most of the grid points. A similar pattern
is found in predictions of negative anomalies (Fig. 6c and d),
where the DPS does not show any additional skill compared
to persistence over the North Sea for lead years 4–10 but im-
proves for lead year 7. Most notably, the DPS outperforms
persistence in the far North Atlantic for lead years 4–10 but
fails to do so in the subtropical North Atlantic.

Predictions of moderate winter MSLP anomalies (Fig. 6e
and f) are skillful compared to persistence over most of the
spatial domain. Still, a region of poor skill emerges over the
German Bight and adjacent areas for lead year 4–10 predic-
tions, while lead year 7 predictions show a BSS significantly
higher than 0. The high BSS values of moderate anomaly
predictions, however, are caused by poor performance of the
persistence prediction serving as a reference. The BS of this
reference prediction is significantly higher than 0.25 (not
shown), demonstrating that persistence predictions are less
skillful than a coin-flip-based prediction which assumes an
occurrence probability of 50 % for every year. Hence, the
BSS against persistence alone should not be used to infer the
skill of the DPS for winter MSLP anomaly events.

Therefore, we additionally test the skill of the model for
winter MSLP anomalies against that of a climatology-based
prediction (Fig. 7). The model BSS compared to climatology
is mostly indistinguishable from 0 for both lead years 4–10
(Fig. 7a, c, and e) and 7 (Fig. 7b, d, and f), indicating a very
limited potential of the DPS to outperform climatology over
vast parts of the North Atlantic sector. Large patches of pos-
itive BSS values are found in lead year 4–10 predictions of
negative winter MSLP anomalies over the tropical Atlantic
(Fig. 7c), whereas negative BSS values emerge over the polar
North Atlantic for lead year 4–10 predictions of positive and
moderate winter MSLP anomalies (Fig. 7a and e), as well as
over the central North Atlantic for lead year 4–10 predictions
of negative winter MSLP anomalies (Fig. 7c).

Overall, the DPS appears to predict positive and negative
German Bight winter MSLP anomalies better than persis-
tence for short averaging periods, while it fails to signifi-
cantly outperform persistence for longer averaging periods.
In addition, the DPS fails to consistently outperform clima-
tology over large parts of the North Atlantic region for both
short (lead year 7) and long (lead year 4–10) averaging pe-
riods. The comparison to climatology indicates that the high
skill of the model when tested against persistence is caused
by poor performance of the persistence prediction rather than
the prediction quality of the model. Nevertheless, the model
shows some potential to bring additional value to the decadal
predictability of winter MSLP anomalies.

3.2.2 Storm activity

The skill evaluation of probabilistic winter MSLP predictions
shows that the BSS of the DPS for positive and negative
anomalies are significantly better than those of persistence
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Figure 6. Prediction skill of probabilistic forecasts of positive (a, b), negative (c, d), and moderate (e, f) winter mean (DJF) MSLP anomalies,
expressed as the Brier skill score (BSS) of the 64-member ensemble evaluated against a persistence prediction as a baseline for lead years 4–
10 (a, c, e) and lead year 7 (b, d, f). Thresholds for event detection are set to −1 and 1. The German Bight is marked by a red dot. Stippling
marks areas with a BSS significantly different from 0 (p ≤ 0.05).

for large parts of the spatial domain. However, for long av-
eraging periods, we do not observe a significant difference
in skill between the DPS and persistence over the German
Bight. Also, the model fails to outperform climatology for
most parts of the North Atlantic sector. We now investigate
the skill of probabilistic predictions of high-, moderate-, and
low-storm-activity events, again using persistence and clima-
tology as our baselines.

