Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2379-2021
https://doi.org/10.5194/nhess-21-2379-2021
Research article
 | 
11 Aug 2021
Research article |  | 11 Aug 2021

The potential of machine learning for weather index insurance

Luigi Cesarini, Rui Figueiredo, Beatrice Monteleone, and Mario L. V. Martina

Related authors

Large-scale drivers of compounding hot and dry events in three breadbasket regions
Natalia Castillo Bautista, Marco Gaetani, Leonard F. Borchert, Benjamin Poschlod, Lukas Brunner, Jana Sillmann, and Mario L. V. Martina
EGUsphere, https://doi.org/10.5194/egusphere-2025-5073,https://doi.org/10.5194/egusphere-2025-5073, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025,https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Large-scale flood risk assessment in data-scarce areas: an application to Central Asia
Paola Ceresa, Gianbattista Bussi, Simona Denaro, Gabriele Coccia, Paolo Bazzurro, Mario Martina, Ettore Fagà, Carlos Avelar, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Zhanar Raimbekova, Kanatbek Abdrakhmatov, Sitora Mirzokhonova, Vakhitkhan Ismailov, and Vladimir Belikov
Nat. Hazards Earth Syst. Sci., 25, 403–428, https://doi.org/10.5194/nhess-25-403-2025,https://doi.org/10.5194/nhess-25-403-2025, 2025
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [preprint], arXiv:1603.04467, 2016. a
ADRC and UNDRR: GLIDE number, available at: https://glidenumber.net/glide/public/search/search.jsp (last access: 21 June 2020), Asian Disaster Reduction Centre (ADRC), Kobe, Japan, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m
African Union: African Risk Capacity: Transforming disaster risk management & financing in Africa, available at: https://www.africanriskcapacity.org/ (last access: 21 June 2020), 2021. a
Aksoy, S. and Haralick, R. M.: Feature normalization and likelihood-based similarity measures for image retrieval, Pattern Recogn. Lett., 22, 563–582, https://doi.org/10.1016/S0167-8655(00)00112-4, 2001. a
Alipour, A., Ahmadalipour, A., Abbaszadeh, P., and Moradkhani, H.: Leveraging machine learning for predicting flash flood damage in the Southeast US, Environ. Res. Lett., 15, 024011, https://doi.org/10.1088/1748-9326/ab6edd, 2020. a
Download
Short summary
Weather index insurance is an innovative program used to manage the risk associated with natural disasters, providing instantaneous financial support to the insured party. This paper proposes a methodology that exploits the power of machine learning to identify extreme events for which a payout from the insurance could be delivered. The improvements achieved using these algorithms are an encouraging step forward in the promotion and implementation of this insurance instrument.
Share
Altmetrics
Final-revised paper
Preprint