Articles | Volume 21, issue 1
https://doi.org/10.5194/nhess-21-279-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-279-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparing an insurer's perspective on building damages with modelled damages from pan-European winter windstorm event sets: a case study from Zurich, Switzerland
Christoph Welker
GVZ Gebäudeversicherung Kanton Zürich, Zurich, Switzerland
Thomas Röösli
CORRESPONDING AUTHOR
Institute for Environmental Decisions, ETH Zurich, Zurich,
Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich,
Switzerland
David N. Bresch
Institute for Environmental Decisions, ETH Zurich, Zurich,
Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich,
Switzerland
Related authors
No articles found.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1253, https://doi.org/10.5194/egusphere-2024-1253, 2024
Short summary
Short summary
Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assessing whether these regime frequency changes are relevant for understanding climate change signals in precipitation. At least in our example application, this is not the case, i.e., regime frequency changes explain little of the projected precipitation changes.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Samuel Eberenz, Samuel Lüthi, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 393–415, https://doi.org/10.5194/nhess-21-393-2021, https://doi.org/10.5194/nhess-21-393-2021, 2021
Short summary
Short summary
Asset damage caused by tropical cyclones is often computed based on impact functions mapping wind speed to damage. However, a lack of regional impact functions can lead to a substantial bias in tropical cyclone risk estimates. Here, we present regionally calibrated impact functions, as well as global risk estimates. Our results are relevant for researchers, model developers, and practitioners in the context of global risk assessments, climate change adaptation, and physical risk disclosure.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Samuel Eberenz, Dario Stocker, Thomas Röösli, and David N. Bresch
Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, https://doi.org/10.5194/essd-12-817-2020, 2020
Short summary
Short summary
The modeling of economic disaster risk on a global scale requires high-resolution maps of exposed asset values. We have developed a generic and scalable method to downscale national asset value estimates proportional to a combination of nightlight intensity and population data. Here, we present the methodology together with an evaluation of its performance for the subnational downscaling of GDP. The resulting exposure data for 224 countries and the open-source Python code are available online.
Gabriela Aznar-Siguan and David N. Bresch
Geosci. Model Dev., 12, 3085–3097, https://doi.org/10.5194/gmd-12-3085-2019, https://doi.org/10.5194/gmd-12-3085-2019, 2019
Short summary
Short summary
The need for assessing the risk of weather events is ever increasing. In addition to quantification of risk today, the role of aggravating factors such as population growth and changing climate conditions matter too. We present the open-source software CLIMADA, which integrates hazard, exposure, and vulnerability to compute metrics to assess risk and to quantify socio-economic impact, and use it to estimate and contextualize the damage of hurricane Irma through the Caribbean in 2017.
Elisabeth Maidl, David N. Bresch, and Matthias Buchecker
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-393, https://doi.org/10.5194/nhess-2018-393, 2019
Publication in NHESS not foreseen
Short summary
Short summary
Natural hazard risk management today aims to involve all actors possibly affected by damage. Citizens are regarded as responsible actors in risk mitigation. Practitioners therefore face the challenge of building social capacity towards such a culture of risk. Research on capacity building in Alpine countries, however, so far lacks empirical evidence on individual preparedness in the common population. This study for the first time provides insights for research and practice.
Tobias Geiger, Katja Frieler, and David N. Bresch
Earth Syst. Sci. Data, 10, 185–194, https://doi.org/10.5194/essd-10-185-2018, https://doi.org/10.5194/essd-10-185-2018, 2018
Short summary
Short summary
Tropical cyclones (TCs) pose a major risk to societies worldwide but very limited data exist on their socioeconomic impacts. Here, we apply a common wind field model to comprehensively and consistently estimate the number of people and the sum of assets exposed by all TCs between 1950 and 2015. This information is crucial to assess changes in societal vulnerabilites, to calibrate TC damage functions, and to make risk data more accessible to non-experts and stakeholders.
