Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2379-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-21-2379-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The potential of machine learning for weather index insurance
Luigi Cesarini
CORRESPONDING AUTHOR
Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia, Pavia, 27100, Italy
Rui Figueiredo
CONSTRUCT-LESE, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
Beatrice Monteleone
Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia, Pavia, 27100, Italy
Mario L. V. Martina
Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia, Pavia, 27100, Italy
Related authors
No articles found.
Natalia Castillo Bautista, Marco Gaetani, Leonard F. Borchert, Benjamin Poschlod, Lukas Brunner, Jana Sillmann, and Mario L. V. Martina
EGUsphere, https://doi.org/10.5194/egusphere-2025-5073, https://doi.org/10.5194/egusphere-2025-5073, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
When hot temperatures and drought occur together (compound events), they can cause harmful impacts on crops and society. Using six decades of climate data, we show that such compound events repeatedly occurred in three breadbaskets of the Northern Hemisphere. These events are linked to atmospheric circulation patterns that favor heat and dryness, which in turn interact to amplify the impact. Our study contributes to understand the drivers of these events to support climate impact assessment.
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025, https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Short summary
By combining limited tsunami simulations with machine learning, we developed a fast and efficient framework to predict tsunami impacts such as wave heights and inundation depths at different coastal sites. Testing our model with historical tsunami source scenarios helped assess its reliability and broad applicability. This work enables more efficient and comprehensive tsunami hazard modelling workflow, which is essential for tsunami risk evaluations and enhancing coastal disaster preparedness.
Paola Ceresa, Gianbattista Bussi, Simona Denaro, Gabriele Coccia, Paolo Bazzurro, Mario Martina, Ettore Fagà, Carlos Avelar, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Zhanar Raimbekova, Kanatbek Abdrakhmatov, Sitora Mirzokhonova, Vakhitkhan Ismailov, and Vladimir Belikov
Nat. Hazards Earth Syst. Sci., 25, 403–428, https://doi.org/10.5194/nhess-25-403-2025, https://doi.org/10.5194/nhess-25-403-2025, 2025
Short summary
Short summary
A fully probabilistic flood risk assessment was carried out for five Central Asian countries to support regional and national risk financing and insurance applications. The paper presents the first high-resolution regional-scale transboundary flood risk assessment study in the area aiming to provide tools for decision-making.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.:
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,
arXiv [preprint], arXiv:1603.04467, 2016. a
African Union:
African Risk Capacity: Transforming disaster risk management & financing in Africa,
available at: https://www.africanriskcapacity.org/ (last access: 21 June 2020), 2021. a
Aksoy, S. and Haralick, R. M.:
Feature normalization and likelihood-based similarity measures for image retrieval,
Pattern Recogn. Lett.,
22, 563–582, https://doi.org/10.1016/S0167-8655(00)00112-4, 2001. a
Alipour, A., Ahmadalipour, A., Abbaszadeh, P., and Moradkhani, H.:
Leveraging machine learning for predicting flash flood damage in the Southeast US,
Environ. Res. Lett.,
