Articles | Volume 22, issue 8
https://doi.org/10.5194/nhess-22-2567-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-22-2567-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of sustainable flood risk management by four countries – the United Kingdom, the Netherlands, the United States, and Japan – and the implications for Asian coastal megacities
Faith Ka Shun Chan
CORRESPONDING AUTHOR
Department of Geographical Sciences, University of Nottingham Ningbo China, Ningbo 315100, China
water@leeds, University of Leeds, Leeds, LS2 9JT, UK
Department of Geography, Ludwig Maximilian University of Munich (LMU), Munich, Germany
Gordon Mitchell
School of Geography and water@leeds, University of Leeds, Leeds, LS2 9JT, UK
Nigel Wright
Research and Innovation, Nottingham Trent University, 50 Shakespeare Street, Nottingham, Nottinghamshire, NG1 4FQ, UK
Mingfu Guan
Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
Xiaohui Lu
CORRESPONDING AUTHOR
Key Laboratory of Urban Environment and Health, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen 361021, China
Nottingham University Business School China, University of Nottingham Ningbo China, Ningbo 315100, China
Zilin Wang
Department of Geography, Planning & Environment, East Carolina University, A-227 Brewster Building Greenville, NC 27858-4353 USA
Burrell Montz
Department of Geography, Planning & Environment, East Carolina University, A-227 Brewster Building Greenville, NC 27858-4353 USA
Olalekan Adekola
School of Humanities, York St John University, York, YO31 7EX, UK
Related authors
Kaihua Guo, Mingfu Guan, Haochen Yan, and Faith Ka Shun Chan
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-109, https://doi.org/10.5194/nhess-2022-109, 2022
Revised manuscript not accepted
Short summary
Short summary
This study investigated the utility of social media in urban flood assessment using the case of 2020 China Chengdu flooding. We presented an efficient workflow to collect, process and identify unstructured flood related data in near real-time during a storm event. Based on identified social media database and 232 flood sites, this study shows that social media data can provide valuable spatial and timely information for urban flooding emergency management.
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-136, https://doi.org/10.5194/hess-2024-136, 2024
Preprint under review for HESS
Short summary
Short summary
In mountainous areas, the relationship between slope and annual hydrological processes is pronounced. However, at lower elevations, this relationship is weak in steeper watersheds. In addition, urbanization leads to an increase in annual surface runoff in all watersheds, especially in steep-slope watersheds. Flatter watersheds exhibit a buffering capacity against urbanization. However, this buffering capacity is diminishing as annual rainfall intensity increases.
Jiachang Tu, Jiahong Wen, Liang Emlyn Yang, Andrea Reimuth, Stephen S. Young, Min Zhang, Luyang Wang, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 23, 3247–3260, https://doi.org/10.5194/nhess-23-3247-2023, https://doi.org/10.5194/nhess-23-3247-2023, 2023
Short summary
Short summary
This paper evaluates the flood risk and the resulting patterns in buildings following low-probability, high-impact flood scenarios by a risk analysis chain in Shanghai. The results provide a benchmark and also a clear future for buildings with respect to flood risks in Shanghai. This study links directly to disaster risk management, e.g., the Shanghai Master Plan. We also discussed different potential adaptation options for flood risk management.
Kaihua Guo, Mingfu Guan, Haochen Yan, and Faith Ka Shun Chan
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-109, https://doi.org/10.5194/nhess-2022-109, 2022
Revised manuscript not accepted
Short summary
Short summary
This study investigated the utility of social media in urban flood assessment using the case of 2020 China Chengdu flooding. We presented an efficient workflow to collect, process and identify unstructured flood related data in near real-time during a storm event. Based on identified social media database and 232 flood sites, this study shows that social media data can provide valuable spatial and timely information for urban flooding emergency management.
Kaihua Guo, Mingfu Guan, and Dapeng Yu
Hydrol. Earth Syst. Sci., 25, 2843–2860, https://doi.org/10.5194/hess-25-2843-2021, https://doi.org/10.5194/hess-25-2843-2021, 2021
Short summary
Short summary
This study presents a comprehensive review of models and emerging approaches for predicting urban surface water flooding driven by intense rainfall. It explores the advantages and limitations of existing models and identifies major challenges. Issues of model complexities, scale effects, and computational efficiency are also analysed. The results will inform scientists, engineers, and decision-makers of the latest developments and guide the model selection based on desired objectives.
Samuli Launiainen, Mingfu Guan, Aura Salmivaara, and Antti-Jussi Kieloaho
Hydrol. Earth Syst. Sci., 23, 3457–3480, https://doi.org/10.5194/hess-23-3457-2019, https://doi.org/10.5194/hess-23-3457-2019, 2019
Short summary
Short summary
Boreal forest evapotranspiration and water cycle is modeled at stand and catchment scale using physiological and physical principles, open GIS data and daily weather data. The approach can predict daily evapotranspiration well across Nordic coniferous-dominated stands and successfully reproduces daily streamflow and annual evapotranspiration across boreal headwater catchments in Finland. The model is modular and simple and designed for practical applications over large areas using open data.
Victor O. Oladokun and Burrell E. Montz
Nat. Hazards Earth Syst. Sci., 19, 1151–1165, https://doi.org/10.5194/nhess-19-1151-2019, https://doi.org/10.5194/nhess-19-1151-2019, 2019
Short summary
Short summary
Community resilience is an important policy and research concept. However, lack of an operational measurement framework exists due to difficulties in systematically integrating socioeconomic and techno-ecological factors. A conceptual and mathematical model was developed and a fuzzy logic equivalent of the model implemented to generate a resilience index for three communities in the US. This model offers a viable approach for measuring community flood resilience despite data limitations.
María Carolina Rogelis, Micha Werner, Nelson Obregón, and Nigel Wright
Nat. Hazards Earth Syst. Sci., 16, 833–853, https://doi.org/10.5194/nhess-16-833-2016, https://doi.org/10.5194/nhess-16-833-2016, 2016
Short summary
Short summary
A method to identify mountainous watersheds with the highest flood risk at the regional level is proposed and applied in Bogotá (Colombia). Vulnerability at the regional level was assessed and combined with an existing flood susceptibility indicator, thus providing an index that allows the watersheds to be prioritised. Results show that vulnerability can be expressed in terms of four constituent indicators and a sensitivity analysis shows that the classification of vulnerability is robust.
Baoyin Liu, Yim Ling Siu, and Gordon Mitchell
Nat. Hazards Earth Syst. Sci., 16, 629–642, https://doi.org/10.5194/nhess-16-629-2016, https://doi.org/10.5194/nhess-16-629-2016, 2016
Short summary
Short summary
We developed a systematic hazard interaction classification based on the geophysical environment that natural hazards arise from. This classification ensures all possible hazard interactions among different hazards are considered in multi-hazard risk assessment. Using the developed classification, the probability and magnitude of multiple natural hazards occurring simultaneously can then be modelled in order to provide a more comprehensive multi-hazard risk assessment.
María Carolina Rogelis, Micha Werner, Nelson Obregón, and Nigel Wright
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-30, https://doi.org/10.5194/hess-2016-30, 2016
Manuscript not accepted for further review
Short summary
Short summary
A distributed model (TETIS), a semi-distributed model (TOPMODEL) and a lumped model (HEC HMS soil moisture accounting) were used to simulate the discharge response of a tropical high mountain basin. Performance analysis and diagnostics were carried out in order to identify the most appropriate model for the study area for flood early warning. The results show that TOPMODEL is the most realistic model of the three tested.