For high-storm-activity predictions, the BSS against per-
sistence is positive for all lead year combinations, indicating
a better performance of the DPS than persistence (Fig. 8a).
The BSS is significantly positive for most 1–2-year aver-
aging windows, as well as for very long averaging win-
dows (7 years or more). When testing the model’s high-
storm-activity predictions against a climatology-based fore-
cast (Fig. 8b), we find that the model exhibits significant skill
for most averaging periods with a length of 4 or more years
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Figure 7. Like Fig. 6 but evaluated against a climatology-based prediction as a baseline.

but shows no skill for short averaging periods. The distribu-
tion of significant BSS values among the lead year combi-
nations against climatology differs strongly from the one ob-
tained through testing against persistence (compare Fig. 8a)
and rather resembles the distribution of anomaly correlation
coefficients between the deterministic predictions and obser-
vations (see Fig. 5). Furthermore, the BSS against climatol-
ogy is lower than against persistence for most lead year pe-
riods, indicating that climatology generally poses a tougher
challenge for the model than persistence.

For low-storm-activity prediction (Fig. 8c), the BSS is
again positive for all lead year combinations. The BSS is sig-

nificantly different from 0 for single-year and 3-year range
predictions except for lead year 2 and lowest for averaging
periods of 5–7 years. The higher BSS for single years than
for periods of 5–7 years indicates that the model is valuable at
predicting short periods. This behavior agrees with the find-
ings in Sect. 3.2, which significantly demonstrated positive
skill for German Bight winter MSLP anomalies for a short
period (lead year 7) but not for a multi-year average (lead
years 4–10). However, the model only outperforms climatol-
ogy (Fig. 8d) for lead years 3–10, while all other lead years
show insignificant BSS values. This suggests that while the
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Figure 8. Brier skill score (BSS) of the 64-member ensemble for high (a, b), low (c, d), and moderate (e, f) storm activity evaluated against
both a persistence-based (a, c, e) and a climatology-based (b, d, f) prediction as a baseline, shown for all combinations of start (y axis) and
end lead years (x axis). Numbers in boxes are those BSSs that are significantly different from 0 (p ≤ 0.05). Storm activity levels of 1 and−1
are used to differentiate between high, moderate, and low storm activity.

model is able to beat a persistence-based prediction, it does
not present any additional skill compared to climatology.

Moderate-storm-activity predictions (Fig. 8e) also exhibit
positive BSS values for all lead year ranges compared to per-
sistence and are significantly different from 0 except for lead

years 8–9. However, this apparent high skill compared to per-
sistence is once again only caused by the relative underper-
formance of the persistence prediction. A comparison with
climatology (Fig. 8f) confirms that the model significantly
outperforms climatology for lead years 2–3 only and shows
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a reduced skill for lead years 5, 5–6, and 10, while it does not
differ in skill for all remaining lead years.

Overall, the skill of the probabilistic forecast mostly de-
pends on the choice of reference. While the model outper-
forms persistence over the majority of lead times in all three
categories (high, moderate, low), it only outperforms clima-
tology in predicting high storm activity for longer averaging
windows. For probabilistic predictions of moderate and low
storm activity, the model does not outperform climatology.
Predictions of high storm activity with an averaging window
of 6 or more years are the only ones where the model outper-
forms both climatology and persistence.

3.3 Discussion

We find that the ACC between deterministic predictions and
observations of winter MSLP anomalies over large parts
of the North Atlantic and GBSA is positive and signifi-
cantly different from 0 for most multi-year averaging pe-
riods. Over the German Bight, however, ACCs for winter
MSLP anomaly predictions are insignificant. We hypothesize
that while the model is unable to deterministically predict
winter MSLP anomalies over the German Bight, it is able to
predict the annual upper percentiles of MSLP gradients suf-
ficiently well for the ACCs of GBSA to become significant.
This might be due to the model showing some predictive ca-
pabilities for sufficiently large deviations from the mean but
not for fluctuations around the mean.

