Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-3957-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3957-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multiscale flood risk assessment under climate change: the case of the Miño River in the city of Ourense, Spain
Diego Fernández-Nóvoa
CORRESPONDING AUTHOR
Centro de Investigación Mariña (CIM), Universidade de Vigo,
Environmental Physics Laboratory (EPhysLab), Campus da Auga, 32004 Ourense,
Spain
Instituto Dom Luiz (IDL), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
Orlando García-Feal
Centro de Investigación Mariña (CIM), Universidade de Vigo,
Environmental Physics Laboratory (EPhysLab), Campus da Auga, 32004 Ourense,
Spain
Water and Environmental Engineering Group, Department of Civil
Engineering, Universidade da Coruña, 15071 A Coruña, Spain
José González-Cao
Centro de Investigación Mariña (CIM), Universidade de Vigo,
Environmental Physics Laboratory (EPhysLab), Campus da Auga, 32004 Ourense,
Spain
Maite deCastro
Centro de Investigación Mariña (CIM), Universidade de Vigo,
Environmental Physics Laboratory (EPhysLab), Campus da Auga, 32004 Ourense,
Spain
Moncho Gómez-Gesteira
Centro de Investigación Mariña (CIM), Universidade de Vigo,
Environmental Physics Laboratory (EPhysLab), Campus da Auga, 32004 Ourense,
Spain
Related authors
Diego Fernández-Nóvoa, Alexandre M. Ramos, José González-Cao, Orlando García-Feal, Cristina Catita, Moncho Gómez-Gesteira, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 24, 609–630, https://doi.org/10.5194/nhess-24-609-2024, https://doi.org/10.5194/nhess-24-609-2024, 2024
Short summary
Short summary
The present study focuses on an in-depth analysis of floods in the lower section of the Tagus River from a hydrodynamic perspective by means of the Iber+ numerical model and on the development of dam operating strategies to mitigate flood episodes using the exceptional floods of February 1979 as a benchmark. The results corroborate the model's capability to evaluate floods in the study area and confirm the effectiveness of the proposed strategies to reduce flood impact in the lower Tagus valley.
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022, https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary
Short summary
Extreme events have increased in the last few decades; having a good estimation of the outflow of a reservoir can be an advantage for water management or early warning systems. This study analyzes the efficiency of different machine learning techniques to predict reservoir outflow. The results obtained showed that the proposed models provided a good estimation of the outflow of the reservoirs, improving the results obtained with classical approaches.
Brieuc Thomas, Jose Carlos Fernández-Alvarez, Xurxo Costoya, Maite deCastro, Raquel Nieto, David Carvalho, Luis Gimeno, and Moncho Gómez-Gesteira
EGUsphere, https://doi.org/10.5194/egusphere-2025-1339, https://doi.org/10.5194/egusphere-2025-1339, 2025
Short summary
Short summary
Understanding climate change is crucial, but global models lack fine detail for local assessments. Regional climate models improve accuracy by simulating climate at higher resolution. This study compares two approaches: one continuous and one resetting daily to reduce errors and speed up processing. Both perform well and similarly, but the reinitialized method is 30 times more efficient. Its lower cost makes it a promising option for high-resolution climate modelling and regional predictions.
Diego Fernández-Nóvoa, Alexandre M. Ramos, José González-Cao, Orlando García-Feal, Cristina Catita, Moncho Gómez-Gesteira, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 24, 609–630, https://doi.org/10.5194/nhess-24-609-2024, https://doi.org/10.5194/nhess-24-609-2024, 2024
Short summary
Short summary
The present study focuses on an in-depth analysis of floods in the lower section of the Tagus River from a hydrodynamic perspective by means of the Iber+ numerical model and on the development of dam operating strategies to mitigate flood episodes using the exceptional floods of February 1979 as a benchmark. The results corroborate the model's capability to evaluate floods in the study area and confirm the effectiveness of the proposed strategies to reduce flood impact in the lower Tagus valley.
