Articles | Volume 21, issue 2
Nat. Hazards Earth Syst. Sci., 21, 559–575, 2021
https://doi.org/10.5194/nhess-21-559-2021
Nat. Hazards Earth Syst. Sci., 21, 559–575, 2021
https://doi.org/10.5194/nhess-21-559-2021

Research article 05 Feb 2021

Research article | 05 Feb 2021

Simulating historical flood events at the continental scale: observational validation of a large-scale hydrodynamic model

Oliver E. J. Wing et al.

Related authors

Design flood estimation for global river networks based on machine learning models
Gang Zhao, Paul Bates, Jeffrey Neal, and Bo Pang
Hydrol. Earth Syst. Sci., 25, 5981–5999, https://doi.org/10.5194/hess-25-5981-2021,https://doi.org/10.5194/hess-25-5981-2021, 2021
Short summary
Global flood exposure from different sized rivers
Mark V. Bernhofen, Mark A. Trigg, P. Andrew Sleigh, Christopher C. Sampson, and Andrew M. Smith
Nat. Hazards Earth Syst. Sci., 21, 2829–2847, https://doi.org/10.5194/nhess-21-2829-2021,https://doi.org/10.5194/nhess-21-2829-2021, 2021
Short summary
Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021,https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
LISFLOOD-FP 8.0: the new discontinuous Galerkin shallow-water solver for multi-core CPUs and GPUs
James Shaw, Georges Kesserwani, Jeffrey Neal, Paul Bates, and Mohammad Kazem Sharifian
Geosci. Model Dev., 14, 3577–3602, https://doi.org/10.5194/gmd-14-3577-2021,https://doi.org/10.5194/gmd-14-3577-2021, 2021
Short summary
Assessing flooding impact to riverine bridges: an integrated analysis
Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-375,https://doi.org/10.5194/nhess-2020-375, 2020
Preprint under review for NHESS
Short summary

Related subject area

Hydrological Hazards
Modeling of a compound flood induced by the levee breach at Qianbujing Creek, Shanghai, during Typhoon Fitow
Yuhan Yang, Jie Yin, Weiguo Zhang, Yan Zhang, Yi Lu, Yufan Liu, Aoyue Xiao, Yunxiao Wang, and Wenming Song
Nat. Hazards Earth Syst. Sci., 21, 3563–3572, https://doi.org/10.5194/nhess-21-3563-2021,https://doi.org/10.5194/nhess-21-3563-2021, 2021
Short summary
Improving flood damage assessments in data-scarce areas by retrieval of building characteristics through UAV image segmentation and machine learning – a case study of the 2019 floods in southern Malawi
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021,https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Assessment of direct economic losses of flood disasters based on spatial valuation of land use and quantification of vulnerabilities: a case study on the 2014 flood in Lishui city of China
Haixia Zhang, Weihua Fang, Hua Zhang, and Lu Yu
Nat. Hazards Earth Syst. Sci., 21, 3161–3174, https://doi.org/10.5194/nhess-21-3161-2021,https://doi.org/10.5194/nhess-21-3161-2021, 2021
Short summary
Evaluating integrated water management strategies to inform hydrological drought mitigation
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021,https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Global riverine flood risk – how do hydrogeomorphic floodplain maps compare to flood hazard maps?
Sara Lindersson, Luigia Brandimarte, Johanna Mård, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021,https://doi.org/10.5194/nhess-21-2921-2021, 2021
Short summary

Cited articles

Adams, T. E., Chen, S., and Dymond, R., Results from operational hydrologic forecasts using the NOAA/NWS OHRFC Ohio river community HEC-RAS model, J. Hydrol. Eng., 23, 04018028, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001663, 2018. 
Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., and Feyen, L.: Advances in pan-European flood hazard mapping, Hydrol. Process., 28, 4067–4077, https://doi.org/10.1002/hyp.9947, 2014. 
Altenau, E. H., Pavelsky, T. M., Moller, D., Lion, C., Pitcher, L. H., Allen, G. H., Bates, P. D., Calmant, S., Durand, M., and Smith, L. C.: AirSWOT measurements of river water surface elevation and slope: Tanana River, AK, Geophys. Res. Lett., 44, 181–189, https://doi.org/10.1002/2016GL071577, 2017a. 
Altenau, E. H., Pavelsky, T. M., Bates, P. D., and Neal, J. C.: The effects of spatial resolution and dimensionality on modeling regional-scale hydraulics in a multichannel river, Water Resour. Res., 53, 1683–1701, https://doi.org/10.1002/2016WR019396, 2017b. 
Apel, H., Aronica, G. T., Kreibich, H., and Thieken, A. H., Flood risk analyses – how detailed do we need to be?, Nat. Hazards, 49, 77–98, https://doi.org/10.1007/s11069-008-9277-8, 2009. 
Download
Short summary
Global flood models are difficult to validate. They generally output theoretical flood events of a given probability rather than an observed event that they can be tested against. Here, we adapt a US-wide flood model to enable the rapid simulation of historical flood events in order to more robustly understand model biases. For 35 flood events, we highlight the challenges of model validation amidst observational data errors yet evidence the increasing skill of large-scale models.
Altmetrics
Final-revised paper
Preprint