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Abstract. Continental–global-scale flood hazard models
simulate design floods, i.e. theoretical flood events of a given
probability. Since they output phenomena unobservable in
reality, large-scale models are typically compared to more lo-
calised engineering models to evidence their accuracy. How-
ever, both types of model may share the same biases and
so not validly illustrate their predictive skill. Here, we adapt
an existing continental-scale design flood framework of the
contiguous US to simulate historical flood events. A total of
35 discrete events are modelled and compared to observa-
tions of flood extent, water level, and inundated buildings.
Model performance was highly variable, depending on the
flood event chosen and validation data used. While all events
were accurately replicated in terms of flood extent, some
modelled water levels deviated substantially from those mea-
sured in the field. Despite this, the model generally replicated
the observed flood events in the context of terrain data verti-
cal accuracy, extreme discharge measurement uncertainties,
and observational field data errors. This analysis highlights
the continually improving fidelity of large-scale flood haz-
ard models, yet also evidences the need for considerable ad-
vances in the accuracy of routinely collected field and high-
river flow data in order to interrogate flood inundation mod-
els more comprehensively.

1 Introduction

The severity of riverine flood hazards is principally under-
stood through inundation modelling. Few stretches of river

contain enough observations of their flood behaviour to ad-
equately characterise the hazard they pose alone. Instead,
these limited observations are used to drive physical mod-
els to produce synthetic realisations of flooding. The output
of these models is typically a series of flood maps with a de-
fined probability of occurrence which, when intersected with
socio-economic data, can be used to estimate the frequency at
which people and property may be exposed to flood hazards.
Such models form the cornerstone of national flood risk man-
agement frameworks, which guide planning decisions and in-
vestment in mitigatory actions.

The gold standard approach to building accurate flood
models locally is from the ground up by hydraulic engineers,
who principally use in situ river flow measurements, sur-
veyed channel bathymetry, high-resolution terrain data, and
the incorporation of local drainage and protection features.
Scaling this local modelling approach up to obtain nation-
wide views of flood hazard therefore requires the building
of many thousands of hydraulic models covering every river
basin in the country. Even for the world’s wealthiest coun-
tries, this poses a formidable modelling challenge. The flood
mapping programme of the US Federal Emergency Man-
agement Agency (FEMA), for instance, has required over
USD 10 billion of public funding over ∼ 50 years, yet it has
only modelled one-third of US river reaches to date (Associ-
ation of State Floodplain Managers, 2020).

In response to this dearth of flood hazard information at
large spatial scales, researchers have built hydraulic mod-
els with domains covering vast regions or even the globe
(Alfieri et al., 2014; Dottori et al., 2016; Hattermann et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.



560 O. E. J. Wing et al.: Simulating historical flood events at the continental scale

2018; Sampson et al., 2015; Wing et al., 2017; Winsemius
et al., 2013; Yamazaki et al., 2011). These models sacrifice
some local accuracy compared to the traditional engineer-
ing approach but benefit from complete spatial coverage and
the ability to be re-run as climatic and landscape conditions
change, all within reasonable timescale and resource limits.
One question that remains to be answered in this field of en-
quiry regards how much local accuracy is lost.

To answer it, these large-scale inundation models must
be validated, but two critical barriers prevent this from tak-
ing place routinely and rigorously. Firstly, design flood maps
of this nature do not represent something observable in re-
ality. The 100-year flood, for instance, is not a tangible
phenomenon, since real flood events do not have spatially
static return periods. In producing something theoretical, it
is impossible to validate it against something real. Model-
to-model comparisons – where one model is deemed to be
suitably accurate so as to be the benchmark, while the other
is the one to be tested – are therefore necessitated. The sec-
ond barrier, then, is the low availability of suitable model
benchmarks. Global flood models have been compared to lo-
cal engineering flood maps in Europe and the US but only
for a small handful of river basins, inhibiting wide-area test-
ing (Dottori et al., 2016; Sampson et al., 2015; Ward et
al., 2017; Winsemius et al., 2016). Wing et al. (2017) pre-
sented a model of the contiguous US, adopting the higher-
quality hydrographic, hydrometric, terrain, and protection
data available in the US compared to available data globally.
They compared their model to FEMA’s large, yet incomplete,
database of 100-year flood maps, charting a high degree of
similarity between the large-scale model and the engineering
approach espoused by FEMA. Wing et al. (2019) furthered
this examination with statewide engineering models from the
Iowa Flood Center, coming to similar conclusions. While
these studies provide useful indications of large-scale model
accuracy, they are fundamentally limited in their characteri-
sation of skill through model intercomparisons. The bench-
mark data in these analyses may share many of the same bi-
ases (e.g. friction parameterisation, channel schematisation,
structural error, terrain data precision, and boundary condi-
tion characterisation) as the model being tested and so not
usefully describe the extent to which it is behavioural.