F. F. Worku, M. Werner, N. Wright, P. van der Zaag, and S. S. Demissie
Hydrol. Earth Syst. Sci., 18, 3837–3853, https://doi.org/10.5194/hess-18-3837-2014, https://doi.org/10.5194/hess-18-3837-2014, 2014
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Dynamic response of pile–slab retaining wall structure under rockfall impact
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Flood risk assessment through large-scale modeling under uncertainty
Migration as a Hidden Risk Factor in Seismic Fatality: A Spatial Modeling Approach to the Chi-Chi Earthquake and Suburban Syndrome
Risk reduction through managed retreat? Investigating enabling conditions and assessing resettlement effects on community resilience in Metro Manila
Brief communication: Lessons learned and experiences gained from building up a global survey on societal resilience to changing droughts
Regional seismic risk assessment based on ground conditions in Uzbekistan
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Simulating multi-hazard event sets for life cycle consequence analysis
Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacuation using an agent-based model – case study in the city of Iquique, Chile
Factors of influence on flood risk perceptions related to Hurricane Dorian: an assessment of heuristics, time dynamics, and accuracy of risk perceptions
Using a convection-permitting climate model to predict wine grape productivity: two case studies in Italy
Current status of water-related planning for climate change adaptation in the Spree River basin, Germany
Anticipating a risky future: long short-term memory (LSTM) models for spatiotemporal extrapolation of population data in areas prone to earthquakes and tsunamis in Lima, Peru
A new regionally consistent exposure database for Central Asia: population and residential buildings
Ready, set, go! An anticipatory action system against droughts
Study on seismic risk assessment model of water supply systems in mainland China
Mapping current and future flood exposure using a 5 m flood model and climate change projections
Brief communication: On the environmental impacts of the 2023 floods in Emilia-Romagna (Italy)
A regional-scale approach to assessing non-residential building, transportation and cropland exposure in Central Asia
Towards a global impact-based forecasting model for tropical cyclones
Identifying vulnerable populations in urban society: a case study in a flood-prone district of Wuhan, China
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Spatial accessibility of emergency medical services under inclement weather: a case study in Beijing, China
Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Estimating emergency costs for earthquakes and floods in Central Asia based on modelled losses
Compound flood impacts from Hurricane Sandy on New York City in climate-driven storylines
Regional-scale landslide risk assessment in Central Asia
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Cost estimation for the monitoring instrumentation of landslide early warning systems
The role of response efficacy and self-efficacy in disaster preparedness actions for vulnerable households
Scientists as storytellers: the explanatory power of stories told about environmental crises
Back analysis of a building collapse under snow and rain loads in a Mediterranean area
Between global risk reduction goals, scientific-technical capabilities and local realities: a novel modular approach for multi-risk assessment
Assessment of building damage and risk under extreme flood scenarios in Shanghai
Mangrove ecosystem properties regulate high water levels in a river delta
Analysis of flood warning and evacuation efficiency by comparing damage and life-loss estimates with real consequences related to the São Francisco tailings dam failure in Brazil
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024, https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Short summary
To integrate resilience assessment into practical management, this study designs a step-by-step guide that enables managers of critical infrastructure (CI) to create specific indicator systems tailored to real cases. This guide considers the consequences of hazards to CI and the cost–benefit analysis and side effects of implementable actions. The assessment results assist managers, as they are based on a multi-criterion framework that addresses several factors valued in practical management.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024, https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Short summary
Natural disturbances are projected to intensify in the future, threatening our forests and their functions such as wood production, protection against natural hazards, and carbon sequestration. By assessing risks to forests from wind and fire damage, alongside the vulnerability of carbon, it is possible to prioritize forest stands at high risk. In this study, we propose a novel methodological approach to support climate-smart forest management and inform better decision-making.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-114, https://doi.org/10.5194/nhess-2024-114, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investors, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows to identify the critical points where single value estimates may underestimate the risk, and the areas of vulnerability to prioritize risk reduction efforts.
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1493, https://doi.org/10.5194/egusphere-2024-1493, 2024
Short summary
Short summary
This study reveals migration patterns as a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing in the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
Vakhitkhan Alikhanovich Ismailov, Sharofiddin Ismatullayevich Yodgorov, Akhror Sabriddinovich Khusomiddinov, Eldor Makhmadiyorovich Yadigarov, Bekzod Uktamovich Aktamov, and Shuhrat Bakhtiyorovich Avazov
Nat. Hazards Earth Syst. Sci., 24, 2133–2146, https://doi.org/10.5194/nhess-24-2133-2024, https://doi.org/10.5194/nhess-24-2133-2024, 2024
Short summary
Short summary
For the basis of seismic risk assessment, maps of seismic intensity increment and an improved map of seismic hazard have been developed, taking into account the engineering-geological conditions of the territory of Uzbekistan and the seismic characteristics of soils. For seismic risk map development, databases were created based on geographic information system platforms, allowing us to systematize and evaluate the regional distribution of information.
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024, https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Short summary
Transboundary flood risk management in the Ciliwung River basin is placed in a broader context of disaster management, environmental science, and governance. This is particularly relevant for areas of research involving the management of shared water resources, the impact of regional development on flood risk, and strategies to reduce economic losses from flooding.
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024, https://doi.org/10.5194/nhess-24-2003-2024, 2024
Short summary
Short summary
This paper proposes a quantitative storm surge risk assessment method for data-deficient regions. A coupled model is used to simulate five storm surge scenarios. Deep learning is used to extract building footprints. Economic losses are calculated by combining adjusted depth–damage functions with inundation simulation results. Zoning maps illustrate risk levels based on economic losses, aiding in disaster prevention measures to reduce losses in coastal areas.
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-82, https://doi.org/10.5194/nhess-2024-82, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history, means the data required for vulnerability evaluation by the insurance industry is scarce. A systematic literature review is conducted in this study, to determine the suitability of current, published literature for this purpose. Knowledge gaps are charted, and a representative asset-hazard taxonomy is proposed, to guide future, quantitative research.
Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, https://doi.org/10.5194/nhess-24-1871-2024, 2024
Short summary
Short summary
Drought has long posed an existential threat to society. Population growth, economic development, and the potential for more extreme and prolonged droughts due to climate change pose significant water security challenges. Better understanding the impacts and adaptive responses resulting from extreme drought can aid adaptive planning. The 2008–2015 record drought in the Colorado Basin, Texas, United States, is used as a case study to assess impacts and responses to severe drought.
Alex Dunant, Tom R. Robinson, Alexander Logan Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1374, https://doi.org/10.5194/egusphere-2024-1374, 2024
Short summary
Short summary
Our study introduces a new method using hypergraph theory to assess risks from interconnected natural hazards. Traditional models often overlook how these hazards can interact and worsen each other's effects. By applying our method to the 2015 Nepal earthquake, we successfully demonstrated its ability to predict broad damage patterns, despite slightly overestimating impacts. Being able to anticipate the effects of complex, interconnected hazards is critical for disaster preparedness.
Leandro Iannacone, Kenneth Otárola, Roberto Gentile, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/nhess-24-1721-2024, https://doi.org/10.5194/nhess-24-1721-2024, 2024
Short summary
Short summary
The paper presents a review of the available classifications for hazard interactions in a multi-hazard context, and it incorporates such classifications from a modeling perspective. The outcome is a sequential Monte Carlo approach enabling efficient simulation of multi-hazard event sets (i.e., sequences of events throughout the life cycle). These event sets can then be integrated into frameworks for the quantification of consequences for the purposes of life cycle consequence (LCCon) analysis.
Rodrigo Cienfuegos, Gonzalo Álvarez, Jorge León, Alejandro Urrutia, and Sebastián Castro
Nat. Hazards Earth Syst. Sci., 24, 1485–1500, https://doi.org/10.5194/nhess-24-1485-2024, https://doi.org/10.5194/nhess-24-1485-2024, 2024
Short summary
Short summary
This study carries out a detailed analysis of possible tsunami evacuation scenarios in the city of Iquique in Chile. Evacuation modeling and tsunami modeling are integrated, allowing for an estimation of the potential number of people that the inundation may reach under different scenarios by emulating the dynamics and behavior of the population and their decision-making regarding the starting time of the evacuation.
Laurine A. de Wolf, Peter J. Robinson, W. J. Wouter Botzen, Toon Haer, Jantsje M. Mol, and Jeffrey Czajkowski
Nat. Hazards Earth Syst. Sci., 24, 1303–1318, https://doi.org/10.5194/nhess-24-1303-2024, https://doi.org/10.5194/nhess-24-1303-2024, 2024
Short summary
Short summary
An understanding of flood risk perceptions may aid in improving flood risk communication. We conducted a survey among 871 coastal residents in Florida who were threatened to be flooded by Hurricane Dorian. Part of the original sample was resurveyed after Dorian failed to make landfall to investigate changes in risk perception. We find a strong influence of previous flood experience and social norms on flood risk perceptions. Furthermore, flood risk perceptions declined after the near-miss event.
Laura Teresa Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
EGUsphere, https://doi.org/10.5194/egusphere-2024-941, https://doi.org/10.5194/egusphere-2024-941, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based both on temperature and precipitation. These indices are correlated to grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change affects wine production in the future.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-59, https://doi.org/10.5194/nhess-2024-59, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in water management, spatial and landscape planning in the Spree River basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this planning gap, more frequent updates of plans, a stronger focus on multifunctional measures and the adaptation of best practice examples for systematic integration of climate change impacts and adaptation are needed.