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Risk reduction through managed retreat? Investigating enabling conditions and assessing resettlement effects on community resilience in Metro Manila
Brief communication: Lessons learned and experiences gained from building up a global survey on societal resilience to changing droughts
Regional seismic risk assessment based on ground conditions in Uzbekistan
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Simulating multi-hazard event sets for life cycle consequence analysis
Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacuation using an agent-based model – case study in the city of Iquique, Chile
Urban growth and spatial segregation increase disaster risk: Lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Factors of influence on flood risk perceptions related to Hurricane Dorian: an assessment of heuristics, time dynamics, and accuracy of risk perceptions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Current status of water-related planning for climate change adaptation in the Spree River basin, Germany
Anticipating a risky future: long short-term memory (LSTM) models for spatiotemporal extrapolation of population data in areas prone to earthquakes and tsunamis in Lima, Peru
A new regionally consistent exposure database for Central Asia: population and residential buildings
Study on seismic risk assessment model of water supply systems in mainland China
Mapping current and future flood exposure using a 5 m flood model and climate change projections
Brief communication: On the environmental impacts of the 2023 floods in Emilia-Romagna (Italy)
A regional-scale approach to assessing non-residential building, transportation and cropland exposure in Central Asia
Towards a global impact-based forecasting model for tropical cyclones
A Guide of Indicators Creation for Critical Infrastructures Resilience. Based on a Multi-criteria Framework Focusing on Optimisation Actions for Road Transport System
Identifying vulnerable populations in urban society: a case study in a flood-prone district of Wuhan, China
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Spatial accessibility of emergency medical services under inclement weather: a case study in Beijing, China
Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Estimating emergency costs for earthquakes and floods in Central Asia based on modelled losses
Compound flood impacts from Hurricane Sandy on New York City in climate-driven storylines
Regional-scale landslide risk assessment in Central Asia
Cost estimation for the monitoring instrumentation of landslide early warning systems
The role of response efficacy and self-efficacy in disaster preparedness actions for vulnerable households
Scientists as storytellers: the explanatory power of stories told about environmental crises
Dynamic Response of Pile-Slab Retaining Wall Structure under Rockfall Impact
Back analysis of a building collapse under snow and rain loads in a Mediterranean area
Between global risk reduction goals, scientific-technical capabilities and local realities: a novel modular approach for multi-risk assessment
Assessment of building damage and risk under extreme flood scenarios in Shanghai
Mangrove ecosystem properties regulate high water levels in a river delta
Analysis of flood warning and evacuation efficiency by comparing damage and life-loss estimates with real consequences related to the São Francisco tailings dam failure in Brazil
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Criteria-based visualization design for hazard maps
Low-regret climate change adaptation in coastal megacities – evaluating large-scale flood protection and small-scale rainwater detention measures for Ho Chi Minh City, Vietnam
Modeling compound flood risk and risk reduction using a globally applicable framework: a pilot in the Sofala province of Mozambique
Scenario-based multi-risk assessment from existing single-hazard vulnerability models. An application to consecutive earthquakes and tsunamis in Lima, Peru
Using machine learning algorithms to identify predictors of social vulnerability in the event of a hazard: Istanbul case study
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
Vakhitkhan Alikhanovich Ismailov, Sharofiddin Ismatullayevich Yodgorov, Akhror Sabriddinovich Khusomiddinov, Eldor Makhmadiyorovich Yadigarov, Bekzod Uktamovich Aktamov, and Shuhrat Bakhtiyorovich Avazov
Nat. Hazards Earth Syst. Sci., 24, 2133–2146, https://doi.org/10.5194/nhess-24-2133-2024, https://doi.org/10.5194/nhess-24-2133-2024, 2024
Short summary
Short summary
For the basis of seismic risk assessment, maps of seismic intensity increment and an improved map of seismic hazard have been developed, taking into account the engineering-geological conditions of the territory of Uzbekistan and the seismic characteristics of soils. For seismic risk map development, databases were created based on geographic information system platforms, allowing us to systematize and evaluate the regional distribution of information.
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024, https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Short summary
Transboundary flood risk management in the Ciliwung River basin is placed in a broader context of disaster management, environmental science, and governance. This is particularly relevant for areas of research involving the management of shared water resources, the impact of regional development on flood risk, and strategies to reduce economic losses from flooding.
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024, https://doi.org/10.5194/nhess-24-2003-2024, 2024
Short summary
Short summary
This paper proposes a quantitative storm surge risk assessment method for data-deficient regions. A coupled model is used to simulate five storm surge scenarios. Deep learning is used to extract building footprints. Economic losses are calculated by combining adjusted depth–damage functions with inundation simulation results. Zoning maps illustrate risk levels based on economic losses, aiding in disaster prevention measures to reduce losses in coastal areas.
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-82, https://doi.org/10.5194/nhess-2024-82, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history, means the data required for vulnerability evaluation by the insurance industry is scarce. A systematic literature review is conducted in this study, to determine the suitability of current, published literature for this purpose. Knowledge gaps are charted, and a representative asset-hazard taxonomy is proposed, to guide future, quantitative research.
Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, https://doi.org/10.5194/nhess-24-1871-2024, 2024
Short summary
Short summary
Drought has long posed an existential threat to society. Population growth, economic development, and the potential for more extreme and prolonged droughts due to climate change pose significant water security challenges. Better understanding the impacts and adaptive responses resulting from extreme drought can aid adaptive planning. The 2008–2015 record drought in the Colorado Basin, Texas, United States, is used as a case study to assess impacts and responses to severe drought.
Alex Dunant, Tom R. Robinson, Alexander Logan Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1374, https://doi.org/10.5194/egusphere-2024-1374, 2024
Short summary
Short summary
Our study introduces a new method using hypergraph theory to assess risks from interconnected natural hazards. Traditional models often overlook how these hazards can interact and worsen each other's effects. By applying our method to the 2015 Nepal earthquake, we successfully demonstrated its ability to predict broad damage patterns, despite slightly overestimating impacts. Being able to anticipate the effects of complex, interconnected hazards is critical for disaster preparedness.
Leandro Iannacone, Kenneth Otárola, Roberto Gentile, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/nhess-24-1721-2024, https://doi.org/10.5194/nhess-24-1721-2024, 2024
Short summary
Short summary
The paper presents a review of the available classifications for hazard interactions in a multi-hazard context, and it incorporates such classifications from a modeling perspective. The outcome is a sequential Monte Carlo approach enabling efficient simulation of multi-hazard event sets (i.e., sequences of events throughout the life cycle). These event sets can then be integrated into frameworks for the quantification of consequences for the purposes of life cycle consequence (LCCon) analysis.