Model validation, rather than model intercomparison, can
only be executed through benchmarking against observa-
tions. To do so, the hydraulic models must replicate real-
world events rather than frequency-based flood maps. This
would, by proxy, enable typical applications of design flood
maps (such as planning or regulatory decisions, insurance
pricing, or emergency response) generated by such a model
to be carried out with a richer understanding of its biases.
This is common practice in event-replicating, local-scale,
engineering-grade inundation modelling studies. However,
their limited spatial scale, laborious manual set-up, and the
scarce availability of validation data result in observational
benchmarking against only a handful of real-world flood

events at most – indeed, a single test case is typical (e.g. Hall
et al., 2005; Hunter et al., 2008; Mason et al., 2003; Mat-
gen et al., 2007; Neal et al., 2009; Pappenberger et al., 2006;
Schumann et al., 2011; Stephens et al., 2012; Wood et al.,
2016). An analysis of simulation performance across a wider
variety of temporal and spatial settings would provide a
more reliable evidence case of model validity. To practicably
achieve this, it is necessary to replace the onerous manual
construction and parameterisation of local-scale models with
a consistent regional- to global-scale model-building frame-
work capable of deployment for any model domain within its
realm.

Furthermore, the replication of historical flood events has
value beyond scientific validation. While design flood maps
are useful for skilled practitioners who (mostly) understand
what the models purport to represent, the maps can seem ab-
stract and unconvincing to members of the public since they
simulate something intangible and theoretical; thus, knowl-
edge of the statistical meaning and uncertain derivation of a
design flood is required to correctly comprehend them (Bell
and Tobin, 2007; Luke et al., 2018; Sanders et al., 2020).
Producing flood maps of historical events – providing an ex-
plicit understanding of where has flooded in the past – can
aid in motivating private mitigation efforts where the risk
perception formed via a design flood map often fails to do
so (Bubeck et al., 2012; Kousky, 2017; Luke et al., 2018;
Poussin et al., 2014). As such, en masse replication of his-
torical flood events at high resolution may have value in en-
hancing risk awareness and the willingness of individuals to
take mitigatory action.

In this paper, we adapt the existing continental-scale de-
sign flood model framework of Bates et al. (2020) to repli-
cate historical flood events across the contiguous US. Flood
events are isolated from US Geological Survey (USGS)
river gauge data, which form inflow boundary conditions
to a ∼ 30 m resolution 2D hydrodynamic model. High wa-
ter mark surveys from the USGS were sourced for nine of
the simulated events which, alongside derived flood extents,
were used to validate the model. Insurance and assistance
claims were obtained for 35 flood events to further anal-
yse the model’s skill in the context of exposure. By vali-
dating against an order of magnitude greater number of his-
torical flood event observations that exist in academic liter-
ature to date, the analysis provides robust evidence of large-
scale model skill for the first time. To aid in enhancing risk
awareness amongst the US public, these flood event foot-
prints have been released on https://floodfactor.com/ (last ac-
cess: 3 February 2021), which is a free and accessible tool for
Americans to understand their flood risk. Section 2 describes
the methods behind the event replication model and the val-
idation procedures undertaken. In Sect. 3, the results of the
model validation are presented and discussed. Conclusions
are drawn in Sect. 4.
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2 Methods

2.1 USGS gauge input and event selection

USGS river gauge data were initially filtered into those rep-
resenting catchments which have an upstream area of >

10000 km2 and a record length of > 50 years. Of these, one
gauge was selected for each level eight USGS Hydrologic
Unit (i.e. HUC8), and the largest event in the record was ex-
tracted. This filtering ensured that large loss-driving events,
for which validation data were more likely to be available and
whose return periods could be more robustly estimated, were
captured. This yielded roughly 200 river gauge events, 50 of
which had suitable validation data (see Sect. 2.3). Model do-
mains of a 50× 50 km area were constructed around these
50 seed gauges, and within each domain, all USGS river
gauges within it were selected (regardless of drainage area
or record length) to ensure all gauged event flows were cap-
tured. Hydrographs spanning 7 d were then extracted from
each gauge for each event, with the seed gauge peak at its
temporal centre. To account for the uncertainty due to stage
measurement error and rating curve configuration in the gen-
eration of the gauged discharges (Coxon et al., 2015; Di Bal-
dassarre and Montanari, 2009; McMillan et al., 2012), we
simulate each event three times, i.e. the reported discharges
and ±20 %, producing a 0.8*Q, 1.0*Q, and 1.2*Q model
for each event. Some of these 50 gauge events were from
the same (particularly widespread) flood event. Once si-
multaneous events were merged post-simulation, 35 discrete
flood events remained. Figure 1 illustrates the location of the
events, with additional information provided in Table A1.

2.2 Hydraulic model

The USGS river flows form the input to the First Street Foun-
dation National Flood Model (FSF-NFM) built in collabora-
tion with Fathom. The model was first presented by Wing
et al. (2017), with updates specified in Bates et al. (2020),
based on the original global modelling framework of Samp-
son et al. (2015). Terrain data are based on the USGS Na-
tional Elevation Dataset (NED), with hydraulic simulations
run at the native resolution of 1 arcsec (∼ 30 m). Other lo-
cal sources of more accurate terrain data were also compiled
into the data set where available, with ∼ 30 m water surfaces
downscaled to ∼ 3 m in locations where such fine-resolution
data are present. Gesch et al. (2014) report relative vertical
errors (point-to-point accuracy; measuring random errors ex-
clusive of systematic errors), which is more relevant control
on inland flood inundation modelling accuracy than abso-
lute vertical errors, in the NED of 1.19 m. Most, but not all,
events were located in areas where the NED consists of li-
dar, with an associated point-to-point accuracy of ∼ 0.66 m
(Gesch et al., 2014). The computational hydraulic engine is
based on LISFLOOD-FP, which solves a local inertial for-
mulation of the shallow water equations in two dimensions

