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Abstract. Weather index insurance is an innovative tool in
risk transfer for disasters induced by natural hazards. This
paper proposes a methodology that uses machine learning al-
gorithms for the identification of extreme flood and drought
events aimed at reducing the basis risk connected to this kind
of insurance mechanism. The model types selected for this
study were the neural network and the support vector ma-
chine, vastly adopted for classification problems, which were
built exploring thousands of possible configurations based on
the combination of different model parameters. The models
were developed and tested in the Dominican Republic con-
text, based on data from multiple sources covering a time
period between 2000 and 2019. Using rainfall and soil mois-
ture data, the machine learning algorithms provided a strong
improvement when compared to logistic regression models,
used as a baseline for both hazards. Furthermore, increasing
the amount of information provided during the training of the
models proved to be beneficial to the performances, increas-
ing their classification accuracy and confirming the ability of
these algorithms to exploit big data and their potential for
application within index insurance products.

1 Introduction

Changes in frequency and severity of extreme weather and
climate events have been observed since 1950, including
an increase in the number of heavy precipitation events
in some land areas and a significant decrease in rainfall
in other regions (Field et al., 2014). Impacts from recent
weather-related extremes, such as floods and droughts, have
revealed a substantial vulnerability of many human systems
to climate-related hazards (Visser et al., 2014). In recent
decades, extreme weather events have caused widespread

economic and social damages all over the world (Kron et al.,
2019). According to Hoeppe (2016), over the period from
1980 to 2014, extreme weather events have caused losses of
around USD 3300 billion, with floods accounting for 32 %
of the losses and drought for 17 %. Extreme weather events
have devastating effects on people’s lives. The International
Disasters Database EMDAT (CRED, 2019) reports that, over
the period from 1980 to 2019, extreme weather caused the
death of 1.15 million people, with droughts being the disaster
responsible for the highest number of deaths (around 50 % of
fatalities due to climate extremes), followed by storms (34 %)
and floods (16 %).

The implementation of effective disaster risk management
strategies is key to limiting economic and social losses asso-
ciated with extreme weather events and to reducing disaster
risk. In recent years, there has been increasing worldwide in-
terest in the integration of risk transfer instruments within
such strategies (Kunreuther, 2001; Surminski et al., 2016).
Among those instruments, index-based insurance, or para-
metric insurance, has gained remarkable popularity. Unlike
traditional insurance, which indemnifies policyholders based
on experienced losses, parametric insurance pays indemni-
ties based on realisations of an index (or a combination of
parameters) that is correlated with losses (Barnett and Mahul,
2007). It can be used to transfer risk associated with different
types of extreme events, such as earthquakes (Franco, 2010),
floods (Surminski and Oramas-Dorta, 2014) and droughts
(Makaudze and Miranda, 2010). Parametric insurance offers
various advantages over traditional indemnity-based insur-
ance, such as lower operating expenses, reduced moral haz-
ard and adverse selection, and prompt access to funds by
the insured following the occurrence of disasters (Ibarra and
Skees, 2007; Figueiredo et al., 2018). This promptness is crit-
ical in developing countries, which tend to be exposed to
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short-term liquidity gaps that may overwhelm their capac-
ity to cope with large disasters (Van Nostrand and Nevius,
2011). A critical disadvantage of parametric insurance, how-
ever, is its susceptibility to basis risk, which may be defined
as the risk that triggered payouts do not coincide with the
occurrence of loss events.

The minimisation of basis risk in parametric insurance re-
quires a reliable, rapid and objective identification of extreme
climate events. Nowadays, different sources of weather data
that may be used to support this endeavour are available.
Among them, the use of satellite images and reanalyses prod-
ucts in parametric insurance mechanisms is growing (Black
et al., 2016; Chantarat et al., 2013). Satellite images and re-
analyses are frequently free of charge, and therefore para-
metric models based on them are cheaper and can be afford-
able even for developing countries (Castillo et al., 2016). In
addition, satellite images and reanalyses consist of continu-
ous spatial fields and often have global coverage. These last
features make them attractive, since they overcome one of
the most common issues related to gauges and weather sta-
tions, which is their limited or irregular spatial coverage. It
should also be noted that, hypothetically, if an entity that is
responsible for such stations (e.g. a governmental agency) is
related in some form with a potential beneficiary from in-
dex insurance coverage, a conflict of interest may arise. This
issue is avoided with satellite-based or reanalysis products,
which are produced by third parties, for example internation-
ally renowned research institutes such as the Climate Haz-
ards Center of the University of California and the Euro-
pean Centre for Medium-Range Weather Forecasts. Satellite
images are often available with high spatial resolution, but
records are still short, with a maximum duration of around
30 years. Reanalysis, on the other hand, provides longer time
series but tends to have a coarser spatial resolution. More-
over, satellite data should be checked for consistency with
ground measurement, which is not always feasible when the
network of ground instruments is inadequate or non-existent
(Loew et al., 2017). Although using satellite data has its
own limitations, various index-based insurance products, ex-
ploiting remote-sensing data and reanalysis, have been devel-
oped in data-sparse regions such as Africa and Latin Amer-
ica (Awondo, 2018; African Union, 2021; The World Bank,
2008). The combined use of various sources of information
to detect the occurrence of extreme events is valuable, since
it can significantly improve the ability to correctly detect ex-
treme events (Chiang et al., 2007), and a proper index design
helps in addressing the limitations brought by satellite data,
as underlined in Black et al. (2016).