Christian Geiß, Jana Maier, Emily So, Elisabeth Schoepfer, Sven Harig, Juan Camilo Gómez Zapata, and Yue Zhu
Nat. Hazards Earth Syst. Sci., 24, 1051–1064, https://doi.org/10.5194/nhess-24-1051-2024, https://doi.org/10.5194/nhess-24-1051-2024, 2024
Short summary
Short summary
We establish a model of future geospatial population distributions to quantify the number of people living in earthquake-prone and tsunami-prone areas of Lima and Callao, Peru, for the year 2035. Areas of high earthquake intensity will experience a population growth of almost 30 %. The population in the tsunami inundation area is estimated to grow by more than 60 %. Uncovering those relations can help urban planners and policymakers to develop effective risk mitigation strategies.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Faga
Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, https://doi.org/10.5194/nhess-24-929-2024, 2024
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asian country. The population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Bonifácio
EGUsphere, https://doi.org/10.5194/egusphere-2024-538, https://doi.org/10.5194/egusphere-2024-538, 2024
Short summary
Short summary
The "Ready, Set & Go!" system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
Tianyang Yu, Banghua Lu, Hui Jiang, and Zhi Liu
Nat. Hazards Earth Syst. Sci., 24, 803–822, https://doi.org/10.5194/nhess-24-803-2024, https://doi.org/10.5194/nhess-24-803-2024, 2024
Short summary
Short summary
A basic database for seismic risk assessment of 720 urban water supply systems in mainland China is established. The parameters of the seismic risk curves of 720 cities are calculated. The seismic fragility curves of various facilities in the water supply system are given based on the logarithmic normal distribution model. The expected seismic loss and the expected loss rate index of 720 urban water supply systems in mainland China in the medium and long term are given.
Connor Darlington, Jonathan Raikes, Daniel Henstra, Jason Thistlethwaite, and Emma K. Raven
Nat. Hazards Earth Syst. Sci., 24, 699–714, https://doi.org/10.5194/nhess-24-699-2024, https://doi.org/10.5194/nhess-24-699-2024, 2024
Short summary
Short summary
The impacts of climate change on local floods require precise maps that clearly demarcate changes to flood exposure; however, most maps lack important considerations that reduce their utility in policy and decision-making. This article presents a new approach to identifying current and projected flood exposure using a 5 m model. The results highlight advancements in the mapping of flood exposure with implications for flood risk management.
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Zukhritdin Ergashev, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Fagà
Nat. Hazards Earth Syst. Sci., 24, 355–373, https://doi.org/10.5194/nhess-24-355-2024, https://doi.org/10.5194/nhess-24-355-2024, 2024
Short summary
Short summary
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can affect a wide range of assets at risk. We develop the first regionally consistent database of assets at risk for non-residential buildings, transportation and croplands in Central Asia. The database combines global and regional data sources and country-based information and supports the development of regional-scale disaster risk reduction strategies for the Central Asia region.
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
Nat. Hazards Earth Syst. Sci., 24, 309–329, https://doi.org/10.5194/nhess-24-309-2024, https://doi.org/10.5194/nhess-24-309-2024, 2024
Short summary
Short summary
We improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid, using only features which are globally available. We show that our two-stage model conserves the performance of the original and even has the potential to introduce savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci., 24, 179–197, https://doi.org/10.5194/nhess-24-179-2024, https://doi.org/10.5194/nhess-24-179-2024, 2024
Short summary
Short summary
Through the development of micro-individual social vulnerability indicators and cluster analysis, this study assessed the level of social vulnerability of 599 residents from 11 communities in the Hongshan District of Wuhan. The findings reveal three levels of social vulnerability: high, medium, and low. Quantitative assessments offer specific comparisons between distinct units, and the results indicate that different types of communities have significant differences in social vulnerability.
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci., 24, 145–161, https://doi.org/10.5194/nhess-24-145-2024, https://doi.org/10.5194/nhess-24-145-2024, 2024
Short summary
Short summary
Contributions to social capital, risk awareness, and preparedness constitute the parameters to test applications in disaster risk management. We propose an evaluation of four of these: mobile positioning data, social media crowdsourcing, drones, and satellite imaging. The analysis grants the opportunity to investigate how different methods to evaluate surveys' results may influence final preferences. We find that the different assumptions on which these methods rely deliver diverging results.
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024, https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of emergency medical services (EMSs) in Beijing, China, and identifying the vulnerable areas that could not get timely EMSs under inclement weather. We found that inclement weather could reduce the accessibility of EMSs by up to 40%. Furthermore, towns with lower baseline EMSs accessibility are more vulnerable when inclement weather occurs.
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
Nat. Hazards Earth Syst. Sci., 24, 79–107, https://doi.org/10.5194/nhess-24-79-2024, https://doi.org/10.5194/nhess-24-79-2024, 2024
Short summary
Short summary
This paper critically reviews disaster recovery literature from a multi-risk perspective. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, and the low consideration of disaster recovery as a non-linear process in which communities need change over time.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, Wouter Botzen, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-17, https://doi.org/10.5194/egusphere-2024-17, 2024
Short summary
Short summary
SLR will lead to more frequent flooding, and salt intrusion in coastal areas will be a major concern for farming households that are highly dependent on the soil quality for their livelihoods. In this study, we simulated the risk of SLR and flooding to coastal farmers by assessing salt intrusion risk and flood damage to buildings.
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci., 24, 53–62, https://doi.org/10.5194/nhess-24-53-2024, https://doi.org/10.5194/nhess-24-53-2024, 2024
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in central Asia, the first time that these estimates are made available for the study area and are intended to be useful for regional and local stakeholders and decision makers.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
Maria-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-225, https://doi.org/10.5194/nhess-2023-225, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The Central Volcanic Zone of the Andes is shared by four countries and groups 59 volcanoes. We identified the ones with the most intense and frequent eruptions (e.g., El Misti and Ubinas), the cities with the highest density of elements at risk (e.g., Arequipa and Mequegua), and the volcanoes with the highest potential impact (e.g., Cerro Blanco and Yucamane). Our study contributes into the prioritization of risk reduction resources, which is crucial for surrounding communities.
Marta Sapena, Moritz Gamperl, Marlene Kühnl, Carolina Garcia-Londoño, John Singer, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 23, 3913–3930, https://doi.org/10.5194/nhess-23-3913-2023, https://doi.org/10.5194/nhess-23-3913-2023, 2023
Short summary
Short summary
A new approach for the deployment of landslide early warning systems (LEWSs) is proposed. We combine data-driven landslide susceptibility mapping and population maps to identify exposed locations. We estimate the cost of monitoring sensors and demonstrate that LEWSs could be installed with a budget ranging from EUR 5 to EUR 41 per person in Medellín, Colombia. We provide recommendations for stakeholders and outline the challenges and opportunities for successful LEWS implementation.
Dong Qiu, Binglin Lv, Yuepeng Cui, and Zexiong Zhan
Nat. Hazards Earth Syst. Sci., 23, 3789–3803, https://doi.org/10.5194/nhess-23-3789-2023, https://doi.org/10.5194/nhess-23-3789-2023, 2023
Short summary
Short summary
This paper divides preparedness behavior into minimal and adequate preparedness. In addition to studying the main factors that promote families' disaster preparedness, we also study the moderating effects of response efficacy and self-efficacy on preparedness actions by vulnerable families. Based on the findings of this study, policymakers can target interventions and programs that can be designed to remedy the current lack of disaster preparedness education for vulnerable families.
Jenni Barclay, Richie Robertson, and M. Teresa Armijos
Nat. Hazards Earth Syst. Sci., 23, 3603–3615, https://doi.org/10.5194/nhess-23-3603-2023, https://doi.org/10.5194/nhess-23-3603-2023, 2023
Short summary
Short summary
Stories create avenues for sharing the meanings and social implications of scientific knowledge. We explore their value when told between scientists during a volcanic eruption. They are important vehicles for understanding how risk is generated during volcanic eruptions and create new knowledge about these interactions. Stories explore how risk is negotiated when scientific information is ambiguous or uncertain, identify cause and effect, and rationalize the emotional intensity of a crisis.
Isabelle Ousset, Guillaume Evin, Damien Raynaud, and Thierry Faug
Nat. Hazards Earth Syst. Sci., 23, 3509–3523, https://doi.org/10.5194/nhess-23-3509-2023, https://doi.org/10.5194/nhess-23-3509-2023, 2023
Short summary
Short summary
This paper deals with an exceptional snow and rain event in a Mediterranean region of France which is usually not prone to heavy snowfall and its consequences on a particular building that collapsed completely. Independent analyses of the meteorological episode are carried out, and the response of the building to different snow and rain loads is confronted to identify the main critical factors that led to the collapse.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-142, https://doi.org/10.5194/nhess-2023-142, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
In this paper, we provide a brief introduction on the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-hazard risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructures to increase their capabilities.