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022, https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary
Short summary
Extreme events have increased in the last few decades; having a good estimation of the outflow of a reservoir can be an advantage for water management or early warning systems. This study analyzes the efficiency of different machine learning techniques to predict reservoir outflow. The results obtained showed that the proposed models provided a good estimation of the outflow of the reservoirs, improving the results obtained with classical approaches.
Cited articles
Alderman, K., Turner, L. R., and Tong, S.: Floods and human health: a
systematic review, Environ. Int., 47, 37–47,
https://doi.org/10.1016/j.envint.2012.06.003, 2012.
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon,
P., Wyser, K., and Feyen, L.: Global projections of river flood risk in a
warmer world, Earth's Future, 5, 171–182.
https://doi.org/10.1002/2016EF000485, 2017.
Areu-Rangel, O. S., Cea, L., Bonasia, R., and Espinosa-Echavarria, V. J.:
Impact of urban growth and changes in land use on river flood hazard in
Villahermosa, Tabasco (Mexico), Water, 11, 304,
https://doi.org/10.3390/w11020304, 2019.
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river
flood risk at the global scale, Climatic Change, 134, 387–401,
https://doi.org/10.1007/s10584-014-1084-5, 2016.
Benito, G., Machado, M. J., and Pérez González, A.: Climate change
and flood sensivity in Spain, in: Global continental Changes: the context of palaeohydrology, edited by: Brarndson, J., Brown, A. G. and Gregory, K.
L.,
Geological Society Special Publication no. 115, 85–98,
Londres, https://doi.org/10.1144/GSL.SP.1996.115.01.08, 1996.
Benito, G., Díez-Herrero, A., and de Villalta, M.: Magnitude and
frequency of flooding in the Tagus Basin (Central Spain) over the last
millennium, Climatic Change, 58, 171–192, 2003.
Benito, G., Brázdil, R., Herget, J., and Machado, M. J.: Quantitative historical hydrology in Europe, Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015, 2015.
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., and Coll, A.: Iber – River modelling simulation tool, Rev. Int. Métod. Numér., 30, 1–10, https://doi.org/10.1016/j.rimni.2012.07.004, 2014.
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger, M., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A., Volpi, E., Wilson, D., Zaimi, K., and Živković, N.: Changing climate shifts timing of European floods,
Science, 357, 588–590, https://doi.org/10.1126/science.aan2506#con16, 2017.
Cea, L. and Fraga, I.: Incorporating antecedent moisture conditions and
intraevent variability of rainfall on flood frequency analysis in poorly
gauged basins, Water Resour. Res., 54, 8774–8791,
https://doi.org/10.1029/2018WR023194, 2018.
CLC: CORINE Land Cover, European Union, Copernicus Land Monitoring Service,
European Environment Agency (EEA), https://land.copernicus.eu/ (last access: March 2022), 2018.
Cox, R. J., Shand, T. D., and Blacka, M. J.: Australian Rainfall and Runoff
revision project 10: appropriate safety criteria for people, Water Research
Laboratory, P10/S1/006, ISBN 978-085825-9454, 2010.
Cutter, S., Osman-Elasha, B., Campbell, J., Cheong, S.-M., McCormick, S.,
Pulwarty, R., Supratid, S., and Ziervogel, G.: Managing the risks from
climate extremes at the local level. In: Managing the Risks of Extreme
Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change (IPCC), edited by: Field, C. B.,
Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea,
M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P.M., Cambridge University
Press, Cambridge, UK, and New York, NY, USA, 291–338, 2012.
Dankers, R. and Feyen, L.: Climate change impact on flood hazard in Europe:
An assessment based on high-resolution climate simulations, J. Geophys.
Res.-Atmos., 113, D19105, https://doi.org/10.1029/2007JD009719, 2008.