Over the last two decades there has been an increasing
focus on the application of machine learning methods to
process and extract information from big data with limited
human intervention (Ornella et al., 2019). Correspondingly,
machine learning approaches have also been applied to fore-
cast extreme events. Mosavi et al. (2018) offer an accurate
description of the state of the art of machine learning mod-

els used to forecast floods, while Hao et al. (2018) and Fung
et al. (2019), in their reviews on drought forecasting, give
an overview of machine learning tools applied to predict
drought indices. Machine learning has also been employed to
forecast wind gusts (Sallis et al., 2011), severe hail (Gagne
et al., 2017) and excessive rainfall (Nayak and Ghosh, 2013).
In contrast, only a minor part of the body of literature focuses
its attention on the identification or classification of events
(Nayak and Ghosh, 2013, Khalaf et al., 2018, and Alipour
et al., 2020, for floods; Richman et al., 2016, for droughts;
and Kim et al., 2019 for tropical cyclones). However, clas-
sification of events to distinguish between extreme and non-
extreme events is essential to support the development of ef-
fective parametric risk transfer instruments. In addition, the
major part of the analysed studies deals with a single type of
event.

This paper aims to assess the potential of machine learning
for weather index insurance. To achieve this, we propose and
apply a machine learning methodology that is capable of ob-
jectively identifying extreme weather events, namely flood
and drought, in near-real time, using quasi-global gridded
climate datasets derived from satellite imagery or a combi-
nation of observation and satellite imagery. The focus of the
study is then to address the following research questions.

1. Can machine learning algorithms provide improvement
in terms of performance for weather index insurance
with respect to traditional approaches?

2. To which extent do the performances of machine learn-
ing models improve with the addition of input data?

3. Do the best-performing models share similar properties
(e.g. use more input data or consistently have similar
algorithm’s features)?

In this study we focus on the detection of two types of
weather events with very different features: floods, which are
mainly local events that can develop over a timescale going
from few minutes to days, and droughts, which are creep-
ing phenomena that involve widespread areas and have a
slow onset and offset. In addition, floods cause immediate
losses (Plate, 2002), while droughts produce non-structural
damages and their effects are delayed with respect to the be-
ginning of the event (Wilhite, 2000). Both satellite images
and reanalyses are used as input data to show the potential
of these instruments when properly designed and managed.
Two of the most used machine learning methodologies, neu-
ral network (NN) and support vector machine (SVM), are
applied. With machine learning (ML) models it is not al-
ways straightforward to know a priori which model(s) per-
form(s) better or which model configuration(s) should be
used. Therefore, various model configurations are explored
for both NN and SVM, and a rigorous evaluation of their
performances is accomplished. The best-performing config-
urations are tested to reproduce past extreme events in a case
study region.
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Section 2 describes the NN and SVM algorithms used in
this study and their configurations, the procedure adopted to
take into consideration the problem of data imbalance due
to the rarity of extreme events, the assessment of the qual-
ity of the classifications, and the procedure used to select
the best-performing models and configurations. In addition,
an overview of the datasets used is provided. Section 3 pro-
vides some insights on the area where the described method-
ology is applied. Section 4 presents and discusses the most
important outcomes for both floods and droughts. Section 5
summarises the main findings of the study, highlighting their
meanings for the study case and analysing the limitations of
the proposed approach, while providing insight on possible
future developments.

2 Methodology

Machine learning is a subset of artificial intelligence whose
main purpose is to give computers the possibility to learn,
throughout a training process, without being explicitly pro-
grammed (Samuel, 1959). It is possible to distinguish ma-
chine learning models based on the kind of algorithm that
they implement and the type of task that they are required
to solve. Algorithms may be divided into two broad groups:
the ones using labelled data (Maini and Sabri, 2017), also
known as supervised learning algorithms, and the ones that
during the training receive only input data for which the out-
put variables are unknown (Ghahramani, 2004), also called
unsupervised learning algorithms.

As previously mentioned, in index insurance, payouts are
triggered whenever measurable indices exceed predefined
thresholds. From a machine learning perspective, this cor-
responds to an objective classification rule for predicting the
occurrence of loss or no loss based on the trigger variable.
The rule can be developed using past training sets of hazard
and loss data (supervised learning). Conceptually, the devel-
opment of a parametric trigger should correspond to an in-
formed decision-making process, i.e. a process which, based
on data, a priori knowledge and an appropriate modelling
framework, can lead to optimal decisions and effective ac-
tions. This work aims to leverage the aptitude of machine
learning, particularly supervised learning algorithms, to sup-
port the decision-making process in the context of parametric
risk transfer, applying NN and SVM for the identification of
extreme weather events, namely flooding and drought for this
particular study.