The general lead year dependence of the magnitude of
the ACC agrees with previous findings of Kruschke et al.
(2014, 2016) and Moemken et al. (2021) for other storm-
activity-related variables. In our study, the correlation be-
tween reanalysis and prediction mainly depends on the length
of the lead time window rather than the lead time (i.e., the
temporal distance between the predicted point in time and
the model initialization). We hypothesize that this depen-
dency might be attributable to the filtering of high-frequency
variability by the longer averaging windows, in combination
with the model’s ability to better predict the underlying low-
frequency oscillation in the large-scale circulation. While our
model is unable to deterministically predict the short-term
variability within records of GBSA, these year-to-year fluc-
tuations are smoothed out in predictions of multi-year av-
erages, resulting in a higher ACC. Additionally, we would
like to note that temporal autocorrelation might account for a
part of these high ACC values. Smoothing that results from
the multi-year averaging process introduces dependence to
the time series which may lead to artificially inflated ACCs
compared to non-smoothed time series.

The lack of a dependency of the ACC on the temporal dis-
tance from the initialization, however, cannot be explained
by multi-year averaging. The relative hotspot of predictabil-
ity for lead year ranges of 2 to 4 years starting at lead years 3
and 4 is counter-intuitive, especially due to the insignifi-
cant ACCs for lead years 2, 3, 4, and 2–3. These insignif-

icant ACCs between GBSA observations and deterministic
predictions hint at a possible initialization shock influenc-
ing the model performance. In fact, the average geostrophic
wind speed for lead years 2, 3, and 4 is lower than for lead
year 1 (Fig. 3), supporting the hypothesis. Since all annual
percentiles are standardized using lead year 1 as a refer-
ence, we expect the resulting standardized storm activity for
lead years 2, 3, and 4 to be slightly lower than for lead
year 1. However, the average geostrophic wind speeds for
lead years 5 through 10 are also lower than for lead year 1,
yet the ACCs for these lead years are significant again. In ad-
dition, we tested whether standardizing each lead year with
its respective mean and standard deviation (instead of always
using lead year 1) has a notable effect on the ACC. We find
that the ACC between model and observation is almost un-
affected by the choice of our standardization reference (not
shown). Hence, we rule out an initialization shock as the
main reason for the low ACCs for lead years 2, 3, and 4.
Beyond that, we are unable to come up with a convincing
explanation for this behavior at this point. Thus, further stud-
ies are needed to investigate why the ACC does not steadily
decline with increasing lead times.

For probabilistic predictions, the choice of reference plays
a crucial role in the evaluation of the DPS. Since we test the
performance of the model against that of persistence- and
climatology-based predictions, the BSS not only depends on
the prediction skill of the model but also on the skill of the
reference. Most likely, a significant BSS is less a result of
exceptional model performance but rather indicates the lim-
its of persistence. This dependence becomes overtly apparent
during the analysis of moderate GBSA predictability. Mod-
erate GBSA predictability is skillful when evaluated against
a persistent reference prediction. However, this significant
prediction skill turns mostly insignificant when evaluated
against a climatology-based prediction. On the contrary, we
also find certain lead times where high-storm-activity predic-
tions by the DPS beat climatology but fail to beat persistence.

The performance of persistence also contributes to the in-
verse dependency of the probabilistic skill on the length of
the averaging window (i.e., a higher skill for shorter periods)
that emerges in predictions of German Bight MSLP anoma-
lies when tested against persistence. Here, the DPS exceeds
the skill of persistence for short averaging periods but fails
to do so for long averaging periods. This contradicts the as-
sumption of the capability of the DPS to skillfully predict the
underlying low-frequency variability (see Sect. 3.1). How-
ever, the inverse dependency is more likely a result of bet-
ter performance by the persistence prediction for longer av-
eraging periods, which in turn challenges our model more
than for short averaging periods. When evaluating probabilis-
tic predictions of high GBSA against climatology, we find a
similar dependency of the skill on the length of the averag-
ing window as within deterministic predictions (i.e., a higher
skill for longer periods), further confirming that the inverse
dependency is an artifact of the performance of persistence.

