Articles | Volume 21, issue 8
Nat. Hazards Earth Syst. Sci., 21, 2379–2405, 2021
https://doi.org/10.5194/nhess-21-2379-2021

Special issue: Groundbreaking technologies, big data, and innovation for...

Nat. Hazards Earth Syst. Sci., 21, 2379–2405, 2021
https://doi.org/10.5194/nhess-21-2379-2021

Research article 11 Aug 2021

Research article | 11 Aug 2021

The potential of machine learning for weather index insurance

Luigi Cesarini et al.

Related authors

The whole is greater than the sum of its parts: a holistic graph-based assessment approach for natural hazard risk of complex systems
Marcello Arosio, Mario L. V. Martina, and Rui Figueiredo
Nat. Hazards Earth Syst. Sci., 20, 521–547, https://doi.org/10.5194/nhess-20-521-2020,https://doi.org/10.5194/nhess-20-521-2020, 2020
Short summary
A joint probabilistic index for objective drought identification: the case study of Haiti
Beatrice Monteleone, Brunella Bonaccorso, and Mario Martina
Nat. Hazards Earth Syst. Sci., 20, 471–487, https://doi.org/10.5194/nhess-20-471-2020,https://doi.org/10.5194/nhess-20-471-2020, 2020
Short summary
Natural hazard risk of complex systems – the whole is more than the sum of its parts: II. A pilot study in Mexico City
Marcello Arosio, Mario L. V. Martina, and Rui Figueiredo
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-278,https://doi.org/10.5194/nhess-2018-278, 2018
Revised manuscript has not been submitted
Short summary
Multi-model ensembles for assessment of flood losses and associated uncertainty
Rui Figueiredo, Kai Schröter, Alexander Weiss-Motz, Mario L. V. Martina, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 18, 1297–1314, https://doi.org/10.5194/nhess-18-1297-2018,https://doi.org/10.5194/nhess-18-1297-2018, 2018
Short summary
INSYDE: a synthetic, probabilistic flood damage model based on explicit cost analysis
Francesco Dottori, Rui Figueiredo, Mario L. V. Martina, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 16, 2577–2591, https://doi.org/10.5194/nhess-16-2577-2016,https://doi.org/10.5194/nhess-16-2577-2016, 2016
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Indirect flood impacts and cascade risk across interdependent linear infrastructures
Chiara Arrighi, Maria Pregnolato, and Fabio Castelli
Nat. Hazards Earth Syst. Sci., 21, 1955–1969, https://doi.org/10.5194/nhess-21-1955-2021,https://doi.org/10.5194/nhess-21-1955-2021, 2021
Short summary
Predicting social and health vulnerability to floods in Bangladesh
Donghoon Lee, Hassan Ahmadul, Jonathan Patz, and Paul Block
Nat. Hazards Earth Syst. Sci., 21, 1807–1823, https://doi.org/10.5194/nhess-21-1807-2021,https://doi.org/10.5194/nhess-21-1807-2021, 2021
Short summary
Residential flood loss estimated from Bayesian multilevel models
Guilherme S. Mohor, Annegret H. Thieken, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 21, 1599–1614, https://doi.org/10.5194/nhess-21-1599-2021,https://doi.org/10.5194/nhess-21-1599-2021, 2021
Short summary
Review article: A systematic review and future prospects of flood vulnerability indices
Luana Lavagnoli Moreira, Mariana Madruga de Brito, and Masato Kobiyama
Nat. Hazards Earth Syst. Sci., 21, 1513–1530, https://doi.org/10.5194/nhess-21-1513-2021,https://doi.org/10.5194/nhess-21-1513-2021, 2021
Short summary
Interacting effects of land-use change and natural hazards on rice agriculture in the Mekong and Red River deltas in Vietnam
Kai Wan Yuen, Tang Thi Hanh, Vu Duong Quynh, Adam D. Switzer, Paul Teng, and Janice Ser Huay Lee
Nat. Hazards Earth Syst. Sci., 21, 1473–1493, https://doi.org/10.5194/nhess-21-1473-2021,https://doi.org/10.5194/nhess-21-1473-2021, 2021
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [preprint], arXiv:1603.04467, 2016. a
ADRC and UNDRR: GLIDE number, available at: https://glidenumber.net/glide/public/search/search.jsp (last access: 21 June 2020), Asian Disaster Reduction Centre (ADRC), Kobe, Japan, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m
African Union: African Risk Capacity: Transforming disaster risk management & financing in Africa, available at: https://www.africanriskcapacity.org/ (last access: 21 June 2020), 2021. a
Aksoy, S. and Haralick, R. M.: Feature normalization and likelihood-based similarity measures for image retrieval, Pattern Recogn. Lett., 22, 563–582, https://doi.org/10.1016/S0167-8655(00)00112-4, 2001. a
Alipour, A., Ahmadalipour, A., Abbaszadeh, P., and Moradkhani, H.: Leveraging machine learning for predicting flash flood damage in the Southeast US, Environ. Res. Lett., 15, 024011, https://doi.org/10.1088/1748-9326/ab6edd, 2020. a
Download
Short summary
Weather index insurance is an innovative program used to manage the risk associated with natural disasters, providing instantaneous financial support to the insured party. This paper proposes a methodology that exploits the power of machine learning to identify extreme events for which a payout from the insurance could be delivered. The improvements achieved using these algorithms are an encouraging step forward in the promotion and implementation of this insurance instrument.
Altmetrics
Final-revised paper
Preprint