15, 024011, https://doi.org/10.1088/1748-9326/ab6edd, 2020. a
Awondo, S. N.:
Efficiency of Region-wide Catastrophic Weather Risk Pools: Implications for African Risk Capacity Insurance Program,
J. Dev. Econ., 136, 111–118, https://doi.org/10.1016/j.jdeveco.2018.10.004, 2018. a
Barnett, B. J. and Mahul, O.:
Weather index insurance for agriculture and rural areas in lower-income countries,
Am. J. Agr. Econ.,
89, 1241–1247, https://doi.org/10.1111/j.1467-8276.2007.01091.x, 2007. a
Barredo, J. I.:
Major flood disasters in Europe: 1950–2005,
Nat. Hazards,
42, 125–148, https://doi.org/10.1007/s11069-006-9065-2, 2007. a
Black, E., Tarnavsky, E., Maidment, R., Greatrex, H., Mookerjee, A., Quaife, T., and Brown, M.:
The use of remotely sensed rainfall for managing drought risk: A case study of weather index insurance in Zambia,
Remote Sens.-Basel,
8, 342, https://doi.org/10.3390/rs8040342, 2016. a, b
Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E. J., Sorooshian, S., Tan, J., and Xie, P.:
NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version 5.2, Tech. rep.,
available at: https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2_0.pdf (last access: 21 June 2020),
NASA, 2018. a
Boser, B. E., Vapnik, V. N., and Guyon, I. M.:
Training Algorithm Margin for Optimal Classifiers, COLT92: 5th Annual Workshop on Computational Learning Theory, Pittsburgh, Pennsylvania, USA, 27–29 July 1992, 144–152, 1992. a
Bowden, G. J., Dandy, G. C., and Maier, H. R.:
Input determination for neural network models in water resources applications. Part 1 – Background and methodology,
J. Hydrol.,
301, 75–92, https://doi.org/10.1016/j.jhydrol.2004.06.021, 2005. a
Calvet, L., Lopeman, M., de Armas, J., Franco, G., and Juan, A. A.:
Statistical and machine learning approaches for the minimization of trigger errors in parametric earthquake catastrophe bonds,
SORT,
41, 373–391, https://doi.org/10.2436/20.8080.02.64, 2017. a
Castillo, M. J., Boucher, S., and Carter, M.:
Index Insurance : Using Public Data to Benefit Small-Scale Agriculture,
Int. Food Agribus. Man.,
19, 93–114, 2016. a
Chantarat, S., Mude, A. G., Barrett, C. B., and Carter, M. R.:
Designing Index-Based Livestock Insurance for Managing Asset Risk in Northern Kenya,
J. Risk Insur.,
80, 205–237, https://doi.org/10.1111/j.1539-6975.2012.01463.x, 2013. a
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.:
SMOTE: Synthetic Minority Over-sampling Technique,
J. Artif. Intell. Res.,
16, 321–357, https://doi.org/10.1613/jair.953, 2002. a
Chen, T., Ren, L., Yuan, F., Tang, T., Yang, X., Jiang, S., Liu, Y., Zhao, C., and Zhang, L.:
Merging ground and satellite-based precipitation data sets for improved hydrological simulations in the Xijiang River basin of China,
Stoch. Env. Res. Risk A.,
33, 1893–1905, https://doi.org/10.1007/s00477-019-01731-w, 2019. a
Chiang, Y.-M., Hsu, K.-L., Chang, F.-J., Hong, Y., and Sorooshian, S.:
Merging multiple precipitation sources for flash flood forecasting,
J. Hydrol.,
340, 183–196, https://doi.org/10.1016/j.jhydrol.2007.04.007, 2007. a, b
Cornell University:
CSF Caribbean Drought Atlas,
available at: http://climatesmartfarming.org/tools/caribbean-drought/ (last access: 21 June 2020), 2018. a
Crone, S. F., Lessmann, S., and Stahlbock, R.:
The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing,
Eur. J. Oper. Res.,
173, 781–800, https://doi.org/10.1016/j.ejor.2005.07.023, 2006. a
Dreyfus, G.:
Neural Networks: Methodology and Applications, Springer Science & Business Media, 2005. a
Eckstein, D., Künzel, V., and Schäfer, L.:
Global Climate Risk Index 2018. Who Suffers Most From Extreme Weather Events? Weather-related Loss Events in 2016 and 1997 to 2016, Tech. rep.,
Germanwatch,
available at: http://www.germanwatch.org/en/cri (last access: 21 June 2020), 2017. a
ECMWF, Copernicus, and Climate Change Service:
ERA5 hourly data on single levels from 1979 to present, https://doi.org/10.24381/cds.adbb2d47, 2018. a
European Drought Observatory:
Standardized Precipitation Index (SPI),
available at: https://edo.jrc.ec.europa.eu/ (last access: 21 June 2020), 2020. a
Felix, E. A. and Lee, S. P.:
Systematic literature review of preprocessing techniques for imbalanced data,
IET Softw.,
13, 479–496, https://doi.org/10.1049/iet-sen.2018.5193, 2019. a
Field, C., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., Genova, R., Girma, B., Kissel, E., Levy, A., MacKracken, S., Mastrandrea, P., White, L., and IPCC:
Climate Change 2014: Impacts, Adaptation, and Vulnerability: Summaries, Frequently Asked Questions, and Cross-Chapter Boxes: A Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
World Meteorological Organization, Geneva, 2014. a
Flach, P. A. and Kull, M.:
Precision-Recall-Gain curves: PR analysis done right,
Adv. Neur. In.,
2015-Januar, 838–846, 2015. a
Franco, G.:
Minimization of trigger error in cat-in-a-box parametric earthquake catastrophe bonds with an application to Costa Rica,
Earthq. Spectra,
26, 983–998, https://doi.org/10.1193/1.3479932, 2010. a
Fung, K. F., Huang, Y. F., Koo, C. H., and Soh, Y. W.:
Drought forecasting: A review of modelling approaches 2007–2017,
J. Water Clim. Change, 11, 771–799, https://doi.org/10.2166/wcc.2019.236, 2019. a, b
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.:
The climate hazards infrared precipitation with stations–a new environmental record for monitoring extremes,
Scientific Data,
2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015. a
Gagne, D., McGovern, A., Haupt, S., Sobash, R., Williams, J., and Xue, M.:
Storm-Based Probabilistic Hail Forecasting with Machine Learning Applied to Convection-Allowing Ensembles,
Weather Forecast.,
32, 1819–1840, https://doi.org/10.1175/WAF-D-17-0010.1, 2017. a
Garcia, V., Sanchez, J. S., and Mollineda, R. A.:
On the effectiveness of preprocessing methods when dealing with different levels of class imbalance,
Knowl.-Based Syst.,
25, 13–21, https://doi.org/10.1016/j.knosys.2011.06.013, 2012. a
Ghahramani, Z.:
Unsupervised learning, chap. 5,
in: Advanced Lectures on Machine Learning,
edited by: Bousquet, O., von Luxburg, U., and Ratsch, G.,
Springer-Verlag Berlin Heidelberg, Tübingen, i edn., pp. 72–112, 2004. a
Global Disaster Alert and Coordination System:
Overall Orange alert Drought for Hispaniola-2019,
available at: https://www.gdacs.org/report.aspx?eventtype=DR&eventid=1012765&episodeid=7 (last access: 21 June 2020), 2018. a
Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q.:
On calibration of modern neural networks,
34th International Conference on Machine Learning, ICML 2017,
3, 2130–2143, 6 August 2017–11 August 2017, International Convention Centre Sydney, Sydney, Australia, 2017. a
Hao, Z., Singh, V. P., and Xia, Y.:
Seasonal Drought Prediction: Advances, Challenges, and Future Prospects,
Rev. Geophys.,
56, 108–141, https://doi.org/10.1002/2016RG000549, 2018. a, b
Herrera, D. and Ault, T. R.:
Insights from a New High-Resolution Drought Atlas for the Caribbean spanning 1959 to 2016,
B. Am. Meteorol. Soc.,
30, 7801–7825, https://doi.org/10.1175/JCLI-D-16-0838.1, 2017. a
Hoeppe, P.:
Trends in weather related disasters: Consequences for insurers and society,