Nat. Hazards Earth Syst. Sci., 22, 3993–4009, 2022 https://doi.org/10.5194/nhess-22-3993-2022



D. Krieger et al.: Skillful decadal prediction of German Bight storm activity 4005

Despite the aforementioned potential deficiencies, both
persistence and climatology still range among the most ap-
propriate reference predictions to evaluate extreme GBSA
predictability. We therefore conclude that our DPS is par-
ticularly valuable at lead times during which the reference
forecasts are sufficiently poor. Vice versa, the benefits of a
DPS are negligible at lead times during which the skill of the
reference forecast is sufficiently fair. Naturally, we cannot
determine in advance which of the two reference predictions
will be more skillful at predicting GBSA. For most lead year
periods, however, climatology poses a tougher challenge for
the model than persistence, so we argue that outperforming
climatology is an indication that the model can bring added
value to GBSA predictability.

The separation of the probabilistic predictions into three
categories also demonstrates the necessity to evaluate the
skill for each prediction category individually. By individu-
ally assessing the skill for each forecast category, we find that
the model is more skillful than both persistence and climatol-
ogy in predicting high-storm-activity periods for averaging
windows longer than 5 years. We emphasize that evaluating
three separate two-category forecasts is not as challenging
to the model as incorporating all three categories into one
aggregated skill measure (e.g., the ranked probability skill
score, or RPSS; Epstein, 1969; Murphy, 1969, 1971). Yet,
our analysis allows us to detect that our model shows skill in
regions where previous studies that used a combined prob-
abilistic skill score did not find any skill for storm-related
quantities (e.g., Kruschke et al., 2016), a conclusion which
would have not been possible to draw by evaluating a single
three-category prediction.

Our results for probabilistic predictions suggest that our
approach of employing a large ensemble notably aids the
model’s prediction skill. Contrary to previous studies on the
decadal predictability of wind-related quantities, we find sig-
nificant skill for high storm activity in the German Bight, es-
pecially for long averaging periods, where the model outper-
forms both persistence and climatology. The size of the en-
semble might contribute to this skill, as similar analyses with
smaller subsets of the DPS ensemble resulted in a slightly
lower prediction skill (not shown), confirming the findings
of Sienz et al. (2016) and Athanasiadis et al. (2020). How-
ever, the impact on prediction skill by a further increase in
the number of members has yet to be investigated.

As this study is based on a single earth system model, the
inherent properties of the MPI-ESM-LR might impact our
findings. Thus, our conclusions drawn from these findings
are only valid for this model. Model intercomparison stud-
ies for the decadal predictability of regional storm activity
might eliminate the influence of possible model biases and
errors. These intercomparisons will become possible once
additional large-ensemble DPS products based on other earth
system models are released.

It seems noteworthy that this study assumes annual storm
activity and winter MSLP anomalies to be normally dis-

tributed, since the standardization process in the calculation
of storm activity and winter MSLP anomalies fits a normal
distribution to the data. Other distributions (e.g., a general-
ized extreme value distribution) might also be suited for a
similar analysis and could provide an additional opportunity
to enhance the description of storm activity and, thus, further
improve the probabilistic prediction skill in the future.

4 Summary and conclusions

In this study, we evaluated the capabilities of a decadal pre-
diction system (DPS) based on the MPI-ESM-LR to predict
winter MSLP anomalies over the North Atlantic region and
German Bight storm activity (GBSA), both for determinis-
tic and probabilistic predictions. The deterministic predic-
tions are based on the ensemble mean, whereas the prob-
abilistic predictions evaluate the distribution of the 64 en-
semble members. We assessed the anomaly correlation co-
efficient (ACC) between deterministic predictions and ob-
servations or reanalysis data, evaluated probabilistic predic-
tions for three different forecast categories with the Brier
skill score (BSS), and tested the probabilistic predictions of
GBSA against both a persistence- and a climatology-based
prediction.