Rodrigo Cienfuegos, Gonzalo Álvarez, Jorge León, Alejandro Urrutia, and Sebastián Castro
Nat. Hazards Earth Syst. Sci., 24, 1485–1500, https://doi.org/10.5194/nhess-24-1485-2024, https://doi.org/10.5194/nhess-24-1485-2024, 2024
Short summary
Short summary
This study carries out a detailed analysis of possible tsunami evacuation scenarios in the city of Iquique in Chile. Evacuation modeling and tsunami modeling are integrated, allowing for an estimation of the potential number of people that the inundation may reach under different scenarios by emulating the dynamics and behavior of the population and their decision-making regarding the starting time of the evacuation.
Cassiano Bastos Moroz and Annegret H. Thieken
EGUsphere, https://doi.org/10.5194/egusphere-2024-1188, https://doi.org/10.5194/egusphere-2024-1188, 2024
Short summary
Short summary
This paper evaluates the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The disaster impacts were largely associated with a fast urban expansion over the last three decades, with a recent occupation of risky areas. Also, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Laurine A. de Wolf, Peter J. Robinson, W. J. Wouter Botzen, Toon Haer, Jantsje M. Mol, and Jeffrey Czajkowski
Nat. Hazards Earth Syst. Sci., 24, 1303–1318, https://doi.org/10.5194/nhess-24-1303-2024, https://doi.org/10.5194/nhess-24-1303-2024, 2024
Short summary
Short summary
An understanding of flood risk perceptions may aid in improving flood risk communication. We conducted a survey among 871 coastal residents in Florida who were threatened to be flooded by Hurricane Dorian. Part of the original sample was resurveyed after Dorian failed to make landfall to investigate changes in risk perception. We find a strong influence of previous flood experience and social norms on flood risk perceptions. Furthermore, flood risk perceptions declined after the near-miss event.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
EGUsphere, https://doi.org/10.5194/egusphere-2024-758, https://doi.org/10.5194/egusphere-2024-758, 2024
Short summary
Short summary
Natural disturbances will increase in the future endangering our forests and their provision of wood, protection against natural hazards and carbon sequestration. Considering the hazard to forests by wind or fire damage together with vulnerability of carbon, it is possible to prioritize high-risk forest stands. In this study we propose a new methodological approach helping with decision-making process for climate-smart forest management.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-59, https://doi.org/10.5194/nhess-2024-59, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in water management, spatial and landscape planning in the Spree River basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this planning gap, more frequent updates of plans, a stronger focus on multifunctional measures and the adaptation of best practice examples for systematic integration of climate change impacts and adaptation are needed.
Christian Geiß, Jana Maier, Emily So, Elisabeth Schoepfer, Sven Harig, Juan Camilo Gómez Zapata, and Yue Zhu
Nat. Hazards Earth Syst. Sci., 24, 1051–1064, https://doi.org/10.5194/nhess-24-1051-2024, https://doi.org/10.5194/nhess-24-1051-2024, 2024
Short summary
Short summary
We establish a model of future geospatial population distributions to quantify the number of people living in earthquake-prone and tsunami-prone areas of Lima and Callao, Peru, for the year 2035. Areas of high earthquake intensity will experience a population growth of almost 30 %. The population in the tsunami inundation area is estimated to grow by more than 60 %. Uncovering those relations can help urban planners and policymakers to develop effective risk mitigation strategies.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Faga
Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, https://doi.org/10.5194/nhess-24-929-2024, 2024
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asian country. The population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
Tianyang Yu, Banghua Lu, Hui Jiang, and Zhi Liu
Nat. Hazards Earth Syst. Sci., 24, 803–822, https://doi.org/10.5194/nhess-24-803-2024, https://doi.org/10.5194/nhess-24-803-2024, 2024
Short summary
Short summary
A basic database for seismic risk assessment of 720 urban water supply systems in mainland China is established. The parameters of the seismic risk curves of 720 cities are calculated. The seismic fragility curves of various facilities in the water supply system are given based on the logarithmic normal distribution model. The expected seismic loss and the expected loss rate index of 720 urban water supply systems in mainland China in the medium and long term are given.
Connor Darlington, Jonathan Raikes, Daniel Henstra, Jason Thistlethwaite, and Emma K. Raven
Nat. Hazards Earth Syst. Sci., 24, 699–714, https://doi.org/10.5194/nhess-24-699-2024, https://doi.org/10.5194/nhess-24-699-2024, 2024
Short summary
Short summary
The impacts of climate change on local floods require precise maps that clearly demarcate changes to flood exposure; however, most maps lack important considerations that reduce their utility in policy and decision-making. This article presents a new approach to identifying current and projected flood exposure using a 5 m model. The results highlight advancements in the mapping of flood exposure with implications for flood risk management.
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Zukhritdin Ergashev, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Fagà
Nat. Hazards Earth Syst. Sci., 24, 355–373, https://doi.org/10.5194/nhess-24-355-2024, https://doi.org/10.5194/nhess-24-355-2024, 2024
Short summary
Short summary
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can affect a wide range of assets at risk. We develop the first regionally consistent database of assets at risk for non-residential buildings, transportation and croplands in Central Asia. The database combines global and regional data sources and country-based information and supports the development of regional-scale disaster risk reduction strategies for the Central Asia region.