Davis, J., O'Grady, A. P., Dale, A., Arthington, A. H., Gell, P. A., Driver,
P. D., Bond, N., Casanova, M., Finalyson, M., Watts, R. J., Capon, S. J.,
Nagelkerken, I., Tingley, R., Fry, B., Page, T. J., and Specht, A.: When
trends intersect: The challenge of protecting freshwater ecosystems under
multiple land use and hydrological intensification scenarios, Sci. Total
Environ., 534, 65–78, https://doi.org/10.1016/j.scitotenv.2015.03.127, 2015.
deCastro, M., Lorenzo, N., Taboada, J. J., Sarmiento, M., Alvarez, I., and
Gomez-Gesteira, M.: Influence of teleconnection patterns on precipitation
variability and on river flow regimes in the Miño River basin (NW
Iberian Peninsula), Clim. Res., 32, 63–73, https://doi.org/10.3354/cr032063,
2006.
Déry, S. J., Hernández-Henríquez, M. A., Burford, J. E., and
Wood, E. F.: Observational evidence of an intensifying hydrological cycle in
northern Canada, Geophys. Res. Lett., 36, L31402,
https://doi.org/10.1029/2009GL038852, 2009.
Des, M., Fernández-Nóvoa, D., deCastro, M., Gómez-Gesteira, J.
L., Sousa, M. C., and Gómez-Gesteira, M.: Modeling salinity drop in
estuarine areas under extreme precipitation events within a context of
climate change: Effect on bibalve mortality in Galician Rias Baixas, Sci.
Total Environ., 790, 148147,
https://doi.org/10.1016/j.scitotenv.2021.148147, 2021.
Di Sante, F., Coppola, F., and Giorgi, F.: Projections of river floods in
Europe using EURO-CORDEX, CMIP5 and CMIP6 simulations, Int. J. Climatol.,
41, 3203–3221, https://doi.org/10.1002/joc.7014, 2021.
EURO-CORDEX: Coordinated Downscaling Experiment – European Domain, World Climate Research Program (WCRP) [data set], https://www.euro-cordex.net/060378/index.php.en, last access: March 2022.
Fekete, A., Tzavella, K., and Baumhauer, R.: Spatial exposure aspects
contributing to vulnerability and resilience assessments of urban critical
infrastructure in a flood and blackout context, Nat. Hazards, 86,
151–176, https://doi.org/10.1007/s11069-016-2720-3, 2017.
Feldman, A. D.: Hydrologic Modeling System HEC-HMS: Technical Reference
Manual, USA Army Corps of Engineers, Washington, DC, USA, Hydrologic
Engineering Center, Davis, CA, USA, https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Technical Reference Manual_(CPD-74B).pdf (last access: March 2022), 2000.
Fernández-Nóvoa, D., deCastro, M., Des, M., Costoya, X., Mendes, R.,
and Gómez-Gesteira, M.: Characterization of Iberian turbid plumes by
means of synoptic patterns obtained through MODIS imagery, J. Sea Res., 126,
12–25, https://doi.org/10.1016/j.seares.2017.06.013, 2017.
Fernández-Nóvoa, D., García-Feal, O., González-Cao, J., de
Gonzalo, C., Rodríguez-Suárez, J. A., Ruiz del Portal, C., and
Gómez Gesteira, M.: MIDAS: A New Integrated Flood Early Warning System
for the Miño River, Water, 12, 2319, https://doi.org/10.3390/w12092319,
2020.
Fraga, I., Cea, L., and Puertas, J.: MERLIN: a flood hazard forecasting
system for coastal river reaches, Nat. Hazards, 100, 1171–1193.
https://doi.org/10.3390/w12092319, 2020.
García-Feal, O., González-Cao, J., Gomez-Gesteira, M., Cea, L.,
Domínguez, J. M., and Formella, A.: An accelerated tool for flood
modelling based on Iber, Water 10, 1459,
https://doi.org/10.3390/w10101459, 2018.
Garijo, C. and Mediero, L.: Influence of climate change on flood magnitude
and seasonality in the Arga River catchment in Spain, Acta Geophys., 66,
769–790, https://doi.org/10.1007/s11600-018-0143-0, 2018.