Through comparison with data from the ERA5 reanaly-
sis, we found that the DPS produces poor deterministic pre-
dictions of winter MSLP anomalies over the German Bight.
Over the North Atlantic, certain regions with higher correla-
tions emerge, but the magnitude of the ACC is heavily de-
pendent on the length of the averaging window. In general,
longer averaging periods result in higher absolute correla-
tions. The predictability for GBSA also depicts this same
dependency on the averaging period, where ACCs are only
significant for most averaging periods larger than 1 year.

Probabilistic predictions of winter MSLP anomalies over
the North Atlantic are mostly skillful with respect to persis-
tence but do generally not show additional skill compared to
climatology. For the German Bight in particular, only pre-
dictions for short lead year ranges are skillful with respect to
persistence, while predictions for longer averaging periods
exhibit poor skill.

For probabilistic predictions of high storm activity, aver-
aging windows of 6 or more years are more skillfully pre-
dicted by the DPS than by both persistence and climatol-
ogy. This study demonstrates that the model does bring an
improvement to predictability of GBSA and that a separa-
tion into multiple prediction categories is essential to detect-
ing hotspots of predictability in the DPS which would have
gone unnoticed in a more aggregated skill evaluation. Fur-
thermore, we want to emphasize the ability of the DPS to
especially issue reliable predictions for high storm activity,
as this is arguably the most important category for which we
could hope to achieve any prediction skill.
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The high skill of probabilistic predictions for high storm
activity, combined with the advantage of large-ensemble
decadal predictions, can be expected to bring benefits to
stakeholders, operators, and the society in affected areas by
improving coastal management and adaptation strategies. By
employing a large-ensemble DPS and carefully selecting a
fitting prediction category, even regional climate extremes
like GBSA can be skillfully predicted on multiannual to
decadal timescales. With ongoing progress in the research
field of decadal predictions and advancements in model de-
velopment, we are therefore confident that this approach
opens up new possibilities for research and application, in-
cluding the decadal prediction of other regional climate ex-
tremes.

Appendix A: Comparison of multi-year averages

In order to compare hindcast predictions for different lead
year ranges to observations, we average hindcast predictions
and observations over the same time periods. For exam-
ple, a hindcast for lead years 4–10, which by definition is
formed by averaging over a 7-year period, is always com-
pared to a 7-year running mean of an observational dataset.
The point-wise comparison of time series is performed in
such a way that the predicted time frame matches the ob-
servational time frame. In other words, the lead year 4–10
prediction from a run initialized in 1960, which covers the
years 1964–1970, is compared to the observational mean
of 1964–1970. To form a time series from the model runs, the
predictions from subsequent runs are concatenated. Thus, the
predicted lead year 4–10 time series consists of a concatena-
tion of predictions from the runs initialized in 1960, 1961,
1962, 1963, . . . , covering the years 1964–1970, 1965–1971,
1966–1972, 1967–1973, . . . .

Figure A1. Exemplary time series of ensemble mean predictions (black, solid) and corresponding observations (grey, dashed) of German
Bight storm activity (GBSA) for lead years 4–10 (a) and lead year 7 (b).
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at https://doi.org/10.24381/cds.6860a573 (Hersbach et al., 2019).
The 3-Hourly German Bight MSLP output data from the decadal
prediction system are available at http://hdl.handle.net/21.14106/
04bc4cb2c0871f37433a73ee38189690955e1f90 (Krieger and
Brune, 2022a). Seasonal means of North Atlantic MSLP from
the decadal prediction system are available at http://hdl.handle.
net/21.14106/d3a13dc153db18a6de49fd9758b794ec0508e5c0
(Krieger and Brune, 2022b). Computed German Bight storm
activity time series are available at http://hdl.handle.net/21.14106/
e14ca8b63ccb46f2b6c9ed56227a0ac097392d0d (Krieger and
Brune, 2022c). Selected global 3-hourly atmospheric output from
the decadal prediction system is available at http://hdl.handle.net/
21.14106/42fdc24ed1c5558f9394225f128969cacd5a6eb5 (Brune
et al., 2022).
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