Jiachang Tu, Jiahong Wen, Liang Emlyn Yang, Andrea Reimuth, Stephen S. Young, Min Zhang, Luyang Wang, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 23, 3247–3260, https://doi.org/10.5194/nhess-23-3247-2023, https://doi.org/10.5194/nhess-23-3247-2023, 2023
Short summary
Short summary
This paper evaluates the flood risk and the resulting patterns in buildings following low-probability, high-impact flood scenarios by a risk analysis chain in Shanghai. The results provide a benchmark and also a clear future for buildings with respect to flood risks in Shanghai. This study links directly to disaster risk management, e.g., the Shanghai Master Plan. We also discussed different potential adaptation options for flood risk management.
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
André Felipe Rocha Silva and Julian Cardoso Eleutério
Nat. Hazards Earth Syst. Sci., 23, 3095–3110, https://doi.org/10.5194/nhess-23-3095-2023, https://doi.org/10.5194/nhess-23-3095-2023, 2023
Short summary
Short summary
This work evaluates the application of flood consequence models through their application in a real case related to a tailings dam failure. Furthermore, we simulated the implementation of less efficient alert systems on life-loss alleviation. The results revealed that the models represented the event well and were able to estimate the relevance of implementing efficient alert systems. They highlight that their use may be an important tool for new regulations for dam safety legislation.
Cited articles
Aerts, J. C. J. H., Lin, N., Botzen, W., Emanuel, K., and de Moel, H.:
Low-Probability Flood Risk Modeling for New York City, Risk Anal., 33, 772–788, https://doi.org/10.1111/risa.12008, 2013.
Arnell, N. W.: Flood hazard management in the United States and the National
Flood Insurance Program, Geoforum, 15, 525–542, https://doi.org/10.1016/0016-7185(84)90023-X, 1984.
Ashley, R., Gersonius, B., and Horton, B.: Managing flooding: from a problem to an opportunity, Philos. T. Roy. Soc. A, 378, 2169, https://doi.org/10.1098/rsta.2019.0214, 2020.
Bagstad, K. J., Stapleton, K., and D'Agostino, J. R.: Taxes, subsidies, and
insurance as drivers of United States coastal development, Ecol. Econ., 63, 285–298, https://doi.org/10.1016/j.ecolecon.2006.09.019, 2007.
Ball, T., Werritty, A., and Geddes, A.: Insurance and sustainability in
flood-risk management: the UK in a transitional state, Area, 45, 266–272,
https://doi.org/10.1111/area.12038, 2013.
Basconcillo, J. and Moon, I.-J.: Recent increase in the occurrences of
Christmas typhoons in the Western North Pacific, Scient. Rep., 11, 7416, https://doi.org/10.1038/s41598-021-86814-x, 2021.
Beck, S.: Between Tribalism and Trust: The IPCC Under the “Public
Microscope”, Nat. Cult., 7, 151–173, https://doi.org/10.3167/nc.2012.070203, 2012.
Berke, P. R.: Why is Houston so vulnerable to devastating floods?. BBC News,
https://www.bbc.com/news/world-us-canada-41107049 (last access:
5 August 2019), 2017.
Berkowitz, M.: 100 Resilient Cities, http://lghttp.60358.nexcesscdn.net/8046264/images/page/-/100rc/pdfs/Bangkok_-_Resilience_Strategy.pdf (lsat access: 21 August 2017), 2013.
Böhm, H. R., Haupter, B., Heiland, P., and Dapp, K.: Implementation of flood risk management measures into spatial plans and policies, River Res.
Appl., 20, 255–267, https://doi.org/10.1002/rra.776, 2004.
Bouriboun, S.: Food and Agriculture Organization. Flood management and
mitigation in the Mekong River Basin, http://www.fao.org/docrep/004/ac146e/AC146E01.htm (last access: 20 August 2017), 1998.
Brown, J. D. and Damery, S. L.: Managing flood risk in the UK: towards an
integration of social and technical perspectives, T. Inst. Brit. Geogr., 27, 412–426, https://doi.org/10.1111/1475-5661.00063, 2002.
Brundtland, G. H.: Our common future – Call for action, Environ. Conserv., 14, 291–294, https://doi.org/10.1017/S0376892900016805, 1987.
Burby, R. J.: Hurricane Katrina and the paradoxes of government disaster
policy: Bringing about wise governmental decisions for hazardous areas,
Ann. Am. Acad. Polit. Social Sci., 604, 171–191, https://doi.org/10.1177/0002716205284676, 2006.
Bureau of Meteorology: What is a Tropical Cyclone?, Bureau of Meteorology, Melbourne, Australia, http://www.bom.gov.au/other/accessibility.shtml?ref=ftr, last access:
12 December 2021.
Burgess, K., Jay, H., Nicholls, R. J., Green, C., and Penning-Rowsell, E. C.:
Assessment of future coastal erosion risk, Thomas Telford, ISBN 9780727734495, 2007.
Butler, C. and Pidgeon, N.: From `flood defence' to `flood risk management':
exploring governance, responsibility, and blame, Environ. Plan. C, 29, 533–547, https://doi.org/10.1068/c09181j, 2011.
Chamlee-Wright, E. and Storr, V. H.: “There's no place like New Orleans”: a
sense of place and community recovery in the Ninth Ward after Hurricane
Katrina, J. Urban Affair., 31, 615–634, https://doi.org/10.1111/j.1467-9906.2009.00479.x, 2009.
Chan, F., Mitchell, G., and McDonald, A. T.: Flood risk appraisal and management in mega-cities: a case study of practice in the Pearl River Delta, China, Water Pract. Technol., 7, 1–9, https://doi.org/10.2166/wpt.2012.060, 2012.
Chan, F., Adekola, O., Ng, C., Mitchell, G., and McDonald, A.: Coastal
Flood-Risk Management Practice in Tai O, a Town in Hong Kong, Environ.
Pract., 15, 1–19, https://doi.org/10.1017/S1466046613000215, 2013a.
Chan, F., Mitchell, G., Cheng, X., Adekola, O., and McDonald, A.: Developing a Sustainable Flood Risk Appraisal (SFRA) Framework for the Pearl River Delta, Environ. Urbaniz. Asia, 4, 301–323, https://doi.org/10.1177/0975425313510770, 2013b.
Chan, F., Wright, N., Cheng, X., and Griffiths, J.: After Sandy: Rethinking
Flood Risk Management in Asian Coastal Megacities, Nat. Hazards Rev., 15, 101–103, 2014.
Chan, F., Joon, C. C., Ziegler, A., Dabrowski, M., and Varis, O.: Towards resilient flood risk management for Asian coastal cities: lessons learned from Hong Kong and Singapore, J. Clean. Product., 187, 576–589, https://doi.org/10.1016/j.jclepro.2018.03.217, 2018.
Chan, F., Yang, L.E., Scheffran, J., Mitchell, G., Adekola, O., Griffiths, J., Chen, Y., Li, G., Lu, X., Qi, Y., Li, L., Zheng, H., and McDonald, A.: Urban flood risks and emerging challenges in a Chinese delta: The case of the
Pearl River Delta, Environ. Sci. Policy, 122, 101–115,
https://doi.org/10.1016/j.envsci.2021.04.009, 2021.
Chan, F., Gu, X., Qi, Y., Thadani, D., Chen, Y. D., Lu, X., Li, L., Griffiths, J., Zhu, F., Li, J., and Chen, W. Y.: Lessons learnt from Typhoons Fitow and In-Fa: implications for improving urban flood resilience in Asian Coastal Cities, Nat. Hazards, 110, 2397–2404, https://doi.org/10.1007/s11069-021-05030-y, 2022.
Changnon, S. A.: The Historical Struggle with Floods on the Mississippi River
Basin – Impacts of Recent Floods and Lessons for Future Flood Management
and Policy, Water Int., 23, 263–271, https://doi.org/10.1080/02508069808686781, 1998.
Chen, P.: Flood impact assessment using hydrodynamic modelling in Bangkok,
Thailand, Technical Report, International Institute for Geo, https://webapps.itc.utwente.nl/librarywww/papers_2007/msc/gem/pengyu.pdf (last access: 1 June 2021), 2007.
Coupe, S. J., Faraj, A. S., Nnadi, E. O., and Charlesworth, S. M.: Integrated
Sustainable Urban Drainage Systems, Water Efficiency in Buildings: Theory
and Practice, Geology, 328, 147–163, 2013.
Crichton, D.: Towards a Comparison of Public and Private Insurance Responses
to Flooding Risks, Int. J. Water Resour. Dev., 24, 583–592, https://doi.org/10.1080/07900620801923161, 2008.
Dadson, S. J., Hall, J. W., Murgatroyd, A., Acreman, M., Bates, P., Beven, K., Heathwaite, L., Holden, J., Holman, I. P., Lane, S. N., and O'Connell, E.