(Bates et al., 2010). River flows are routed through channels
defined by the USGS National Hydrography Dataset. Chan-
nels are retained as 1D sub-grid features, permitting river
widths narrower than the grid resolution (Neal et al., 2012).
Channel bathymetry is estimated based on the assumption
that they can convey the 2-year discharge, which is based on
the Smith et al. (2015) regionalised flood frequency analy-
sis (RFFA) but using USGS river gauges (Bates et al., 2020).
Ungauged river channels within each model domain prop-
agated the RFFA-derived mean annual flow instead. Flood
protection measures are implemented directly into the model,
using a database of adaptations compiled from the US Army
Corps of Engineers National Levee Database and hundreds
of other sub-national databases. For further information, in-
cluding details on the aforementioned model-to-model vali-
dation, the reader is referred to Wing et al. (2017) and Bates
et al. (2020).

2.3 Event validation

High water marks (HWMs) were obtained for nine of the
simulated events from the USGS Flood Event Viewer (https:
//stn.wim.usgs.gov/FEV/, last access: 3 February 2021).
HWMs were filtered based on (i) the presence of a nearby up-
stream river gauge, which ensured the model was only tested
on floodplains it simulated, (ii) a designation of being high
quality, and (iii) the North American Vertical Datum of 1988
(NAVD 88) being the vertical datum of the reference, consis-
tent with the model terrain data. The number of HWMs re-
tained for each event is shown in Table A1. The surveyed wa-
ter surface elevation (WSE) from each flood event was com-
pared to that of the nearest inundated pixel of the modelled
maximum inundation extent. Performance was summarised
using the following simple equations:

Error=

N∑
1
|WSEmod−WSEobs|

N
, (1)

Bias=

N∑
1

(WSEmod−WSEobs)

N
, (2)

where N is the number of HWMs, and the subscripts “mod”
and “obs” represent modelled and observed WSEs, respec-
tively. Error indicates the absolute deviation of the modelled
WSE from the observed WSE, i.e. on average, what is the
magnitude of model prediction error? This is commonly re-
ferred to as the mean absolute error (MAE), which is less sen-
sitive to outliers than the root mean squared error (RMSE).
Bias illustrates whether the modelled WSEs are generally
higher or lower than the observed WSE, i.e. on average, does
the model over or underpredict WSEs?

To examine model skill in the context of flood extent pre-
diction, HWMs are converted to maps of flood inundation,
in line with the methods of Watson et al. (2018). Firstly, the
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Figure 1. Geographic distribution of 35 simulated events across the contiguous US. Coloured points represent the seed gauges and the
available validation data; black outlines show the discrete event boundaries and associated IDs.

HWMs are interpolated to produce a 2D surface of WSEs
across the model domain. These are then subtracted from ter-
rain data, resulting in a grid of water depths. Values greater
than 0 m therefore fall within the flood extent. Areas of flood-
ing disconnected from the river channel are removed. To pre-
vent the generation of flood extents in areas for which there
are no relevant HWMs, inundation maps are only produced
in river basins (based on level 12 USGS Hydrologic Units)
which contain at least one HWM. These observation-based
flood extents are then compared with the extents simulated
by the model, using the critical success index (CSI) described
below:

CSI=
M1O1

M1O1+M1O0+M0O1
, (3)

where M and O refer to modelled and observed pixels, re-
spectively, and the subscripts 1 and 0 indicate whether these
pixels are wet or dry, respectively. This metric divides the
number of correctly wet pixels by the number of pixels which
are wet in either the modelled or observed data. This general
fit score, falling between 0 and 1, accounts for both over- and
under-prediction errors.

Beyond purely flood-hazard-based validation, we sourced
counts of buildings which were inundated during the sim-
ulated events. Individual Assistance (IA) and National
Flood Insurance Program (NFIP) claims data were gath-
ered from the OpenFEMA database (https://www.fema.
gov/about/reports-and-data/openfema, last access: 3 Febru-
ary 2021). For each event, the zip codes that intersected
the event inundation layer were selected, and the IA and
NFIP claims data for those zip codes were extracted from the

claims data sets for the year of the simulated event. The to-
tal number of claims (IA and NFIP) were then computed for
each of those zip codes. Meanwhile, the number of building
centroids inundated was computed for each zip code using
Microsoft Building Footprint data. Simple statistical sum-
maries of the errors are reported, including the coefficient
of determination (R2) as follows:

R2
= 1−

N∑
1

(Cobs−Cmod)
2

N∑
1

(
Cobs−Cobs

)2 , (4)

where C is the count of inundated buildings observed (obs)
in OpenFEMA data or simulated by the model (mod) across
N = 35 events. This metric, bounded between−∞ and 1, in-
dicates the predictive capabilities of the model through com-
paring the residual variance with the data variance. A perfect
model would obtain an R2 of 1, while (subjectively) accept-
able models would obtain R2 > 0.5.