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
Nat. Hazards Earth Syst. Sci., 24, 309–329, https://doi.org/10.5194/nhess-24-309-2024, https://doi.org/10.5194/nhess-24-309-2024, 2024
Short summary
Short summary
We improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid, using only features which are globally available. We show that our two-stage model conserves the performance of the original and even has the potential to introduce savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
EGUsphere, https://doi.org/10.5194/egusphere-2024-204, https://doi.org/10.5194/egusphere-2024-204, 2024
Short summary
Short summary
Operationalision of “resilience” will be a major milestone contributing to hazard management for Critical infrastructures (CIs). To integrate resilience assessment into operational management, this study designs a step-by-step guide that enables users to create specific indicators to suit their particular situation. The assessment results can assist CIs managers in their decision-making as it is based on a multi-criteria framework that considers the various interests of stakeholders.
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci., 24, 179–197, https://doi.org/10.5194/nhess-24-179-2024, https://doi.org/10.5194/nhess-24-179-2024, 2024
Short summary
Short summary
Through the development of micro-individual social vulnerability indicators and cluster analysis, this study assessed the level of social vulnerability of 599 residents from 11 communities in the Hongshan District of Wuhan. The findings reveal three levels of social vulnerability: high, medium, and low. Quantitative assessments offer specific comparisons between distinct units, and the results indicate that different types of communities have significant differences in social vulnerability.
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci., 24, 145–161, https://doi.org/10.5194/nhess-24-145-2024, https://doi.org/10.5194/nhess-24-145-2024, 2024
Short summary
Short summary
Contributions to social capital, risk awareness, and preparedness constitute the parameters to test applications in disaster risk management. We propose an evaluation of four of these: mobile positioning data, social media crowdsourcing, drones, and satellite imaging. The analysis grants the opportunity to investigate how different methods to evaluate surveys' results may influence final preferences. We find that the different assumptions on which these methods rely deliver diverging results.
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024, https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of emergency medical services (EMSs) in Beijing, China, and identifying the vulnerable areas that could not get timely EMSs under inclement weather. We found that inclement weather could reduce the accessibility of EMSs by up to 40%. Furthermore, towns with lower baseline EMSs accessibility are more vulnerable when inclement weather occurs.
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
Nat. Hazards Earth Syst. Sci., 24, 79–107, https://doi.org/10.5194/nhess-24-79-2024, https://doi.org/10.5194/nhess-24-79-2024, 2024
Short summary
Short summary
This paper critically reviews disaster recovery literature from a multi-risk perspective. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, and the low consideration of disaster recovery as a non-linear process in which communities need change over time.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, Wouter Botzen, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-17, https://doi.org/10.5194/egusphere-2024-17, 2024
Short summary
Short summary
SLR will lead to more frequent flooding, and salt intrusion in coastal areas will be a major concern for farming households that are highly dependent on the soil quality for their livelihoods. In this study, we simulated the risk of SLR and flooding to coastal farmers by assessing salt intrusion risk and flood damage to buildings.
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci., 24, 53–62, https://doi.org/10.5194/nhess-24-53-2024, https://doi.org/10.5194/nhess-24-53-2024, 2024
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in central Asia, the first time that these estimates are made available for the study area and are intended to be useful for regional and local stakeholders and decision makers.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
Marta Sapena, Moritz Gamperl, Marlene Kühnl, Carolina Garcia-Londoño, John Singer, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 23, 3913–3930, https://doi.org/10.5194/nhess-23-3913-2023, https://doi.org/10.5194/nhess-23-3913-2023, 2023
Short summary
Short summary
A new approach for the deployment of landslide early warning systems (LEWSs) is proposed. We combine data-driven landslide susceptibility mapping and population maps to identify exposed locations. We estimate the cost of monitoring sensors and demonstrate that LEWSs could be installed with a budget ranging from EUR 5 to EUR 41 per person in Medellín, Colombia. We provide recommendations for stakeholders and outline the challenges and opportunities for successful LEWS implementation.
Dong Qiu, Binglin Lv, Yuepeng Cui, and Zexiong Zhan
Nat. Hazards Earth Syst. Sci., 23, 3789–3803, https://doi.org/10.5194/nhess-23-3789-2023, https://doi.org/10.5194/nhess-23-3789-2023, 2023
Short summary
Short summary
This paper divides preparedness behavior into minimal and adequate preparedness. In addition to studying the main factors that promote families' disaster preparedness, we also study the moderating effects of response efficacy and self-efficacy on preparedness actions by vulnerable families. Based on the findings of this study, policymakers can target interventions and programs that can be designed to remedy the current lack of disaster preparedness education for vulnerable families.