M.: A restatement of the natural science evidence concerning catchment-based `natural' flood management in the UK, P. Roy. Soc. A, 473, 20160706, https://doi.org/10.1098/rspa.2016.0706, 2017.
Danh, V. T. and Mushtaq, S.: Living with floods: an evaluation of the resettlement program of the Mekong Delta of Vietnam, in: Environmental change
and agricultural sustainability in the Mekong Delta, Springer, 181–204, https://doi.org/10.1007/978-94-007-0934-8_11, 2011.
DCLG: Development and Flood Risk: A practice guide companion to PPS25
`Living Draft', Crown Copyright London, https://www.thenbs.com/PublicationIndex/documents/details?Pub=DCLG&DocID=281569 (last access: 2 July 2021), 2007.
DCLG: National Planning Policy Framework, Crown Copyright London, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1005759/NPPF_July_2021.pdf (last access: 2 July 2021), 2012.
De Bruijn, K. M., Green, C., Johnson, C., McFadden, I., Begum, S., and Stive,
M. J. F.: Flood risk management in Europe. Innovation in policy and practice,
Springer, the Netherlands, ISBN 978-1-4020-4199-0 (HB), 2007.
Defra: Making Space for Water: Taking Forward a New Government Strategy for
Flood & Coastal Erosion Risk Management Encouraging and Incentivising Increased Resilience to Flooding, https://flooding.london/jrp/mswdp.pdf (last access: 31 July 2021), 2007.
Defra: Surface Water Management Plan Technical Guidance, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69342/pb13546-swmp-guidance-100319.pdf (last access: 2 July 2021), 2010.
Eckert, R. and Huynh, L. H. C.: Climate Responsive Neighbourhoods for HCMC:
Compact City vs. Urban Landscape, in: Sustainable Ho Chi Minh City: Climate
Policies for Emerging Mega Cities, Springer International Publishing, ISBN 978-3-319-04614-3, 2016.
Environment Agency.: Flood risk mapping from Rivers and Sea, Environment
Agency, London, UK, https://www.gov.uk/check-flooding (last access: 31 July 2021), 2014a.
Environment Agency.: Live Flood Warning Map, Environment Agency, London,
UK, https://check-for-flooding.service.gov.uk/ (last access: 31 July 2021), 2014b.
Environment Agency.: Risk of Flooding from Surface Water, Environment Agency,
London, UK, https://www.gov.uk/government/news/surface-water-the-biggest-flood-risk-of-all (last access: 31 July 2021), 2014c.
Environmental Protection Agency: Flood Resilience – A Basic Guide for Water and Wastewater Utilities, Office of Water, USA, https://www.epa.gov/sites/default/files/2015-08/documents/flood_resilience_guide.pdf (last access: 13 May 2021), 2014.
EU – European Parliament: Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (Text with EEA relevance), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060 (last access: 14 May 2021), 2007.
Evans, E., Hall, J., Penning-Rowsell, E., Sayers, P., Thorne, C., Watkinson,
A.: Future flood risk management in the UK, Water Manage., 159, 53–61, https://doi.org/10.1680/wama.2006.159.1.53, 2006.
Evans, E. P., Ashley, R., Hall, J. W., Penning-Rowsell, E. P., Saul, A., Sayers, P. B., Thorne, C. R., and Watkinson, A.: Foresight Future Flooding,
Scientific Summary, in: Volume 1: Future Risks and their Drivers, https://www.thenbs.com/PublicationIndex/documents/details?Pub=DTI&DocID=304103 (last access: 5 April 2021), 2004.
Fan, J. and Huang, G.: Evaluation of Flood Risk Management in Japan through a Recent Case, Sustainability, 12, 5357, https://doi.org/10.3390/su12135357, 2020.
Fleming, G.: How can we learn to live with rivers? The findings of the
Institution of Civil Engineers Presidential Commission on flood-risk management, Philos. T. Roy. Soc. A, 360, 1527–1530, https://doi.org/10.1098/rsta.2002.1014, 2002.
Francesch-Huidobro, M., Dabrowski, M., Tai, Y., Chan, F., and Stead, D.:
Governance challenges of flood-prone delta cities: integrating flood risk
management and climate change in spatial planning, Progr. Plan., 114, 1–27, https://doi.org/10.1016/j.progress.2015.11.001, 2017.
Fuchs, R., Conran, M., and Louis, E.: Climate Change and Asia's Coastal Urban
Cities: Can They Meet the Challenge?, Environ. Urbaniz. Asia, 2, 13–28, https://doi.org/10.1177/097542531000200103, 2011.
Fujita, M. and Hamaguchi, N.: Japan and economic integration in East Asia:
post-disaster scenario, Ann. Reg. Sci., 48, 485–500, https://doi.org/10.1007/s00168-011-0484-y, 2012.
Galloway, G. E., Balabanis, P., Bronstert, A., Casale, R., and Samuels, P.: In Ribamod, River Basin Modeling, Management and Flood Mitigation, Concerted
Action, HR Wallingford, https://eprints.hrwallingford.com/431/1/SR551.pdf (last access: 18 July 2021), 1999.
Gerritsen, H.: What happened in 1953? The Big Flood in the Netherlands in
retrospect, Philos. T. Roy. Soc. A, 363, 1271–1291, https://doi.org/10.1098/rsta.2005.1568, 2005.
Green, C.: Competent authorities for the flood risk management plan –
reflections on flood and spatial planning in England, J. Flood Risk Manage., 10, 195–204, https://doi.org/10.1111/jfr3.12097, 2014.
Green, C. H., Tunstall, S. M., and Fordham, M. H.: The Risks from Flooding: Which Risks and Whose Perception?, Disasters, 15, 227–236, https://doi.org/10.1111/j.1467-7717.1991.tb00456.x, 1991.
Hall, J. W., Evans, E. P., Penning-Rowsell, E. C., Sayers, P. B., Thorne, C. R., and Saul, A. J.: Quantified scenarios analysis of drivers and impacts of changing flood risk in England and Wales: 2030–2100, Environ. Hazards, 5,
51–65, 2003.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfeemorlot, J.: Future flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806, 2013.
Hamin, E. M., Abunnasr, Y., and Ryan, R. L.: Planning for climate change: a reader in green infrastructure and sustainable design for resilient cities,
Routledge, New York, NY, ISBN 978-0-8153-9167-8(hbk), 2019.
Han, J., Pan, H., Zhang, G., and Sun, H.: Innovative Practice of Green
Infrastructure Planning – Example as Guangzhou Nansha New Distract Mingzhu
Bay Core Distract, Construct. Technol., 16, 47–50, 2015.
Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J.,
Herweijer, C., and Chateau, J.: A global ranking of port cities with high
exposure to climate extremes, Climatic Change, 104, 89–111, 2011.
Hey, R. D., Heritage, G. L., and Patteson, M.: Impact of flood alleviation schemes on aquatic macrophytes, Wiley Online Library, 103–119, https://doi.org/10.1002/rrr.3450090204, 1994.
Hooijer, A., Klijn, F., Pedroli, G. B. M., and Van Os, A. G.: Towards sustainable flood risk management in the Rhine and Meuse river basins: synopsis of the findings of IRMA-SPONGE, River Res. Appl., 20, 343–357, 2004.
Huang, G.: A Comparative Study on Flood Management in China and Japan,
Water, 6, 2821–2829, https://doi.org/10.3390/w6092821, 2014.
Hudson, P. F., Middelkoop, H., and Stouthamer, E.: Flood management along the
Lower Mississippi and Rhine Rivers (The Netherlands) and the continuum of
geomorphic adjustment, Geomorphology, 101, 209–236, https://doi.org/10.1016/j.geomorph.2008.07.001, 2008.
Hulme, M., Jenkins, G. J., Lu, X., Turnpenny, J. R., Mitchell, T. D., Jones,
R. G., Lowe, J., Murphy, J. M., Hassell, D., Boorman, P., McDonald, R., and Hill, S.: Climate Change Scenarios for the United Kingdom: The UKCIP02 Scientific Report, ISBN 0-902170-60-0, 2002.
Huu, P. C.: Planning and implementation of the dyke systems in the Mekong
delta, Vietnam, Pedobiologia, 54, 217–224, 2011.
Ikeda, S., Sato, T., and Fukuzono, T.: Towards an integrated management
framework for emerging disaster risks in Japan, Nat. Hazards, 44, 267–280,
2008.
Janssen, J. A. E. B.: On peaks and politics; governance analysis of flood risk management cooperation between Germany and the Netherlands, Int. J. River Basin Manage., 6, 349–355, https://doi.org/10.1080/15715124.2008.9635362, 2008.