3 Results and discussion

3.1 Water surface elevation comparison

The results of the HWM validation are shown in Table 1 and
visualised in Fig. 2. Biases (Eq. 2) consistently indicate a ten-
dency towards underprediction for most events, even when
simulated using 120 % of the gauged discharge. Taking the
least biased of each event’s three simulations, the mean bias
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Figure 2. Box plots of water surface elevation errors for each of the nine simulations. The 25th and 75th percentiles bound the shaded boxes
with medians within. Whiskers are set to a maximum length of 1.5 times the interquartile range beyond the upper or lower quartiles, with
outliers shown as black dots. Box shading refers to the following model discharge input: 80 % (violet), 100 % (green), and 120 % (orange)
of the gauged discharge.

comes to−0.17 m, ranging from−2.95 m for event 3 in Mis-
souri (2015) to 0.89 m for event 6 in South Carolina (2015)
– including a simulation of event 4 in Indiana (2008), with
−0.08 m. Computing errors in line with Eq. (1), which av-
erages the absolute deviation from the observed water sur-
face elevation, the most accurate of each event’s simulations
ranges from 0.31 m (event 4) to 2.95 m (event 3), with a mean
of 0.96 m. Most of the events obtain errors in line with the rel-
ative vertical accuracy of the NED, which is accurate to be-
tween 0.66 and 1.19 m, depending on the terrain data source
(Gesch et al., 2014).

Surveyed water marks are an excellent tool for validat-
ing inundation models, though they are not themselves error-
free. Numerous past studies sought to quantify uncertainties
in these observational data, finding average vertical errors in
the region of 0.3–0.5 m, though, in some cases, these can be
much higher and systematically more biased for particular

Table 1. Results of the benchmarking of nine events against sur-
veyed high water marks.

ID Bias (m) Error (m)

0.8*Q 1.0*Q 1.2*Q 0.8*Q 1.0*Q 1.2*Q

1 −0.87 −0.55 −0.17 1.31 1.13 0.96
2 −0.61 −0.39 −0.10 0.71 0.53 0.39
3 −4.27 −3.75 −2.95 4.27 3.75 2.95
4 −0.65 −0.42 −0.08 0.65 0.45 0.31
5 −1.53 −1.11 −0.70 1.53 1.12 0.74
6 0.89 1.44 2.07 1.50 1.84 2.35
7 −1.31 −0.94 −0.60 1.96 1.85 1.85
8 −1.28 −0.93 −0.59 1.28 0.97 0.66
9 0.29 1.05 1.58 1.08 1.22 1.70

Mean −0.17 0.96
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sites (Fewtrell et al., 2011; Horritt et al., 2010; Neal et al.,
2009; Schumann et al., 2007). Given these constraints, typ-
ical reach-scale hydrodynamic models of inundation events
are calibrated to < 0.4 m deviation from observations of wa-
ter surface elevation (Adams et al., 2018; Apel et al., 2009;
Bermúdez et al., 2017; Fleischmann et al., 2019; Matgen et
al., 2007; Mignot et al., 2006; Pappenberger et al., 2006;
Stephens and Bates, 2015; Rudorff et al., 2014). Commonly,
the calibration of such models is executed via maximising
some measure of fit to the benchmark data by varying the
friction parameters (e.g. Pappenberger et al., 2005). Equally,
studies have calibrated models by varying other uncertain
model features, including channel geometry (e.g. Schumann
et al., 2013), terrain data (e.g. Hawker et al., 2018), model
structure (e.g. Neal et al., 2011), or boundary conditions
(e.g. Bermúdez et al., 2017). The model in this study is es-
sentially calibrated by varying the uncertain boundary condi-
tions – though with a sparser exploration of parameter space
(i.e. only three simulations per event) than is typical – to
within similar errors found in the literature for some events,
though most events have significantly higher errors. The im-
pact of discharge uncertainty is evident in the errors of each
simulation per event. Assuming ±20 % error in the observa-
tion of flood peak stage and its translation to discharge (a
modest assessment of their uncertainties), hydraulic model
errors can increase by between 6 % and 107 % (median of
57 %). While this illustrates considerable sensitivity, differ-
ent input discharge configurations within these uncertainty
bounds failed to induce an inundation model replication of
the HWM elevations for most events.

To further contextualise the results obtained here, we anal-
yse the hydraulic plausibility of the surveyed HWMs along
selected river reaches. Figure 3a shows the profile of the
water surface elevation experienced during the 2008 event
on the Cedar River. Figure 3c shows the same but for the
Platte River event in 2019. It is clear that the HWMs pro-
duce some local water surfaces which qualitatively appear
inconsistent and implausible at the reach scale. No hydraulic
model obeying mass and momentum conservation laws could
feasibly reproduce such water surfaces. For these events, lo-
cal USGS river gauges are obtained (Cedar River – 05453520
and 05464000; Platte River – 06796000, 06801000, and
06805500), and a water surface for the considered reaches
is linearly interpolated between these. While being an unreli-
able estimate of WSE far from gauged locations, this interpo-
lated surface provides a useful indicator of how HWM WSEs
vary across the river reaches (see Fig. 3b and d). Altenau et
al. (2017a) measured water surface elevations at ∼ 100 m in-
tervals along a 90 km reach of the Tanana River, AK, using
airborne radar. The radar data, shown to be highly accurate
(±0.1 m) when compared to field measurements, illustrated
a smooth and approximately linear slope, even for a com-
plex, braided river. However, this campaign did not take place
during a flood event. Bed slopes akin to those on the Platte
River suggest that the flood wave would be quasi-kinematic,

Table 2. Results of the benchmarking of nine events against HWM-
derived flood extents.