Jenni Barclay, Richie Robertson, and M. Teresa Armijos
Nat. Hazards Earth Syst. Sci., 23, 3603–3615, https://doi.org/10.5194/nhess-23-3603-2023, https://doi.org/10.5194/nhess-23-3603-2023, 2023
Short summary
Short summary
Stories create avenues for sharing the meanings and social implications of scientific knowledge. We explore their value when told between scientists during a volcanic eruption. They are important vehicles for understanding how risk is generated during volcanic eruptions and create new knowledge about these interactions. Stories explore how risk is negotiated when scientific information is ambiguous or uncertain, identify cause and effect, and rationalize the emotional intensity of a crisis.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2715, https://doi.org/10.5194/egusphere-2023-2715, 2023
Short summary
Short summary
This manuscript addresses to numerically analyze the dynamic responses and damage mechanism of the pile-slab retaining wall under the rockfall impacts by employing the refined finite element model. The results provide insights into structure dynamic response analysis of the PSRW and serve as a benchmark for further research.
Isabelle Ousset, Guillaume Evin, Damien Raynaud, and Thierry Faug
Nat. Hazards Earth Syst. Sci., 23, 3509–3523, https://doi.org/10.5194/nhess-23-3509-2023, https://doi.org/10.5194/nhess-23-3509-2023, 2023
Short summary
Short summary
This paper deals with an exceptional snow and rain event in a Mediterranean region of France which is usually not prone to heavy snowfall and its consequences on a particular building that collapsed completely. Independent analyses of the meteorological episode are carried out, and the response of the building to different snow and rain loads is confronted to identify the main critical factors that led to the collapse.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-142, https://doi.org/10.5194/nhess-2023-142, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
In this paper, we provide a brief introduction on the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-hazard risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructures to increase their capabilities.
Jiachang Tu, Jiahong Wen, Liang Emlyn Yang, Andrea Reimuth, Stephen S. Young, Min Zhang, Luyang Wang, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 23, 3247–3260, https://doi.org/10.5194/nhess-23-3247-2023, https://doi.org/10.5194/nhess-23-3247-2023, 2023
Short summary
Short summary
This paper evaluates the flood risk and the resulting patterns in buildings following low-probability, high-impact flood scenarios by a risk analysis chain in Shanghai. The results provide a benchmark and also a clear future for buildings with respect to flood risks in Shanghai. This study links directly to disaster risk management, e.g., the Shanghai Master Plan. We also discussed different potential adaptation options for flood risk management.
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
André Felipe Rocha Silva and Julian Cardoso Eleutério
Nat. Hazards Earth Syst. Sci., 23, 3095–3110, https://doi.org/10.5194/nhess-23-3095-2023, https://doi.org/10.5194/nhess-23-3095-2023, 2023
Short summary
Short summary
This work evaluates the application of flood consequence models through their application in a real case related to a tailings dam failure. Furthermore, we simulated the implementation of less efficient alert systems on life-loss alleviation. The results revealed that the models represented the event well and were able to estimate the relevance of implementing efficient alert systems. They highlight that their use may be an important tool for new regulations for dam safety legislation.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, and Zacharias Fasoulakis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-137, https://doi.org/10.5194/nhess-2023-137, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Central Asia is prone to earthquake losses which can impact population and assets of different types. This paper presents the details of a probabilistic earthquake model which made use of a regionally consistent approach to assess the feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed to facilitate a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Max Schneider, Fabrice Cotton, and Pia-Johanna Schweizer
Nat. Hazards Earth Syst. Sci., 23, 2505–2521, https://doi.org/10.5194/nhess-23-2505-2023, https://doi.org/10.5194/nhess-23-2505-2023, 2023
Short summary
Short summary
Hazard maps are fundamental to earthquake risk reduction, but research is missing on how to design them. We review the visualization literature to identify evidence-based criteria for color and classification schemes for hazard maps. We implement these for the German seismic hazard map, focusing on communicating four properties of seismic hazard. Our evaluation finds that the redesigned map successfully communicates seismic hazard in Germany, improving on the baseline map for two key properties.
Leon Scheiber, Christoph Gabriel David, Mazen Hoballah Jalloul, Jan Visscher, Hong Quan Nguyen, Roxana Leitold, Javier Revilla Diez, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2333–2347, https://doi.org/10.5194/nhess-23-2333-2023, https://doi.org/10.5194/nhess-23-2333-2023, 2023
Short summary
Short summary
Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam suffers from the convoluting impact of changing environmental stressors and rapid urbanization. This study assesses quantitative hydro-numerical results against the background of the low-regret paradigm for (1) a large-scale flood protection scheme as currently constructed and (2) the widespread implementation of small-scale rainwater detention as envisioned in the Chinese Sponge City Program.
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 2251–2272, https://doi.org/10.5194/nhess-23-2251-2023, https://doi.org/10.5194/nhess-23-2251-2023, 2023
Short summary
Short summary
This study presents a framework for assessing compound flood risk using hydrodynamic, impact, and statistical modeling. A pilot in Mozambique shows the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
Juan Camilo Gómez Zapata, Massimiliano Pittore, Nils Brinckmann, Juan Lizarazo-Marriaga, Sergio Medina, Nicola Tarque, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 23, 2203–2228, https://doi.org/10.5194/nhess-23-2203-2023, https://doi.org/10.5194/nhess-23-2203-2023, 2023
Short summary
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
Oya Kalaycıoğlu, Serhat Emre Akhanlı, Emin Yahya Menteşe, Mehmet Kalaycıoğlu, and Sibel Kalaycıoğlu
Nat. Hazards Earth Syst. Sci., 23, 2133–2156, https://doi.org/10.5194/nhess-23-2133-2023, https://doi.org/10.5194/nhess-23-2133-2023, 2023
Short summary
Short summary
The associations between household characteristics and hazard-related social vulnerability in Istanbul, Türkiye, were assessed using machine learning techniques. The results indicated that less educated households with no social security and job insecurity that live in squatter houses are at a higher risk of social vulnerability. We present the findings in an open-access R Shiny web application, which can serve as a guidance for identifying the target groups in the interest of risk mitigation.