Jha, A. K., Bloch, R., and Lamond, J.: Cities and Flooding: A Guide to
Integrated Urban Flood Risk Management for the 21st Century, The World Bank,
Washington, DC, https://openknowledge.worldbank.org/handle/10986/2241 (last access: 20 June 2021), 2012.
Ji, T., Wei, H. H., Sim, T., Yang, L. E., and Scheffran, J.: Disaggregated
validation of disaster-resilience indicators using household survey data: A
case study of Hong Kong, Sustain. Cities Soci., 67, 102726,
https://doi.org/10.1016/j.scs.2021.102726, 2021.
JICA – Japan International Cooperation Agency: The project for capacity
development of Jakarta Comprehensive Flood Management in Indonesia technical
cooperation report comprehensive flood management plan, https://openjicareport.jica.go.jp/pdf/12127122_02.pdf (last access:
20 June 2021), 2013.
Johnson, C., Penning-Rowsell, E., and Parker, D.: Natural and imposed injustices: the challenges in implementing `fair' flood risk management
policy in England, Geogr. J., 173, 374–390, https://doi.org/10.1111/j.1475-4959.2007.00256.x, 2007.
Johnson, C. L. and Priest, S. J.: Flood Risk Management in England: A Changing Landscape of Risk Responsibility?, Int. J. Water Resour. Dev., 24, 513–525, 2008.
Jongman, B., Koks, E .E., Husby, T. G., and Ward, P. J.: Increasing flood exposure in the Netherlands: implications for risk financing, Nat. Hazards
Earth Syst. Sci., 14, 1245–1255, https://doi.org/10.5194/nhess-14-1245-2014, 2014.
Jorissen, R., Kraaij, E., and Tromp, E.: Dutch flood protection policy and
measures based on risk assessment, E3S Web of Conferences, 7, 20016,
https://doi.org/10.1051/e3sconf/20160720016, 2016.
Katzschner, A., Waibel, M., Schwede, D., Katzschner, L., Schmidt, M., and
Storch, H.: Sustainable Ho Chi Minh City: Climate Policies for Emerging Mega
Cities, Springer International Publishing, Switzerland, ISBN 978-3-319-04614-3, 2016.
Keokhumcheng, Y., Tingsanchali, T., and Clemente, R. S.: Flood risk assessment in the region surrounding the Bangkok Suvarnabhumi Airport, Water
Int., 37, 201–217, https://doi.org/10.1080/02508060.2012.687868, 2012.
Klijn, F., Van Buuren, M., and Van Rooij, S. A. M.: Flood-risk management
strategies for an uncertain future: Living with rhine river floods in the
Netherlands?, Ambio, 33, 141–147, https://doi.org/10.1579/0044-7447-33.3.141, 2004.
Klijn, F., Samuels, P., and Van Os, A.: Towards flood risk management in the EU: State of affairs with examples from various European countries,
Int. J. River Basin Manage., 6, 307–321, https://doi.org/10.1080/15715124.2008.9635358, 2008.
Kreienkamp, F., Philip, S. Y., Tradowsky, J. S., Kew, S. F., Lorenz, P., Arrighi, J., Belleflamme, A., Bettmann, T., Caluwaerts, S., Chan, S. C., Ciavarella, A., Cruz, L. D., Vries, H, D., Demuth, N., Ferrone, A., Ferrone, E, M., Fowler, H, J., Goergen, K., Heinrich, D., Henrichs, Y., Lenderink, G., Kaspar, F., Nilson, E., Otto, F., Ragone, F., Seneviratne, S, I., Singh, R, K., Skålevåg, A., Termonia, P., Termonia, L., Aalst, M., Bergh, J, V., Bergh, H, V., Vannitsem, S., Oldenborgh, G, J., Schaeybroeck, B, V., Vautard, R., Vonk, D., and Wanders, N.: Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021, World Weather Attribution, https://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Western-Europe-floods-2021-attribution.pdf,
last access: 8 August 2021.
Krystian, W. P. and Nguyen, S. N.: Experience and practices on flood control in Vietnam, Water Int., 30, 114–122, https://doi.org/10.1080/02508060508691843, 2005.
Kotz, M., Levermann, A., and Wenz, L.: The effect of rainfall changes on economic production, Nature, 601, 223–227, https://doi.org/10.1038/s41586-021-04283-8, 2022.
Ku, H., Maeng, J. H., and Cho, K.: Climate change impact on typhoon-induced
surges and wind field in coastal region of South Korea, J. Wind Eng. Indust. Aerodynam., 190, 112–118, 2019.
Kundzewicz, Z. W.: Flood protection – sustainability issues, Hydrolog. Sci. J., 44, 559–571, https://doi.org/10.1080/02626669909492252, 1999.
Kundzewicz, Z. W. and Takeuchi, K.: Flood protection and management: quo
vadimus?, Hydrolog. Sci. J., 44, 417–432, https://doi.org/10.1080/02626669909492237, 1999.
Kundzewicz, Z. W., Budhakooncharoen, S., Bronstert, A., Hoff, H., Lettenmaier, D., Menzel, L., and Schulze, R.: Coping with variability and
change: Floods and droughts, Nat. Resour. Forum, 26, 263–274, https://doi.org/10.1111/1477-8947.00029, 2002.
Lamond, J. and Penning-Rowsell, E.: The robustness of flood insurance regimes given changing risk resulting from climate change, Clim. Risk Manage., 2, 1–10, 2014.
Lawson, E., Farmani, R., Woodley, E., and Butler, D.: A Resilient and Sustainable Water Sector: Barriers to the Operationalisation of Resilience, Sustainability, 12, 1797, https://doi.org/10.3390/su12051797, 2020.
Li, Y.: Protection of shanghai from flooding, MS thesis, Delft University of Technology, Delft, the Netherlands, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.874.5218&rep=rep1&type=pdf (last access: 1 March 2021), 2015.
Liao, K. H.: The socio-ecological practice of building blue-green infrastructure in high-density cities: what does the ABC Waters Program in
Singapore tell us?, Socio-Ecol. Pract. Res., 1, 67–81, 2019.
Lim, H. S. and Lu, X. X.: Sustainable urban stormwater management in the
tropics: An evaluation of Singapore's ABC Waters Program, J. Hydrol., 538, 842–862, https://doi.org/10.1016/j.jhydrol.2016.04.063, 2016.
Lim, M. C.: Drainage planning and control in the urban environment: The
Singapore experience, Environ. Monit. Assess., 44, 183–197, 1997.
Link, L. E.: The anatomy of a disaster, an overview of Hurricane Katrina and
New Orleans, Ocean Eng., 37, 4–12, https://doi.org/10.1016/j.oceaneng.2009.09.002, 2010.
Lo, A. Y. and Chan, F. K. S.: Preparing for flooding in England and Wales: the role of risk perception and the social context in driving individual action, Springer, 1–21, https://doi.org/10.1007/s11069-017-2870-y, 2017.
Longenecker, G.: HAZUS-MH Coastal Flood Module: FEMA Region IV Standard
Operating Procedure For Coastal Flood Hazard & Loss Analysis, https://www.fema.gov/flood-maps/products-tools/hazus (last access: 31 July 2021), 2008.
Lu, Y.: Impacts of Climate Change on Shanghai Flood Prevention, Shanghai
Water Engineering Design & Research Institute,
https://www.atse.org.au/Documents/International Colloboration/Workshops/Aust China Science and Tech/Climate Change/Yongjin.pdf (last access: 23 August 2017), 2010.
Lumbroso, D., Stone, K., and Vinet, F.: An assessment of flood emergency plans in England and Wales, France and the Netherlands, Nat. Hazards, 58,
341–363, 2011.
Lyu, H. M., Wang, G. F., Shen, J., Lu, L. H., and Wang, G. Q.: Analysis and
GIS mapping of flooding hazards on 10 May 2016, Guangzhou, China, Water, 8, 447, https://doi.org/10.3390/w8100447, 2016.
Maantay, J. and Maroko, A.: Mapping urban risk: Flood hazards, race, & environmental justice in New York, Appl. Geogr., 29, 111–124, https://doi.org/10.1016/j.apgeog.2008.08.002, 2009.
Meehan, R.: Thailand Floods 2011: Causes and Prospects from an Insurance
Perspective, Stanford University Footnotes 17, Stanford University, Stanford, USA, http://web.stanford.edu/~meehan/floodthai2011/FloodNotes17.pdf (last access: 2 March 2021), 2012.
Meehl, G. A., Covey, C., Taylor, K. E., Delworth, T., Stouffer, R. J., Latif,
M., McAvaney, B., and Mitchell, J. F. B.: The WCRP CMIP3 multimodel dataset: A new era in climate change research, B. Am. Meteorol. Soc., 88, 1383–1394, https://doi.org/10.1175/BAMS-88-9-1383, 2007.