ID Critical success index

0.8*Q 1.0*Q 1.2*Q

1 0.90 0.92 0.94
2 0.84 0.88 0.91
3 0.59 0.70 0.82
4 0.78 0.82 0.86
5 0.73 0.80 0.85
6 0.85 0.86 0.87
7 0.81 0.82 0.83
8 0.81 0.85 0.88
9 0.59 0.88 0.85

Mean 0.87

with the bed and water slope roughly parallel (Dottori et al.,
2009). A steady flow profile consistent with the observed
peaks may therefore be more appropriate than linear inter-
polation. Given the complexity of fitting a 1D steady flow
model to widespread flood observations, we do not simulate
it for the purposes of this discussion. Furthermore, incon-
sistencies in the HWM-derived water surface may often be
a question of scale, where highly granular topographic fea-
tures cause a local change in water surface that is inconsistent
with the reach-scale water levels. Notwithstanding the diffi-
culties in understanding water surfaces across a river reach
with relatively sparse 1D observations, these comparisons do
lead one to question whether the water slopes purported by
the HWMs in Fig. 3 are physically realistic. When the data
points in Fig. 3 are restricted to within 1 km of gauge loca-
tions, the HWMs deviate from the interpolated surface by
0.79 m (Cedar River) and 0.94 m (Platte River) on average.
These observational data, then, may have higher errors than
similar data reported in the wider literature, which provides
a useful context for the 0.96 m mean error obtained by the
model here.

3.2 Flood extent comparison

When examining the differences between the simulated max-
imum flood extents and those produced from interpolating
the HWMs over relevant river basins in the terrain data, the
model obtains a CSI of 0.87 on average (see Table 2). Event 3
in Missouri obtains the lowest maximum CSI of 0.82, while
the highest, of 0.94, is held by event 1 in Iowa. Optimum
simulations and their comparison to the observation-based
extents are shown in Fig. 4.

Typical reach-scale 2D inundation models generally ob-
tain CSIs of 0.7–0.8 when calibrated to air- or space-borne
imagery of flood extents (Aronica et al., 2002; Di Baldas-
sarre et al., 2009; Horritt and Bates, 2002; Pappenberger et
al., 2007; Stephens and Bates, 2015; Wood et al., 2016).
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Figure 3. Water surface profiles based on gauge and high water mark data for (a, b) the Cedar River between Cedar Falls and Waterloo, Iowa
(event 1), and (c, d) the Platte River near Omaha, Nebraska (event 5). Profiles in (a) and (c) are referenced to mean sea level, while those
in (b) and (d) adopt the interpolated gauged water surface as the vertical datum.

Where observations and their classification methods are of
high quality, CSIs of up to 0.9 can be obtained (Altenau et al.,
2017b; Bermúdez et al., 2017; Bates et al., 2006; Stephens et
al., 2012). The model here obtained CSIs of 0.8–0.9 when
benchmarked against interpolated HWMs rather than actual
2D observations of flood extent. Where HWMs are sparsely
spaced, the interpolated flood extent may not have accurately
replicated the true flood extent. Thus, while it is likely that
the model has replicated the uncertain benchmark flood ex-
tents to within error, setting a precedent for CSIs in the wider
literature can often provide misinformation. In Fig. 5, the re-
lationship between minimum WSE error and maximum CSI

for each of the nine events is compared. While a generally
intuitive negative relationship between CSI and water level
error is exhibited (Pearson’s r =−0.6), CSIs do not drasti-
cally reduce as water level errors increase. The reasons for
this seeming CSI insensitivity relate to specific characteris-
tics of each event. Events on the Congaree and Connecticut
rivers (events 6 and 9) have fairly large water level errors
in spite of excellent CSIs. This is because, in both modelled
and observed floods, the floodplain was filled up, meaning
that extent comparisons were less sensitive to model over-
prediction. These events were simulated with an overpredic-
tion bias, i.e. there was too much water on the floodplain (in
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Figure 4. Maps illustrating the similarity between modelled flood events and HWM-derived extents in relevant hydrologic unit code
(HUC) 12 zones. Interior tick marks are spaced 0.25◦ (∼ 27 km) apart. Imagery sourced from © 2020 Microsoft.

three dimensions), but this made little difference to flood ex-
tent (in two dimensions). In contrast, the event on Flatrock
River (event 4), which is characterised by low WSE errors,
obtained a comparable CSI to events 6 and 9. While verti-
cal errors were small, the model did not completely repli-
cate the larger flood inundation across the low-gradient ter-
rain represented by the benchmark flood extent for event 4.

Even the event on Meramec River (event 3) obtained a CSI il-
lustrative of high performance, despite very high water level
errors. This particular flood was large in magnitude, mean-
ing that the reward for capturing the numerous inundated ar-
eas overshadowed the penalisation for underestimating the
flood edge. In the vertical plane, however, the Meramec River
event simulation is shown to significantly underpredict wa-
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Figure 5. The relationship between the WSE error and flood extent CSI for the nine events. Numbered crosses refer to the ID of the flood
event.

ter surface elevation. Meanwhile, the model was rightly re-
warded by both metrics for correctly simulating the Iowa
2008 floods (events 1 and 2) – large floods on large rivers –
by filling up the floodplains with reasonably low water level
errors. These examinations build on the evidence provided by
Stephens et al. (2014), who noted that similar water level er-
rors can result in different CSIs, depending on the size of the
flood, the valley gradient, and the sign of model bias. Mason
et al. (2007, 2009) similarly posit that an analysis of water
height offers a way of discriminating between the equifinal
model structures that extent comparisons tend to result in.
For this analysis of a larger sample of flood events, we reaf-
firm their conclusions that CSIs cannot be easily compared
for events of different natures, and that a comparison against
water levels is a more discriminatory metric.