Cited articles
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA v1: a global weather and climate
risk assessment platform, Geosci. Model Dev., 12, 3085–3097,
https://doi.org/10.5194/gmd-12-3085-2019, 2019a.
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA_python
documentation, https://climada-python.readthedocs.io/en/stable/ (last
access: 17 July 2019), 2019b.
Bresch, D. N.: Shaping Climate Resilient Development – Economics of Climate
Adaptation, in: Climate Change Adaptation Strategies – An Upstream-downstream Perspective, edited by: Salzmann, N., Huggel, C.,
Nussbaumer, S., and Ziervogel, G., Springer, Cham, 241–254,
https://doi.org/10.1007/978-3-319-40773-9_13, 2016.
Bresch, D. N. and Aznar-Siguan, G.: CLIMADA-python, available at:
https://github.com/CLIMADA-project/climada_python (last access: 17 July 2019), 2019a.
Bresch, D. N., Aznar Siguan, G., Bozzini, V., Bungener, R., Eberenz, S.,
Hartman, J., Mühlhofer, E., Pérus, M., Röösli, T., Sauer, I., Schmid, E., Stalhandske, Z., Steinmann C., and Stocker, D.: CLIMADA_python v1.4.1, https://doi.org/10.5905/ethz-1007-252, 2020.
Catto, J. L., Ackerley, D., Booth, J. F., Champion, A. J., Colle, B. A., Pfahl, S., Pinto, J. G., Quinting, J. F., and Seiler, C.: The future of
midlatitude cyclones, Curr. Clim. Change Rep., 5, 407–420,
https://doi.org/10.1007/s40641-019-00149-4, 2019.
City of Zurich: Zurich construction price index, available at:
https://www.stadt-zuerich.ch/prd/de/index/statistik/themen/bauen-wohnen/wohnbaupreise/zuercher-index-der-wohnbaupreise.html,
last access: 14 January 2020.
Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A.,
White, A. A., and Wood, N.: A new dynamical core for the Met Office's global
and regional modelling of the atmosphere, Q. J. Roy. Meteorol. Soc., 131,
1759–1782, https://doi.org/10.1256/qj.04.101, 2005.
Dawkins, L. C., Stephenson, D. B., Lockwood, J. F., and Maisey, P. E.: The
21st century decline in damaging European windstorms, Nat. Hazards Earth
Syst. Sci., 16, 1999–2007, https://doi.org/10.5194/nhess-16-1999-2016, 2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J. Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Della-Marta, P. M., Liniger, M. A., Appenzeller, C., Bresch, D. N., Koellner-Heck, P., and Muccione, V.: Improved estimates of the European winter windstorm climate and the risk of reinsurance loss using climate model data, J. Appl. Meteorol. Clim., 49, 2092–2120, https://doi.org/10.1175/2010JAMC2133.1, 2010.
Donat, M. G., Pardowitz, T., Leckebusch, G. C., Ulbrich, U., and Burghoff, O.: High-resolution refinement of a storm loss model and estimation of return periods of loss-intensive storms over Germany, Nat. Hazards Earth Syst. Sci., 11, 2821–2833, https://doi.org/10.5194/nhess-11-2821-2011, 2011.
Eberenz, S., Stocker, D., Röösli, T., and Bresch, D. N.: Asset exposure data for global physical risk assessment, Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, 2020.
Etienne, C. and Beniston, M.: Wind storm loss estimations in the Canton of Vaud (Western Switzerland), Nat. Hazards Earth Syst. Sci., 12, 3789–3798,
https://doi.org/10.5194/nhess-12-3789-2012, 2012.
Feuerstein, B., Groenemeijer, P., Dirksen, E., Hubrig, M., Holzer, A. M., and Dotzek, N.: Towards an improved wind speed scale and damage description adapted for Central Europe, Atmos. Res., 100, 547-564,
https://doi.org/10.1016/j.atmosres.2010.12.026, 2011.
Geiger, T., Frieler, K., and Bresch, D. N.: A global historical data set of
tropical cyclone exposure (TCE-DAT), Earth Syst. Sci. Data, 10, 185–194,
https://doi.org/10.5194/essd-10-185-2018, 2018.
Gettelman, A., Bresch, D. N., Chen, C. C., Truesdale, J. E., and Bacmeister,
J. T.: Projections of future tropical cyclone damage with a high-resolution
global climate model, Climatic Change, 146, 575–585, https://doi.org/10.1007/s10584-017-1902-7, 2018.
GIN: Platform, available at: https://www.info.gin.admin.ch/bafu_gin/en/home/gin/overview.html, last access: 19 November 2019.
GIS: Browser canton of Zurich, available at: http://web.maps.zh.ch/, last access: 18 September 2019.
GNU: Operating system, GNU General Public License, version 3, available at:
https://www.gnu.org/licenses/gpl.html (last access: 17 July 2019), 2007.