Meng, M. and Dubrwoski, M.: The governance of flood risk planning in Guangzhou, China: using the past to study the present, International Planning History Society Proceedings, Delft University of Technology, the Netherlands, https://doi.org/10.7480/iphs.2016.3.1270, 2016.
Michel-Kerjan, E. and Kunreuther, H.: Redesigning Flood Insurance, Science, 333, 408–409, https://doi.org/10.1126/science.1202616, 2011.
MLIT: Kasen Kankyo no Seibi, Hozen no Torikumi [An approach to the
maintenance and keep up of river environments], in: Ministry of Land, I.,
Transport and Tourism, Tokyo, 2008.
MLIT: 100 mm/h Safety Plan, https://www.mlit.go.jp/common/001011616.pdf (last access: 1 August 2021), 2013.
MILT: The 2018 amendment of the Act on Special Measures concerning Urban
Reconstruction, http://www.mlit.go.jp/toshi/common/001283640.pdf (last access: 1 July 2021), 2018.
Mitchell, G.: Mapping hazard from urban non-point pollution: a screening
model to support sustainable urban drainage planning, J. Environ. Manage., 74, 1–9, https://doi.org/10.1016/j.jenvman.2004.08.002, 2005.
Morse, S.: Post-sustainable development, Sustain. Dev., 16, 341–352, https://doi.org/10.1002/sd.354, 2008.
National Association of Insurance Commissioners and the Center for Insurance
Policy and Research.: Flood Risk and Insurance, https://www.naic.org/documents/cipr_study_1704_flood_risk.pdf (last access: 5 August 2019), 2017.
National Weather Service: Weather-Related Fatality and Injury Statistics,
https://www.weather.gov/hazstats (last access: 5 August 2019), 2018.
Nguyen, M. T., Sebesvari, Z., Souvignet, M., Bachofer, F., Braun, A., Garschagen, M., Schinkel, U., Yang, L. E., Nguyen, L. H., Hochschild, V.,
Assmann, A., and Hagenlocher, M.: Understanding and assessing flood risk in
Vietnam: Current status, persisting gaps, and future directions, J. Flood Risk Manage., 14, e12689, https://doi.org/10.1111/jfr3.12689, 2021.
Nicholls, R. J.: Planning for the impacts of sea-level rise, Oceanography, 24, 144–157, 2011.
Niedoroda, A. W., Resio, D. T., Toro, G. R., Divoky, D., Das, H. S., and Reed, C. W.: Analysis of the coastal Mississippi storm surge hazard, Ocean Eng., 37, 82–90, https://doi.org/10.1016/j.oceaneng.2009.08.019, 2010.
NOAA – National Oceanic and Atmospheric Administration.: 2018's Billion Dollar Disasters in Context, https://www.climate.gov/news-features/blogs/beyond-data/2018s-billion-dollar-disasters-context, last access: 5 August 2019.
OECD: OECD Studies in Risk Management Japan-Floods, https://www.oecd.org/japan/37378001.pdf (last acess: 1 July 2021), 2006.
Parker, D. and Fordham, M.: An evaluation of flood forecasting, warning and
response systems in the European Union, Water Resour. Manage., 10, 279–302, 1996.
Pearce, D., Hamilton, K., and Atkinson, G.: Measuring sustainable development: progress on indicators, in: Cambridge Journals Online, Cambridge University Press, 85–101, https://doi.org/10.1017/S1355770X00000395, 1996.
Penning-Rowsell, E., Johnson, C., and Tunstall, S.: `Signals' from pre-crisis
discourse: Lessons from UK flooding for global environmental policy change?,
Global Environ. Change, 16, 323–339, https://doi.org/10.1016/j.gloenvcha.2006.01.006, 2006.
Penning-Rowsell, E. C. and Chatterton, J. B.: The Benefits of Flood Alleviation: A Manual of Assessment Techniques (The Blue Manual), Saxon House, Farnborough, UK, ISBN 056600190X 9780566001901, 1977.
Penning-Rowsell, E. C. and Green, C.: New Insights into the Appraisal of
Flood-Alleviation Benefits: (1) Flood Damage and Flood Loss Information,
Water Environ. J., 14, 347–353, https://doi.org/10.1111/j.1747-6593.2000.tb00272.x, 2000.
Phamornpol, K.: Flood Mitigation and Management in Bangkok Metropolitan Area,
Department of Drainage and Sewerage Bangkok Metropolitan Administration,
http://www.unescap.org/sites/default/files/S3b4_Thailand.pdf (last access: 23 August 2017), 2011.
Pitt, M.: Learning lessons from the 2007 floods, Final Report, The Cabinet
Office, London, UK, http://cip.management.dal.ca/publications/Pitt Review.pdf (last access: 20 June 2021), 2008.
Plate, E. J.: Flood risk and flood management, J. Hydrol., 267, 2–11, https://doi.org/10.1016/S0022-1694(02)00135-X, 2002.
Poaponsakorn, N., Meethom, P., and Pantakua, K.: The Impact of the 2011 Floods, and Flood Management on Thai Households, in: Resilience and Recovery in Asian Disasters, Springer, Japan, https://doi.org/0.1007/978-4-431-55022-8_5, 2015.
Porter, J. and Demeritt, D.: Flood-risk management, mapping, and planning:
theÿinstitutional politics of decision support in England, Environ.
Plan. A, 44, 2359–2378, https://doi.org/10.1068/a44660, 2012.
Rosenzweig, C. and Solecki, W.: Hurricane Sandy and adaptation pathways in New York: Lessons from a first-responder city, Global Environ. Change, 28,
395–408, https://doi.org/10.1016/j.gloenvcha.2014.05.003, 2014.
Samuels, P.: A European perspective on current challenges in the analysis of
iland flood risks, in: Flood risk management: hazards, vulnerability and mitigation measures, Springer, 21–34, https://doi.org/10.1007/978-1-4020-4598-1_2, 2006.
Schanze, J.: Flood risk management – a basic framework In Flood risk
management: hazards, vulnerability and mitigation measures, Springer, 1–20, https://doi.org/10.1007/978-1-4020-4598-1_1, 2006.
Schanze, J., Zeman, E., and Marsalek, J.: Flood Risk Management, in: Hazards,
Vulnerability, Mitigation Measures, Springer Science & Business Media,
ISBN 1-4020-4597-2(PB), 2005.
Scott, M., White, I., Kuhlicke, C., Steinführer, A., Sultana, P., Thompson, P., Minnery, J., O'Neill, E., Cooper, J., Adamson, M., and Russell,
E.: Living with flood risk/The more we know, the more we know we don't know:
Reflections on a decade of planning, flood risk management and false
precision/Searching for resilience or building social capacities for flood
risks?/Participatory floodplain management: Lessons from Bangladesh/Planning
and retrofitting for floods: Insights from Australia/Neighbourhood design
considerations in flood risk management/Flood risk management – Challenges to the effective implementation of a paradigm shift, Plan. Theory Pract., 14, 103–140, 2013.
Sneddon, C. and Fox, C.: Rethinking transboundary waters: A critical
hydropolitics of the Mekong basin, Polit. Geogr., 25, 181–202,
https://doi.org/10.1016/j.polgeo.2005.11.002, 2006.
Storch, H. and Downes, N. K.: A scenario-based approach to assess Ho Chi Minh
City's urban development strategies against the impact of climate change,
Cities, 28, 517–526, https://doi.org/10.1016/j.cities.2011.07.002, 2011.
Supachai, T.: Bangkok Climate Resilience, Resilient Cities Asia Pacific 2016,
Melaka, Thailand, 2016.
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., Vorosmarty, C., Saito, Y., Giosan, L., and Nicholls, R. J.: Sinking deltas due to human activities, Nat. Geosci., 2, 681–686, 2009.
Takahasi, Y.: History of Water Management in Japan from the End of World War II, Int. J. Water Resour. Dev., 25, 547–553, https://doi.org/10.1080/07900620903274091, 2009.
1
Takeuchi, K.: Analyses of the flow regime of the Chao Phraya River, Hydrology
of Warm Humid Regions, IAHS Publ., 216, 1–10, 1993.
Ten Brinke, W. B. M. and Bannink, B. A.: Dutch Dikes and Risk Hikes. A Thematic Policy Evaluation of Risks of Flooding in The Netherlands, ISBN 978-1-4398-3351-3, 2004.
Terry, J. P., Winspear, N., and Cuong, T. Q.: The `terrific Tongking typhoon' of October 1881 implications for the Red River Delta (northern Vietnam) in
modern times, Weather, 67, 72–75, https://doi.org/10.1002/wea.882, 2012.