The extremely large underprediction errors for the Mer-
amec River flood event simulation (event 3) may be ex-
plained by its nature as a tributary of the Mississippi River
and the arbitrary nature of the geographic domains that the
automated model builder produces. Even adding 20 % to the
reported USGS discharges resulted in an underprediction of
water surface elevations by roughly 3 m. It is likely that this
flood event was primarily driven by Meramec River flows
backing up against the Mississippi River. With no Missis-
sippi River gauge within the 50 km radius of the Meramec
River seed gauge, the Mississippi River was not also in flood
during the simulation. In the absence of a correct downstream
boundary inducing a backwatering effect, the Meramec River
flood flowed freely down the Mississippi River in the simula-
tion rather than onto the Meramec River floodplain. The gen-
eral underprediction bias across most flood events is likely
explained by river gauge density. Boundary conditions are
only available in the presence of a USGS gauging station,

meaning ungauged tributaries and other lateral inflows within
the model domain were not properly accounted for. In fail-
ing to simulate the aggregation of these flows, the volume of
water within and exiting the model was likely much lower
than reality for many of the flood events, resulting in a corre-
spondingly underpredicting inundation model.

3.3 Inundated building comparison

The results after using FEMA claims data to validate the full
set of 35 events are shown in Fig. 6. Only nine events sim-
ulate the correct number of claims within the discharge un-
certainty bounds. When considering the closest match simu-
lation (of the three) in terms of inundated buildings for each
event, the mean error in the simulated counts of building in-
undation is 26 % of the observed count. The standard devia-
tion of this quantity is 132 %, reflecting the substantial scatter
evident in Fig. 6. The modelled building inundation obtains
an R2 (Eq. 4) of 0.63. In general, it appears that more catas-
trophic events (in terms of inundated buildings) are more fre-
quently underpredicted by the model, i.e. nine events under-
predict building inundation compared to three which over-
predict for events with > 500 inundated buildings. Mean-
while, less catastrophic events are seemingly systematically
overestimated, i.e. 10 events overpredict and four events un-
derpredict for events with < 500 inundated buildings. This
is perhaps explained by the nature of the validation data. The
sum of NFIP and IA claims may not account for all inundated
buildings during an event. Impacted households may obtain
assistance from local governments (with or without aid from
the federal Public Assistance programme), low-interest dis-
aster loans from the Small Business Administration, have
private insurance, or simply require no external aid – none
of which are captured by the sum of NFIP and IA claims.
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The validation data in this instance are almost certainly un-
derestimates of the true count of affected buildings; the mag-
nitude of this underestimation is unknown, though is likely
non-negligible. A total of 10 of the 18 events with < 500 ob-
served inundated buildings consist entirely of NFIP claims,
while only one of the 17 events with > 500 observed in-
undated buildings share this characteristic. This is because
IA can only be claimed when the associated event is declared
as a disaster by the president. Typically, these are larger dis-
asters which exceed the state or local government’s capacity
to respond. As such, uninsured (via the NFIP) households
impacted by these smaller events (in a risk context) who
are unable to claim IA will be uncounted in this analysis,
as they likely received assistance from other sources. Hence,
the overprediction bias for these less catastrophic events ap-
pears intuitive. Potential causes of the underprediction biases
in Fig. 6 have been highlighted previously in this section.
Difficulties in defining a downstream boundary may have in-
duced a more confined flood to be modelled than reality, and
low river gauge density may have resulted in some damage-
causing tributary floods to remain unmodelled. As for some
of the more extreme cases of underprediction, such as the
flood events in South Carolina (event 6; ∼ 10000 observed
versus ∼ 1000 modelled inundated buildings) and Kansas
(event 30; ∼ 2000 observed versus ∼ 400 modelled inun-
dated buildings), these may be explained by much of the
risk being pluvial driven. Since the rainfall component of
the Bates et al. (2020) model was not utilised here, urban,
rainfall-driven, flash flooding – which contributed to many of
the inundated buildings for these events – was not captured.

Furthermore, in Fig. 7 we can see that the model skill pur-
ported by the inundated building analysis bears little relation
to the flood elevation and extent errors for the nine events
with this information. A positive relationship would be ex-
pected in Fig. 7a, while a negative relationship would be
expected in Fig. 7b. Event 7 in Pennsylvania is one of the
least skilful events in the hazard-based analysis (WSE error
of 1.85 m; CSI of 0.83), yet it is within discharge error of
the observed inundated building count. Of course, the inun-
dated building analysis does not measure whether the correct
buildings are inundated. Instead, it tests whether the same
number of buildings are inundated in aggregate, which could
be a fortuitous balance of type I and II errors. In spite of
this, and incorporating Fig. 5 into this discussion, it is clear
that the choice of model test and the spatio-temporal set-
ting of the test holds enormous sway over how one interprets
the model’s efficacy. High water level errors may have little
impact on a model’s ability to replicate impacted buildings;
equally, inundated building counts may be highly sensitive
to small water level errors. Coupled with the inconsistency
in skill scores – of any metric – between flood events of dif-
ferent magnitudes, locations, data richness, and other char-
acteristics, it makes obtaining an objective and generalised
assessment of the US flood model employed here challeng-
ing. The likely considerable uncertainties in the data used to