GVZ: Annual report, available at: https://www.gvz.ch/_file/1228/01111018003-web-gvz-gb2018-210x297-es-anhang.pdf (last access: 21 February 2020), 2018.
GVZ: Homepage, available at: https://www.gvz.ch/, last access: 14 January 2020.
Haas, R. and Pinto, J. G.: A combined statistical and dynamical approach for
downscaling large-scale footprints of European windstorms, Geophys. Res. Lett., 39, L23804, https://doi.org/10.1029/2012GL054014, 2012.
Heneka, P., Hofherr, T., Ruck, B., and Kottmeier, C.: Winter storm risk of
residential structures – model development and application to the German
state of Baden-Württemberg, Nat. Hazards Earth Syst. Sci., 6, 721–733,
https://doi.org/10.5194/nhess-6-721-2006, 2006.
Hersbach, H. and Dee, D.: ERA-5 reanalysis is in production, ECMWF Newsletter, Reading, UK, 2016.
Imhof, M.: Analyse langfristiger Gebäudeschadendaten, IRV – Interkantonaler Rückversicherungsverband, Bern, Switzerland, 2011.
IPCC: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A:
Global and Sectoral Aspects, in: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E.,Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P.R., and White, L. L., Cambridge University Press, Cambridge, UK, and New York, USA, 2014.
Klawa, M. and Ulbrich, U.: A model for the estimation of storm losses and the identification of severe winter storms in Germany, Nat. Hazards Earth Syst. Sci., 3, 725–732, https://doi.org/10.5194/nhess-3-725-2003, 2003.
Koks, E. E. and Haer, T.: A high-resolution wind damage model for Europe, Sci. Rep., 10, 6866, https://doi.org/10.1038/s41598-020-63580-w, 2020.
Lamb, H. H. and Frydendahl, K.: Historic storms of the North Sea, British Isles, and Northwest Europe, Cambridge University Press, Cambridge, UK, 1991.
Leckebusch, G. C., Renggli, D., and Ulbrich, U.: Development and application
of an objective storm severity measure for the Northeast Atlantic region,
Meteorol. Z., 17, 575–587, 2008.
Mitchell-Wallace, K., Jones, M., Hilier, J., and Foote, M.: Natural Catastrophe Risk Management and Modelling: A Practitioners Guide, John Wiley
and Sons Ltd, Chichester, UK, 2017.
Munich Re: Winter storms in Europe (II): Analysis of 1999 losses and loss
potentials, Munich Re, Munich, Germany, 2002.
OpenStreetMap contributors: Planet dump, available at:
https://www.openstreetmap.org (last access: 25 February 2020), 2017.
PERILS: Event loss information, available at:
https://www.perils.org/losses?year=1999&classification=&status=#event-losses,
last access: 31 January 2020.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart,
F., Laloyaux, P., Tan, D. G. H., Peubey, C., Thépaut, J.-N., Trémolet, Y., Hólm, E. V., Bonavita, M., Isaksen, L., and Fisher,
M.: ERA-20C: An atmospheric reanalysis of the Twentieth Century, J. Climate,
29, 4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, 2016.
Prahl, B. F., Rybski, D., Kropp, J. P., Burghoff, O., and Held, H.: Applying
stochastic small-scale damage functions to German winter storms, Geophys. Res. Lett., 39, L06806, https://doi.org/10.1029/2012GL050961, 2012.
Prahl, B. F., Rybski, D., Burghoff, O., and Kropp, J. P.: Comparison of storm damage functions and their performance, Nat. Hazards Earth Syst. Sci., 15, 769–788, https://doi.org/10.5194/nhess-15-769-2015, 2015.
Raible, C. C., Kleppek, S., Wüest, M., Bresch, D. N., Kitoh, A., Murakami, H., and Stocker, T. F.: Atlantic hurricanes and associated insurance loss potentials in future climate scenarios: limitations of high-resolution AGCM simulations, Tellus A, 64, 15672, https://doi.org/10.3402/tellusa.v64i0.15672, 2012.
Reguero, B. G., Bresch, D. N., Beck, M. W., Calil, J., and Meliane, I.: Coastal risks, nature-based defenses and the economics of adaptation: an
application in the Gulf of Mexico, USA, Coast. Eng. Pro., 1, 25, https://doi.org/10.9753/icce.v34.management.25, 2014.
Renggli, D. and Zimmerli, P.: Winter storms in Europe: messages from
forgotten catastrophes, Swiss Re publication 1507205_16_EN, available at:
https://media.swissre.com/documents/Swiss_Re_Winter_storms.pdf (last access: 6 February 2020), 2016.
Roberts, J. F., Champion, A. J., Dawkins, L. C., Hodges, K. I., Shaffrey, L.
C., Stephenson, D. B., Stringer, M. A., Thornton, H. E., and Youngman, B. D.: The XWS open access catalogue of extreme European windstorms from 1979 to 2012, Nat. Hazards Earth Syst. Sci., 14, 2487–2501,
https://doi.org/10.5194/nhess-14-2487-2014, 2014.
Röösli, T. and Bresch, D. N.: Probabilistic Windstorm Hazard Event Set for Europe, ETH Zurich Research Collection, ETH Zurich, Zurich,
https://doi.org/10.3929/ethz-b-000406567, 2020.