Weather and Climate Extremes,
11, 70–79, https://doi.org/10.1016/j.wace.2015.10.002, https://doi.org/10.1016/j.wace.2015.10.002, 2016. a
Hong, Y., Hsu, K. L., Sorooshian, S., and Gao, X.:
Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system,
J. Appl. Meteorol.,
43, 1834–1852, https://doi.org/10.1175/jam2173.1, 2004. a
Hossin, M. and Sulaiman, M.:
A Review on Evaluation Metrics for Data Classification Evaluations,
International Journal of Data Mining & Knowledge Management Process,
5, 01–11, https://doi.org/10.5121/ijdkp.2015.5201, 2015. a
Huang, J., Li, Y. F., and Xie, M.:
An empirical analysis of data preprocessing for machine learning-based software cost estimation,
Inform. Softw. Tech.,
67, 108–127, https://doi.org/10.1016/j.infsof.2015.07.004, 2015. a
Ibarra, H. and Skees, J.:
Innovation in risk transfer for natural hazards impacting agriculture.,
Environmental Hazards,
7, 62–69, https://doi.org/10.1016/j.envhaz.2007.04.008, 2007. a
Izzo, M., Rosskopf, C. M., Aucelli, P. P. C., Maratea, A., Méndez, R., Pérez, C., and Segura, H.:
A New Climatic Map of the Dominican Republic Based on the Thornthwaite Classification,
Phys. Geogr.,
31, 455–472, https://doi.org/10.2747/0272-3646.31.5.455, 2010. a
Jones, K. S. and Van Rijsbergen, C. J.:
Progress in documentation: Information retrieval test collections,
J. Doc.,
32, 59–75, https://doi.org/10.1108/eb026616, 1976. a
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.:
CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution,
J. Hydrometeorol.,
5, 487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2, 2004. a
Khalaf, M., Hussain, A. J., Al-Jumeily, D., Baker, T., Keight, R., Lisboa, P., Fergus, P., and Al Kafri, A. S.:
A Data Science Methodology Based on Machine Learning Algorithms for Flood Severity Prediction,
2018 IEEE Congress on Evolutionary Computation, CEC 2018 – Proceedings,
pp. 1–8, 8–13 July 2018, Rio de Janeiro, Brazil, https://doi.org/10.1109/CEC.2018.8477904, 2018. a
Kim, M., Park, M., Im, J., Park, S., and Lee, M.:
Machine Learning Approaches for Detecting Tropical Cyclone Formation Using Satellite Data,
Remote Sens.-Basel,
11, 1195, https://doi.org/10.3390/rs11101195, 2019. a
Kron, W., Löw, P., and Kundzewicz, Z. W.:
Changes in risk of extreme weather events in Europe,
Environ. Sci. Policy,
100, 74–83, https://doi.org/10.1016/j.envsci.2019.06.007, 2019. a
Krzanowski, W. and Hand, D. J.:
ROC Curves for Continuous Data, vol. 111,
Chapman and Hall/CRC, Boca Raton, FL, https://doi.org/10.1201/9781439800225, 2009. a
Kunreuther, H.:
Mitigation and Financial Risk Management for Natural Hazards A Risk Management Strategy for Reducing Losses and Providing Financial Protection, The Geneva Papers on Risk and Insurance. Issues and Practice,
26, 277–296, 2001. a
Ling, C. and Li, C.:
Data Mining for Direct Marketing: Problems and Solutions,
American Association for Artificial Intelligence, 73–79, Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 1998. a
Loew, A., Bell, W., Brocca, L., Bulgin, C. E., Burdanowitz, J., Calbet, X., Donner, R. V., Ghent, D., Gruber, A., Kaminski, T., Kinzel, J., Klepp, C., Lambert, J. C., Schaepman-Strub, G., Schröder, M., and Verhoelst, T.:
Validation practices for satellite-based Earth observation data across communities,
Rev. Geophys.,
55, 779–817, https://doi.org/10.1002/2017RG000562, 2017. a
Maini, V. and Sabri, S.:
Machine Learning for Humans,
available at: https://everythingcomputerscience.com/books/Machine Learning for Humans.pdf (last access: 21 June 2020), 2017. a
Makaudze, E. M. and Miranda, M. J.:
Catastrophic drought insurance based on the remotely sensed normalised difference vegetation index for smallholder farmers in Zimbabwe, Agricultural Economics Research, Policy and Practice in Southern Africa, 49, 418–432, https://doi.org/10.1080/03031853.2010.526690, 2010. a
Mas, J. F. and Flores, J. J.:
The application of artificial neural networks to the analysis of remotely sensed data,
Int. J. Remote Sens.,
29, 617–663, https://doi.org/10.1080/01431160701352154, 2008. a
Massaron, J. P. and Muller, L.:
Machine learning for dummiers, vol. 11, John Wiley & Sons, Inc., 2016. a
McClure, N.:
TensorFlow Machine Learning,
available at: https://www.tensorflow.org/federated (last access: 21 June 2020), 2017. a
McKee, T. B., Doesken, N. J., and Kleist, J.:
The relationship of drought frequency and duration to time scales,
in: AMS 8th Conference on Applied Climatology, January, Anaheim, California, 17–22 January 1993, available at: https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (last access: 21 June 2020), pp. 179–184, 1993. a, b
Mosavi, A., Ozturk, P., and Chau, K. W.:
Flood prediction using machine learning models: Literature review,
Water (Switzerland),
10, 1536, https://doi.org/10.3390/w10111536, 2018. a, b
Mosteller, F. and Tukey, J. W.:
Data analysis, including statistics,
in: Handbook of social psychology,
edited by: Lindzey, G. and Aronson, E., Addison-Wesley, 2, 80–203, 1968. a
Murphy, A. H. and Ehrendorfer, M.:
On the Relationship between the Accuracy and Value of Forecasts in the Cost-Loss Ratio Situation,
Weather Forecast.,
2, 243–251, https://doi.org/10.1175/1520-0434(1987)002<0243:OTRBTA>2.0.CO;2, 1987. a
Nayak, M. A. and Ghosh, S.:
Prediction of extreme rainfall event using weather pattern recognition and support vector machine classifier,
Theor. Appl. Climatol.,
114, 583–603, https://doi.org/10.1007/s00704-013-0867-3, 2013. a, b
Ornella, L., Kruseman, G., and Crossa, J.:
Satellite Data and Supervised Learning to Prevent Impact of Drought on Crop Production: Meteorological Drought,
in: Drought: Detection and Solutions,
edited by: Ondrasek, G., IntechOpen, London, UK, https://doi.org/10.5772/57353, 2019. a
Pedregosa, F., Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., and Mueller, A.:
Scikit-learn: Machine Learning in Python,
J. Mach. Learn. Res.,
12, 2825–2830, 2011. a
Plate, E.:
Flood risk and flood management,
J. Hydrol.,
267, 2–11, https://doi.org/10.1016/S0022-1694(02)00135-X, 2002. a
Platt, J. C.:
Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods,
in: Advances in Large Margin Classifiers,
edited by: Smola, A. J., Bartlett, P. L., Scholkopf, B., and Schuurmans, D.,
MIT Press, Cambridge, Massachusetts, USA, pp. 61–74, 1999. a
Richman, M. B., Leslie, L. M., and Segele, Z. T.:
Classifying Drought in Ethiopia Using Machine Learning,
Procedia Comput. Sci.,
95, 229–236, https://doi.org/10.1016/j.procs.2016.09.319, 2016. a
Saito, T. and Rehmsmeier, M.:
The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets,
PLoS ONE,
10, 1–21, https://doi.org/10.1371/journal.pone.0118432, 2015. a, b
Sallis, P., Claster, W., and Hernandez, S.:
A machine-learning algorithm for wind gust prediction,
Comput. Geosci.,
37, 1337–1344, https://doi.org/10.1016/j.cageo.2011.03.004, 2011. a
Samuel, A. L.:
Eight-move opening utilizing generalization learning, (See Appendix B, Game G-43.1 Some Studies in Machine Learning Using the Game of Checkers),
IBM Journal,
pp. 210–229, 1959. a
Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., and Braithwaite, D.:
Evaluation of PERSIANN system satellite-based estimates of tropical rainfall,