Figure 6. Scatter plots illustrating the observed (NFIP and IA)
versus the modelled count of inundated buildings for each of the
35 events. Blue crosses represent the simulated count in the 1.0*Q
model, with error bars representing the range of counts between
the 0.8*Q and 1.2*Q simulations. The trend line represents a linear
polynomial fitted to the optimum of each event’s three simulations.
Descending panels are sequentially more magnified towards the ori-
gin.

interrogate the model’s skill are layered on top of this, for
instance: (i) errors against HWMs are often high, but, from
Fig. 3, we can see that these field data sometimes make lit-
tle hydraulic sense, containing errors themselves perhaps ap-
proaching those obtained by the model in many instances;
(ii) the resultant extents derived from these will share their
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Figure 7. The relationship between inundated building count errors and (a) WSE error and (b) flood extent CSI for the nine events. Numbered
crosses refer to the ID of the flood event.

biases and, particularly in areas unconstrained by HWMs,
the interpolated surface may not represent reality well; and
(iii) no reliable and integrated data exist on exact counts of
buildings impacted by flood events, meaning the assimila-
tion of NFIP and IA claims used here likely underpredict the
true value of this quantity. Whether a model is deemed good
therefore depends on what it is simulating and for what pur-
pose, in addition to considering the influence of an unknown
upper limit on the desired closeness of the match between the
model and uncertain validation data.

4 Conclusions

In this analysis, we devised a framework to construct and de-
ploy hydrodynamic models for any recorded historical flood
event in the US, with minimal manual intervention, using
the continental-scale design flood model described by Bates
et al. (2020). We obtained hydrologic field observations for
nine events simulated by this framework and recordings of
inundated buildings for 35 such events in order to examine
the skill of the model. Not unexpectedly, we find that model
skill varies considerably between events, suggesting that the
testing of flood inundation models across a spatial-scale im-
balance (i.e. benchmarking continental–global-scale models
against a handful of localised test cases) is prone to a mis-
leading evaluation of its usefulness. Previous studies sug-
gest that the continental model employed here can replicate
the extent of high-quality, local-scale models of large flood
events within error (Wing et al., 2017, 2019; Bates et al.,
2020). Similarly, this analysis illustrates the very close match
between flood extents derived from field data collected dur-
ing the flood events and the maximum flood extent simulated
by the continental model. However, we also highlight that

tests of flood extent similarity can mask large deviations be-
tween observed and simulated water surface elevation. While
all events were well replicated in terms of flood extent, water
surface elevation errors were roughly 1 m on average. Some
events adequately replicated the WSEs recorded in the HWM
data, while others were considerably underestimated. How-
ever, most event water level errors are within the relative ver-
tical errors of the terrain data employed. The impact of plau-
sible (and perhaps conservative) errors in the high flow mea-
surements used to drive the model is shown to affect its skill
substantially, yet it is also clear that other errors remain. The
insensitivity of extent comparison scores to changing water
level errors suggests that CSIs are not readily comparable
for different types of flood events; a model obtaining a CSI
of 0.8 for event A may be no more skilful (in terms of water
level error) than one which obtains a CSI of 0.6 for event B.
We reiterate here the conclusions from other bodies of work
(e.g. Mason et al., 2009; Stephens et al., 2014) which suggest
that an analysis of water surface elevations provides a more
rigorous and discriminatory test of a flood inundation model.
In the analysis of buildings inundated by the larger set of
flood events, some perfectly replicated the observed count of
buildings while others starkly deviated from this. The 26 %
mean error and an R2 of 0.63 still indicates reasonably strong
predictive skill of these quantities by the model.

A consideration of the error in the observational valida-
tion data is often overlooked when interpreting the efficacy
of a flood inundation model. If the deviation between the true
maximum water surface elevation achieved during a flood
event and that recorded from a high water mark is upwards
of 0.5 m, obtaining model-to-observation errors of less than
0.5 m would be the result of rewarding the replication of
noise. In this analysis, the magnitude of observational uncer-
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tainties is not formally examined, yet for many of the tests,
the value of the validation data was close to exhaustion, i.e.
a given benchmark was often replicated within its likely er-
ror. The HWMs did not always produce consistent water sur-
faces, interpolating between these may produce unrealistic
flood extents at some locations, and the source of inundated
building data may have undercounted the true number of im-
pacted households.