Röösli, T., Bresch, D. N., and Wüest, M.: A comparison of the
WISC events sets with both industry and research data, WISC Summary Report
of Task 5.3 – ETH/Swiss Re Case Study, ETH Zurich, Zurich,
https://doi.org/10.3929/ethz-b-000269483, 2018.
Röösli, T., Welker, C., and Bresch, D. N.: ThomasRoosli/climada_papers_winter_windstorms_model: Winter windstorm model, Zenodo, https://doi.org/10.5281/zenodo.4442602, 2021.
Scherrer, S., Salamin, C., Weusthoff, T., Kaufmann, P., Bader, S., Röösli, T., Aemisegger, N., and Gut, M.: Der Wintersturm Burglind/Eleanor in der Schweiz, Tech. Rep., Fachbericht MeteoSchweiz 268, MeteoSchweiz, Zurich, 44 pp., 2018.
Schwierz, C., Köllner-Heck, P., Zenklusen Mutter, E., Bresch, D. N., Vidale, P.-L., Wild, M., Schär, C.: Modelling European winter wind storm
losses in current and future climate, Climatic Change, 101, 485–514,
https://doi.org/10.1007/s10584-009-9712-1, 2010.
Stucki, P., Brönnimann, S., Martius, O., Welker, C., Imhof, M., von Wattenwyl, N., and Philipp, N.: A catalog of high-impact windstorms in
Switzerland since 1859, Nat. Hazards Earth Syst. Sci., 14, 2867–2882,
https://doi.org/10.5194/nhess-14-2867-2014, 2014.
Stucki, P., Brönnimann, S., Martius, O., Welker, C., Rickli, R., Dierer,
S., Bresch, D. N., Compo, G. P., and Sardeshmukh, P. D.: Dynamical downscaling and loss modeling for the reconstruction of historical weather
extremes and their impacts: A severe foehn storm in 1925, B. Am. Meteorol. Soc., 96, 1233–1241, https://doi.org/10.1175/BAMS-D-14-00041.1, 2015.
Swisstopo: Digital height model, available at:
https://shop.swisstopo.admin.ch/en/products/height_models/dhm25200, last access: 8 August 2019.
The Economics of Climate Adaptation Working Group: Shaping climate resilient
development. A framework for decision-making, joint report by ClimateWorks
Foundation, Global Environmental Facility, European Commission, McKinsey & Co., The Rockefeller Foundation, Standard Chartered Banks and SwissRe, available at:
https://ethz.ch/content/dam/ethz/special-interest/usys/ied/wcr-dam/documents/Economics_of_Climate_Adaptation_ECA.pdf#page=100
(last access: 13 January 2021), 2009.
UPSCALE: Project overview, available at: http://proj.badc.rl.ac.uk/upscale, last access: 21 February 2020.
VKG: Relative frequency of causes of damage, available at: http://www.vkg.ch/de/versicherung/rueckversicherung, last access: 25 February 2020.
Walz, M. A. and Leckebusch, G. C.: Loss potentials based on an ensemble forecast: How likely are winter windstorm losses similar to 1990?, Atmos. Sci. Lett., 20, e891, https://doi.org/10.1002/asl.891, 2019.
Welker, C. and Martius, O.: Large-scale atmospheric flow conditions and sea
surface temperatures associated with hazardous winds in Switzerland, Clim.
Dynam., 44, 1857–1869, https://doi.org/10.1007/s00382-014-2404-1, 2015.
Welker, C., Martius, O., Stucki, P., Bresch, D. N., Dierer, S., and Brönnimann, S.: Modelling economic losses of historic and present-day
high-impact winter windstorms in Switzerland, Tellus A, 68, 29546, https://doi.org/10.3402/tellusa.v68.29546, 2016.
Westcott, M., Ward, J., Surminski, S., Sayers, P., Bresch, D. N., and Claire, B.: Be Prepared: Exploring Future Climate-Related Risk for Residential and Commercial Real Estate Portfolios, J. Alternat. Invest., 23, 24–34, https://doi.org/10.3905/jai.2020.1.100, 2020.
WISC: Products, available at: https://wisc.climate.copernicus.eu/wisc/#/help/products, last access: 26 July 2019.
WISC: Hazard event set description, available at:
https://wisc.climate.copernicus.eu/wisc/documents/shared/C3S_WISC_Event Set_Description_v1.0.pdf, last access: 26 July 2019.
World Bank: Building the World Bank's Wealth Accounts: Methods and Data,
Environment and Natural Resources Global Practice, World Bank, available at:
https://development-data-hub-s3-public.s3.amazonaws.com/ddhfiles/94641/wealth-methodology-january-30-2018_4_0.pdf (last access: 14 January 2019), 2018.
Short summary
How representative are local building insurers' claims to assess winter windstorm risk? In our case study of Zurich, we use a risk model for windstorm building damages and compare three different inputs: insurance claims and historical and probabilistic windstorm datasets. We find that long-term risk is more robustly assessed based on windstorm datasets than on claims data only. Our open-access method allows European building insurers to complement their risk assessment with modelling results.
How representative are local building insurers' claims to assess winter windstorm risk? In our...
Altmetrics
Final-revised paper
Preprint