B. Am. Meteorol. Soc.,
81, 2035–2046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2, 2000. a
Sun, Y., Wong, A. K. C., and Kamel, M. S.:
Classification of imbalanced data: A review,
Int. J. Pattern Recogn.,
23, 687–719, https://doi.org/10.1142/S0218001409007326, 2009. a
Surminski, S. and Oramas-Dorta, D.:
Flood insurance schemes and climate adaptation in developing countries,
Int. J. Disast. Risk Re.,
7, 154–164, https://doi.org/10.1016/j.ijdrr.2013.10.005, 2014. a
Surminski, S., Bouwer, L., and Linnerooth-Bayer, J.:
How insurance can support climate resilience,
Nat. Clim. Change,
6, 333–334, https://doi.org/10.1038/nclimate2979, 2016. a
Tate, E. L. and Gustard, A.:
Drought Definition: A Hydrological Perspective,
in: Drought and Drought Mitigation in Europe. Advances in Natural and Technological Hazards Research, edited by: Vogt, J. V. and Somma, F., vol 14., pp. 23–48, https://doi.org/10.1007/978-94-015-9472-1_3, Springer, Dordrecht, Dordrecht, 2000. a
The International Charter Space and Major Disasters:
Hurricane Matthew in the Dominican Republic,
available at: https://disasterscharter.org/web/guest/activations/-/article/flood-in-dominican-republic (last access: 21 June 2020), 2016.
a
The World Bank:
Operational Innovations: Providing Immediate Funding After Natural Disasters, International Bank for Reconstruction and Development/The World Bank, Washington, DC, 2008. a
The World Bank:
Dominican Republic,
available at: https://data.worldbank.org/country/dominican-republic (last access: 21 June 2020), 2019. a
Ushio, T. and Kachi, M.:
Kalman Filtering Applications for Global Satellite Mapping of Precipitation (GSMaP),
in: Satellite Rainfall Applications for Surface Hydrology,
edited by: Gebremichael, M. and Hossain, F.,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-90-481-2915-7_7, pp. 105–123, 2010. a
Van Nostrand, J. M. and Nevius, J. G.:
Parametric Insurance: Using Objective Measures to Address the Impacts of Natural Disasters and Climate Change,
Environ. Claim. J.,
23, 227–237, https://doi.org/10.1080/10406026.2011.607066, 2011. a
Visser, H., Petersen, A. C., and Ligtvoet, W.:
On the relation between weather-related disaster impacts, vulnerability and climate change,
Climatic Change,
125, 461–477, https://doi.org/10.1007/s10584-014-1179-z, 2014. a
Wang, L.:
Support Vector Machines: Theory and Applications, vol. 177, first edn.,
Springer, 2005. a
Wilhite, D. A.:
Drought as a natural hazard: Concepts and definitions,
in: Drought: A Global Assessment, Drought – National Drought Mitigation Center, Nebraska, Lincoln, pp. 3–18, 2000. a
World Meteorological Organization and Global Water Partnership:
Handbook of Drought Indicators and Indices, Integrated Drought Management Programme,
Geneva, 2016. a
Zhang, S., Zhang, C., and Yang, Q.:
Data preparation for data mining,
Appl. Artif. Intell.,
17, 375–381, https://doi.org/10.1080/713827180, 2003. a
Short summary
Weather index insurance is an innovative program used to manage the risk associated with natural disasters, providing instantaneous financial support to the insured party. This paper proposes a methodology that exploits the power of machine learning to identify extreme events for which a payout from the insurance could be delivered. The improvements achieved using these algorithms are an encouraging step forward in the promotion and implementation of this insurance instrument.
Weather index insurance is an innovative program used to manage the risk associated with natural...
Altmetrics
Final-revised paper
Preprint