In spite of this, useful interpretations of model perfor-
mance can still be drawn from this analysis. The automated
large-scale model is capable of skilfully replicating histori-
cal flood events, though, in some circumstances, events are
poorly replicated and are generally so with an underpredic-
tion bias. This can be addressed by further developments to
the event replication framework, which include the addition
of a pluvial model component and restricting event domains
to those which contain downstream (and not just upstream)
river gauges to better represent backwatering. Furthermore,
the use of hydrological models would solve the issue of
gauge density and would also enable an estimation of future
inundation hazards, which this framework cannot presently
execute. However, the additional error induced by employing
simulated, rather than observed, discharges would need to be
considered. While these will be explored in future research,
it is also clear from this analysis that flood inundation models
can rarely be comprehensively validated when using histori-
cal data. Routinely collected terrain, boundary condition, and
validation data must improve drastically for the science in
this field to advance meaningfully. To do this, dedicated and
specialist field campaigns are required, though it should be
recognised that mobilising such a resource in time to capture
transient events safely during extreme floods will be chal-
lenging. To this end, complementary data from remote sens-
ing observations – particularly with the forthcoming launch
of the NASA Surface Water and Ocean Topography (SWOT)
mission – will necessarily play a role.
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Appendix A

Table A1. The flood events simulated in this analysis. Return periods were obtained from USGS StreamStats data.

Location Date ID Seed Return Inundated High
gauges period buildings water

(years) marks

Iowa and Cedar rivers, eastern Iowa June 2008 1 4 500 12 108 576
Des Moines and Skunk rivers, central Iowa June/July 2008 2 2 50 3964 166
Meramec River, eastern Missouri December 2015 3 1 100 454 143
Flatrock River, southern Indiana June 2008 4 1 75 3167 298
Missouri and Platte rivers, eastern Nebraska March 2019 5 8 100 5755 1023
Congaree River, central South Carolina October 2015 6 1 20 9768 230
Susquehanna River, northern Pennsylvania September 2011 7 3 150 14 123 273
Sabine River, Texas/Louisiana border March 2016 8 2 1000 5236 22
Connecticut River, New England August 2011 9 2 300 2145 482
Killbuck Creek, eastern Ohio January 2005 10 1 25 393 –
Scioto River, southern Ohio January 2005 11 1 5 351 –
Maumee River, northwestern Ohio June 2015 12 1 25 38 –
Potomac River, Maryland/West Virginia border December 2018 13 1 5 33 –
Kentucky River, central Kentucky May 2004 14 1 25 172 –
Grand River, central Michigan May 2004 15 1 5 192 –
Grand River, western Michigan April 2013 16 1 15 97 –
Mississippi River, eastern Minnesota April 2001 17 1 50 87 –
Mississippi River, southern Minnesota April 2001 18 1 75 113 –
Wisconsin River, central Wisconsin June 2008 19 1 5 871 –
Mississippi River, Iowa/Illinois border April 2001 20 1 100 543 –
Illinois River, central Illinois April 2013 21 1 75 150 –
White River, northern Arkansas May 2011 22 1 25 1231 –
Boulder Creek, northern Colorado September 2012 23 1 1000 3212 –
South Platte River, northeastern Colorado September 2013 24 1 75 349 –
Eagle Creek, southern New Mexico July 2008 25 1 100 50 –
Virgin River, southwestern Utah January 2005 26 1 150 4 –
Souris River, northern North Dakota June 2011 27 1 100 99 –
Missouri River, central North Dakota June 2011 28 1 100 2119 –
Big Sioux River, South Dakota/Iowa border June 2014 29 1 400 33 –
Verdigris River, southeastern Kansas July 2007 30 1 500 2061 –
Tar River, northeastern North Carolina October 2016 31 1 35 323 –
Ohio River, western Pennsylvania September 2004 32 1 10 10 975 –
Trinity River, northeastern Texas May 2015 33 1 50 143 –
Hudson River, eastern New York April 2011 34 1 10 1290 –
Susquehanna River, central Pennsylvania September 2004 35 1 25 1469 –
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Data availability. Historical flood events were simulated on be-
half of the First Street Foundation (https://firststreet.org/, last ac-
cess: 3 February 2021) and form part of their Flood Factor plat-
form (https://floodfactor.com/, last access: 3 February 2021). Hy-
drodynamic modelling output is available for non-commercial, aca-
demic research purposes, only upon reasonable request from the
corresponding author. USGS terrain data are available from https:
//ned.usgs.gov/ (last access: 3 February 2021) (US Geological Sur-
vey, 2021a). USGS river gauge data are available from https://
waterdata.usgs.gov/nwis (last access: 3 February 2021) (US Geo-
logical Survey, 2021b). USGS high water mark data are available
from https://stn.wim.usgs.gov/FEV/ (last access: 3 February 2021)
(US Geological Survey, 2021c). Insurance and assistance claims
are available from https://www.fema.gov/about/reports-and-data/
openfema (last access: 3 February 2021) (Federal Emergency
Management Agency, 2021). Microsoft Building Footprints are
available from https://github.com/microsoft/USBuildingFootprints
(last access: 3 February 2021) (Microsoft, 2021). USGS Stream-
Stats are available from https://streamstats.usgs.gov/ (last access:
3 February 2021) (US Geological Survey, 2021d). USGS HUC
zones are available from https://water.usgs.gov/GIS/huc.html (last
access: 3 February 2021) (US Geological Survey, 2021e). The
United States Army Corps of Engineers (USACE) National Levee
Database is available at https://levees.sec.usace.army.mil/ (last ac-
cess: 3 February 2021) (US Army Corps of Engineers, 2021). The
USGS National Hydrography Dataset is available at https://www.
usgs.gov/core-science-systems/ngp/national-hydrography (last ac-
cess: 3 February 2021) (US Geological Survey, 2021f).
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