Gloor, M., Brienen, R. J. W., Galbraith, D., Feldpausch, T. R.,
Schöngart, J., Guyot, J.-L., Espinoza, J. C., Lloyd, J., and Phillips,
O. L.: Intensification of the amazon hydrological cycle over the last two
decades, Geophys. Res. Lett., 40, 1729–1733,
https://doi.org/10.1002/grl.50377, 2013.
González-Cao, J., García-Feal, O., Fernández-Nóvoa, D., Domínguez-Alonso, J. M., and Gómez-Gesteira, M.: Towards an automatic early warning system of flood hazards based on precipitation forecast: the case of the Miño River (NW Spain), Nat. Hazards Earth Syst. Sci., 19, 2583–2595, https://doi.org/10.5194/nhess-19-2583-2019, 2019.
González-Cao, J., Fernández-Nóvoa, D., García-Feal, O.,
Figueira, J. R., Vaquero, J. M., Trigo, R. M., and Gómez-Gesteira, M.:
Numerical reconstruction of historical extreme floods: The Guadiana event of
1876, J. Hydrol., 599, 126292,
https://doi.org/10.1016/j.jhydrol.2021.126292, 2021.
Gouveia, N. A., Gherardi, D. F. M., and Aragao, L. E. O. C.: The Role of the
Amazon River Plume on the Intensification of the Hydrological Cycle,
Geophys. Res. Lett., 46, 12221–12229, https://doi.org/10.1029/2019GL084302,
2019.
Huang, S., Hattermann, F. F., Krysanova, V., Bronstert, A.: Projections of
climate change impacts on river flood conditions in Germany by combining
three different RCMs with a regional eco-hydrological model, Climatic
Change, 116, 631–663, https://doi.org/10.1007/s10584-012-0586-2, 2013.
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation, A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker,
T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J.,
Plattner, G.-K., Allen, S. K., Tignor, M., Midgley, P. M., Cambridge
University Press, Cambridge, UK, and New York, NY, USA, 582 pp., 2012.
Jacob, D., Petersen J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Kadtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J. F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change
projections for European impact research, Reg. Environ. Change, 14, 563–578,
2014.
Jongman, B.: Effective adaptation to rising flood risk, Nat. Commun., 9,
1986, https://doi.org/10.1038/s41467-018-04396-1, 2018.
Jonkman, S. N.: Global perspectives on loss of human life caused by floods,
Nat. Hazards, 34, 151–175, https://doi.org/10.1007/s11069-004-8891-3,
2005.
Kundzewicz, Z. W., Lugeri, N., Dankers, R., Hirabayashi, Y., Döll, P.,
Pińskwar, I., Dusarz, T., Hochrainer, S., and Matczak, P.: Assessing
river flood risk and adaptation in Europe – review of projections for the
future, Mitig. Adapt. Strat. Gl., 15, 641–656,
https://doi.org/10.1007/s11027-010-9213-6, 2010.
Lavers, D. A., Allan, R. P., Wood, E. F., Villarini, G., Brayshaw, D. J.,
and Wade, A. J.: Winter floods in Britain are connected to atmospheric
rivers, Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783,
2011.
Lorenzo, M. N. and Alvarez, I.: Climate change patterns in precipitation
over Spain using CORDEX projections for 2021–2050, Sci. Total Environ.,
723, 138024, https://doi.org/10.1016/j.scitotenv.2020.138024, 2020.
Mel, R. A., Viero, D. P., Carniello, L., and D'Alpaos, L.: Optimal floodgate
operation for river flood management: The case study of Padova (Italy), J.
Hydrol. Reg. Stud., 30, 100702, https://doi.org/10.1016/j.ejrh.2020.100702,
2020.
MeteoGalicia: The Regional Meteorological Agency of Galicia, MeteoGalicia [data set], https://www.meteogalicia.gal/observacion/estacions/estacions.action?request_locale=e last access: March 2022.