Texier, P.: Floods in Jakarta: when the extreme reveals daily structural
constraints and mismanagement, Disast. Prevent. Manage., 17, 358–372, 2008.
Thorne, C.: Geographies of UK flooding in 2013/4, Geogr. J., 180, 297–309, https://doi.org/10.1111/geoj.12122, 2014.
Timmeren, V. A., Bacchin, T. K., and Aires, C.: Green Blue Infrastructures:
Overview of Smart Spatial Strategies Worldwide, in: 13th international
conference on urban drainage, 7–12 September 2014, Sarawak, Malaysia, 2014.
Tol, R. S. J., Van Der Grijp, N., Olsthoorn, A. A., and Van Der Werff, P. E.:
Adapting to Climate: A Case Study on Riverine Flood Risks in the Netherlands, Risk Anal., 23, 575–583, https://doi.org/10.1111/1539-6924.00338, 2003.
Ueno, T.: On some problems in river administration and flood control measures fitting in the twenty-first century, Annu. Disast. Prevent. Res.: Inst.
Kyoto Univ., 45, 1–16, 2002.
UNCE: Earth Summit, Agenda 21, The United Nations Programme of Action from
Rio, https://sustainabledevelopment.un.org/content/documents/Agenda21.pdf (last access: 21 April 2021), 1992.
UNDP – United Nations Development Programme: Climate Change and Development in China, UNDP, China, http://www.undp.org/content/dam/china/docs/Publications/UNDP-CH-EE-Publications-Climate-Change-and-Development
(last access: 23 August 2017), 2012.
Vance, J. H.: Hurricane Sandy: Flood defence for financial hubs, Nature, 491,
527, https://doi.org/10.1038/491527a, 2012.
Van der Brugge, R., Rotmans, J., and Loorbach, D.: The transition in Dutch water management, Reg. Environ. Change, 5, 164–176, https://doi.org/10.1007/s10113-004-0086-7, 2005.
Van Stokkom, H. T. C., Smits, A. J. M., and Leuven, R. S. E. W.: Flood Defense in The Netherlands – A New Era, a New Approach, Water Int., 30, 76–87, https://doi.org/10.1080/02508060508691839, 2005.
Van Stokkom, H. T. C. and Witter, J. V.: Implementing integrated flood risk and land-use management strategies in developed deltaic regions, exemplified by The Netherlands, Int. J. River Basin Manage., 6, 331–338, https://doi.org/10.1080/15715124.2008.9635360, 2008.
Vis, M., Klijn, F., De Bruijn, K. M., and Van Buuren, M.: Resilience strategies for flood risk management in the Netherlands, Int. J. River
Basin Manage., 1, 33–40, https://doi.org/10.1080/15715124.2003.9635190, 2003.
Wang, Z. Y., Hu, S., Wu, Y., and Shao, X.: Delta processes and management
strategies in China, Int. J. River Basin Manage., 1, 173–184, 2003.
Wannewitz, M. and Garschagen, M.: Review article: Mapping the adaptation solution space – lessons from Jakarta, Nat. Hazards Earth Syst. Sci., 21, 3285–3322, https://doi.org/10.5194/nhess-21-3285-2021, 2021.
Water Resource Management Strategic Committee: Master Plan on Water Resource Management, National Economic and Social Development Board,
http://www.boi.go.th/upload/water_flood_th_master_0212_eng_98335.pdf
(last access: 23 August 2017), 2012.
Webster, P. J.: Myanmar's deadly daffodil, Nat. Geosci., 1, 488–490, 2008.
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H.-R.: Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment, Science, 309, 1844–1846, https://doi.org/10.1126/science.1116448, 2005.
Wesselink, A. J., Bijker, W. E., de Vriend, H. J., and Krol, M. S.: Dutch Dealings with the Delta, Nat. Cult., 2, 188–209, https://doi.org/10.3167/nc.2007.020206, 2007.
WHO – World Health Organization: Emergency Situation Report #6.19
February, http://www.who.int/hac/crises/idn/sitreps/indonesia_flooj2ds_jakarta_province_19feb2007.pdf?ua=1 (last access: 19 August 2017), 2007.
Wind, H. G., Nierop, T. M., de Blois, C. J., and de Kok, J. L.: Analysis of flood damages from the 1993 and 1995 Meuse Floods, Water Resour. Res., 35,
3459–3465, https://doi.org/10.1029/1999WR900192, 1999.
Wong, K. K. and Zhao, X.: Living with floods: victims' perceptions in Beijing, Guangdong, China, Area, 33, 190–201, 2001.
World Bank: Project Information Document and Report NO. AB4043, http://documents.worldbank.org/curated/en/911741468040156450/pdf/PID0JEDI1concept0stage.pdf
(last access: 19 August 2017), 2009.
Wright, J. M.: The Nation's Response to Flood Disasters: A Historical
Account, Association of State Floodplain Managers, Madison, WI,
https://www.floods.org/PDF/hist_fpm.pdf (last access: 5 August 2019), 2000.
Xiao, Y., Wan, J., and Hewings, G. J. D.: Flooding and the Midwest economy:
assessing the Midwest floods of 1993 and 2008, GeoJ., 78, 245–258, 2011.
Yang, L., Lü, Y., and Zheng, H.: Review on the research of urban land
carrying capacity, Prog. Geogr., 29, 593–600, 2010.
Yang, L., Scheffran, J., Qin, L., and You, Q.: Climate-related flood risks and urban responses in the Pearl River Delta, China, Reg. Environ. Change, 15, 379–391, 2015.
Yang, L. E.: Managing water-related vulnerability and resilience of urban
communities in the Pearl River Delta, in: Climate Change, Security Risks, and Violent Conflicts: Essays from Integrated Climate Research in Hamburg, edited by: Brzoska, M. and Scheffran, J., Hamburg University Press, 121–141, ISBN 978-3-943423-81-5, 2020.
Yang, L. E., Scheffran, J., Süsser, D., Dawson, R., and Chen, Y. D.:
Assessment of Flood Losses with Household Responses: Agent-Based Simulation in an Urban Catchment Area, Environ. Model. Assess., 23, 369–388, 2018.
Yang, L. E., Bork, H. R., Fang, X., and Mischke, S.: Socio-Environmental Dynamics along the Historical Silk Road, Springer, Cham, Switzerland, p. 525, https://doi.org/10.1007/978-3-030-00728-7, 2019.
Yang, L. E., Chen, J., Geng, J., Fang, Y., and Yang, W.: Social resilience and its scale effects along the historical Tea-Horse Road, Environ. Res. Lett., 16, 045001, https://doi.org/10.1088/1748-9326/abea35, 2021.
Yang, M., Sang, Y.-F., Sivakumar, B., Ka Shun Chan, F., and Pan, X.: Challenges in urban stormwater management in Chinese cities: A hydrologic perspective, J. Hydrol., 591, 125314, https://doi.org/10.1016/j.jhydrol.2020.125314, 2020.
Yin, J., Ye, M., Yin, Z., and Xu, S.: A review of advances in urban flood
risk analysis over China, Stoch. Environ. Res. Risk A., 29, 1063–1070, 2015.
Yuan, Y., Xu, Y. S., and Arulrajah, A.: Sustainable measures for mitigation of flooding hazards: a case study in Shanghai, China, Water, 9, 310,
https://doi.org/10.3390/w9050310, 2017.
Zhai, G., Sato, T., Fukuzono, T., Ikeda, S., and Yoshida, K.: Willingness to pay for flood risk reduction and its determinants in Japan, J. Am. Water Resour. Assoc., 42, 927–940, https://doi.org/10.1111/j.1752-1688.2006.tb04505.x, 2006.
Zhou, Z., Liu, S., Zhong, G., and Cai, Y.: Flood disaster and flood control
measurements in shanghai, Nat. Hazards Rev., 18, B5016001, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000213, 2016.
Zou, D.: The understanding of urban planning strategies in the Republic of
China of Guangzhou, Planners, 122–125, https://kns.cnki.net/KXReader/Detail?invoice=GT8Pitx6EEcUEJ (last access: 15 July 2021), 2012.
Short summary
Sustainable flood risk management (SFRM) has become popular since the 1980s. This study examines the past and present flood management experiences in four developed countries (UK, the Netherlands, USA, and Japan) that have frequently suffered floods. We analysed ways towards SFRM among Asian coastal cities, which are still reliant on a hard-engineering approach that is insufficient to reduce future flood risk. We recommend stakeholders adopt mixed options to undertake SFRM practices.
Sustainable flood risk management (SFRM) has become popular since the 1980s. This study examines...
Special issue
Altmetrics
Final-revised paper
Preprint