Munoz, S. E., Giosa, L., Therrell, M. D., Remo, J. W. F., Shen, Z.,
Sullivan, R. M., Wiman, C., O'Donnell, M., and Donnelly, J. P.: Climatic
control of Mississippi River flood hazard amplified by river engineering,
Nature, 556, 95–98, https://doi.org/10.1038/nature26145, 2018.
Noji, E. K.: The public health consequences of disasters, Prehospital and Disaster Medicine, 15, 147–157, 2000.
Ortega, J. A. and Garzón, G.: A contribution to improved flood magnitude estimation in base of palaeoflood record and climatic implications – Guadiana River (Iberian Peninsula), Nat. Hazards Earth Syst. Sci., 9, 229–239, https://doi.org/10.5194/nhess-9-229-2009, 2009.
Padulano, R., Rianna, G., Costabile, P., Costanzo, C., Del Giudice, G.,
Mercogliano, P.: Propagation of variability in climate projections within
urban flood modelling: A multi-purpose impact analysis, J. Hydrol., 602,
126756, https://doi.org/10.1016/j.jhydrol.2021.126756, 2021.
Paprotny, D., Sebastian, A., Morales-Nápoles, O., and Jonkman, S. N.:
Trends in flood losses in Europe over the past 150 years, Nat. Commun.,
9, 1985, https://doi.org/10.1038/s41467-018-04253-1, 2018.
Peixoto, J. P. and Oort, A. H.: Physics of Climate, American
Institute of Physics, New York, NY, 412–433, ISBN 978-0-88318-712-8, 1992.
Pereira, S., Ramos, A. M., Zêzere, J. L., Trigo, R. M., and Vaquero, J. M.: Spatial impact and triggering conditions of the exceptional hydro-geomorphological event of December 1909 in Iberia, Nat. Hazards Earth Syst. Sci., 16, 371–390, https://doi.org/10.5194/nhess-16-371-2016, 2016.
Peres, D. J., Senatore, A., Nanni, P., Cancelliere, A., Mendicino, G., and Bonaccorso, B.: Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean area) historical simulations by high-quality observational datasets in southern Italy: insights on drought assessment, Nat. Hazards Earth Syst. Sci., 20, 3057–3082, https://doi.org/10.5194/nhess-20-3057-2020, 2020.
Perkins, S. E., Pitman, A. J., Holbrook, N. J., and McAneney, J.: Evaluation
of the AR4 Climate Models' Simulated Daily Maximum Temperature, Minimum
Temperature, and Precipitation over Australia Using Probability Density
Functions, J. Climate, 20, 4356–4376, https://doi.org/10.1175/JCLI4253.1,
2007.
Pierce, D. W., Barnett, T. P., Santer, B. D., and Gleckler, J.: Selecting
global climate models for regional climate change studies, P. Natl. Acad. Sci. USA, 106,
8441–8446, https://doi.org/10.1073/pnas.0900094106, 2009.
Portugués-Mollá, I., Bonache-Felici, X., Mateu-Bellés, J., and
Marco-Segura, J.: A GIS-Based Model for the analysis of an urban flash flood
and its hydro-geomorphic response. The Valencia event of 1957, J. Hydrol.,
541, 582–596, https://doi.org/10.1016/j.jhydrol.2016.05.048, 2016.
Rebelo, L., Ramos, A. M., Pereira, S., and Trigo, R. M.: Meteorological
Driving Mechanisms and Human Impacts of the February 1979 Extreme
Hydro-Geomorphological Event in Western Iberia, Water, 10, 454,
https://doi.org/10.3390/w10040454, 2018.
Scharffenberg, B., Bartles, M., Brauer, T., Fleming, M., and Karlovits, G.:
Hydrologic Modeling System (HEC-HMS), User's Manual, Version 4.3, USA Army
Corps of Engineers, Washington, DC, USA, https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.3.pdf, 2018.
Schwalm, C. R., Glendon, S., and Duffy, P. B.: RCP8.5 tracks cumulative CO2
emissions, P. Natl. Acad. Sci. USA, 117, 19656–19657,
https://doi.org/10.1073/pnas.2007117117, 2020.
Stoleriu, C. C., Urzica, A., and Mihu-Pintilie, A.: Improving flood risk map
accuracy using high-density LiDAR data and the HEC-RAS river analysis
system: A case study from north-eastern Romania, J. Flood Risk Manag., 13,
e12572, https://doi.org/10.1111/jfr3.12572, 2020.
te Linde, A. H., Bubeck, P., Dekkers, J. E. C., de Moel, H., and Aerts, J. C. J. H.: Future flood risk estimates along the river Rhine, Nat. Hazards Earth Syst. Sci., 11, 459–473, https://doi.org/10.5194/nhess-11-459-2011, 2011.
Trigo, I. F.: Climatology and interannual variability of storm-tracks in the
Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses,
Clim. Dynam., 26, 127–143, https://doi.org/10.1007/s00382-005-0065-9, 2006.
Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y.,
Gámiz-Fortis, S., and Esteban-Parra, M. J.: North Atlantic Oscillation
influence on precipitation, river flow and water resources in the Iberian
Peninsula, Int. J. Climatol., 24, 925–944.
https://doi.org/10.1002/joc.1048, 2004.
Trigo, R. M., Varino, F., Ramos, A. M., Valente, M. A., Zêzere, J. L.,
Vaquero, J. M., Gouveia, C. M., and Russo, A.: The record precipitation and
flood event in Iberia in December 1876: description and synoptic analysis,
Front. Earth Sci., 2, 3, https://doi.org/10.3389/feart.2014.00003, 2014.
Trigo, R. M., Ramos, C., Pereira, S. S., Ramos, A. M., Zêzere, J. L.,
and Liberato, M. L.: The deadliest storm of the 20th century striking
Portugal: Flood impacts and atmospheric circulation, J. Hydrol., 541,
597–610, https://doi.org/10.1016/j.jhydrol.2015.10.036, 2016.
U.S. Army Corps of Engineers: Hydrologic Modeling System (HEC-HMS) User's
Manual, Version 4.3, Institute for Water Resources Davis: Hydrologic
Engineering Center, https://www.hec.usace.army.mil/software/hec-hms/documentation/ (last access: March 2022), 2018.
U.S. Army Corps of Engineers: HEC-HMS, U.S. Army Corps of Engineers [data set], https://www.hec.usace.army.mil/software/hec-hms/downloads.aspx, last access: March 2022.
Wallemacq, P., House, R., Below, R., and McLean, D.: Economic Losses,
Poverty & Disasters: 1998–2017; Centre for Research on the Epidemiology
of Disasters (CRED); United Nations Officce for Disaster Risk Reduction
(UNISDR), Brussels, Belgium, https://www.undrr.org/publication/economic-losses-poverty-disasters-1998-2017 (last access: March 2022), 2018.
Zêzere, J. L., Pereira, S., Tavares, A. O., Bateira, C., Trigo, R. M.,
Quaresma, I., Santos, P. P., Santos, M., and Verde, J.: DISASTER: a GIS
database on hydro-geomorphologic disasters in Portugal, N. Hazards, 72,
503–532, https://doi.org/10.1007/s11069-013-1018-y, 2014.
Zhu, Y., Lin, Z., Zhao, Y., Li, H., He, F., Zhai, J., Wang, L., and Wang,
Q.: Flood simulations and uncertainty analysis for the Pearl River basin
using the coupled land surface and hydrological model system, Water, 9,
391, https://doi.org/10.3390/w9060391, 2017.
Short summary
A multiscale analysis, where the historical and future precipitation data from the CORDEX project were used as input in a hydrological model (HEC-HMS) that, in turn, feeds a 2D hydraulic model (Iber+), was applied to the case of the Miño-Sil basin (NW Spain), specifically to Ourense city, in order to analyze future changes in flood hazard. Detailed flood maps indicate an increase in the frequency and intensity of future floods, implying an increase in flood hazard in important areas of the city.
A multiscale analysis, where the historical and future precipitation data from the CORDEX...
Altmetrics
Final-revised paper
Preprint