Consider the occurrence of losses caused by a natural haz-
ard on each time unit t = 1, . . .,T over a certain study areaG,
and let Lt be a binary variable defined as

Lt =

{
1 if loss occurs on t in G

0 if loss does not occur on t in G.
(1)

The aim is then to predict the occurrence of losses based
on a set of explanatory variables obtained from non-linear

transformations of a set of environmental variables. This hy-
brid approach aims to capture some of the physical processes
of how the hazard creates damage by incorporating a priori
expert knowledge on environmental processes and damage-
inducing mechanisms for different hazards. Raw environ-
mental variables are not always able to fully describe com-
plex dynamics like flood induced damage; therefore, the us-
age of expert knowledge is important to provide the machine
learning model with input data that are able to better charac-
terise the natural hazard events.

Supervised learning with machine learning methods based
on physically motivated transformations of environmental
variables are then used to capture loss occurrence. The mod-
els are set up such that they produce probabilistic predic-
tions of loss rather than directly classifying events in a bi-
nary manner. This allows the parametric trigger to be op-
timised in a subsequent step, in a metrics-based, objective
and transparent manner, by disentangling the construction
of the model from the decision-making regarding the defini-
tion of the payout-triggering threshold. Probabilistic outputs
are also able to provide informative predictions of loss oc-
currence that convey uncertainty information, which can be
useful for end users when a parametric model is operational
(Figueiredo et al., 2018).

Figure 1 summarises the general framework implemented
in this work.

2.1 Variable and datasets selection

The data-driven nature of ML models implies that the results
yielded are as good as the data provided. Thus, the effec-
tiveness of the methods depends heavily on the choice of the
input variables, which should be able to represent the under-
lying physical process (Bowden et al., 2005). The data se-
lection (and subsequent transformation) therefore requires a
certain amount of a priori knowledge of the physical system
under study. For the purpose of this work, precipitation and
soil moisture were used as input variables for both flood and
drought. An excessive amount of rainfall is the initial trigger
to any flood event (Barredo, 2007), while scarcity of precip-
itation is one of the main reasons that leads to drought peri-
ods (Tate and Gustard, 2000). Soil moisture is instead used
as a descriptor of the condition of the soil. With the idea to
implement a tool that can be exploited in the framework of
parametric risk financing, we selected the datasets to retrieve
the two variables according to five criteria.

1. Spatial resolution. A fine spatial resolution that takes
into account the climatic features of the various areas
of the considered country is needed to develop accurate
parametric insurance products.

2. Frequency. The selected datasets should be able to
match the duration of the extreme event that we need
to identify. For example, in the case of floods, which
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Figure 1. Flowchart of the proposed approach.

are quick phenomena, daily or hourly frequencies are
required.

3. Spatial coverage. Global spatial coverage enables the
extension of the developed approach to areas different
from the case study region.

4. Temporal coverage. Since extreme events are rare, a
temporal coverage of at least 20 years is considered nec-
essary to allow a correct model calibration.

5. Latency time. A short latency time (i.e. time delay to ob-
tain the most recent data) is necessary to develop tools
capable of identifying extreme events in near-real time.

Based on a comprehensive review of available datasets,
we found six rainfall datasets and one soil moisture dataset,
comprising four layers, matching the above criteria. With re-
spect to the studies analysed in Mosavi et al. (2018), Hao
et al. (2018) and Fung et al. (2019), which associated a sin-
gle dataset to each input variable, here six datasets are asso-

ciated with a single variable (rainfall). The use of multiple
datasets is able to improve the ability of models in identi-
fying extreme events, as demonstrated for example by Chi-
ang et al. (2007) in the case of flash floods. In addition, sin-
gle datasets may not perform well; the combination of vari-
ous datasets produces higher-quality estimates (Chen et al.,
2019). Two merged satellite-gauge products (the Climate
Hazards Group InfraRed Precipitation with Station data,
CHIRPS; and the CPC Morphing technique, CMORPH,) and
four satellite-only (the Global Satellite Mapping of Precipi-
tation, GSMaP; the Integrated Multi-Satellite Retrievals for
GPM, IMERG; the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks, PER-
SIANN; and the global PERSIANN Cloud Classification
System, PERSIANN-CCS) datasets were used. The main
features of the selected datasets are reported in Table 1.

Soil moisture was retrieved from the ERA5 reanalysis
dataset, produced by the European Centre for Medium Range
Weather Forecast (ECMWF). The dataset provides informa-
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Table 1. Main features of the selected (quasi-)global precipitation datasets.

Dataset Type Resolution Frequency Coverage Time span Latency Reference

CCS Satellite 0.04◦ 1 h 60◦ S–60◦ N Jan 2003–present 6 h Hong et al. (2004)

CHIRPS Satellite gauge 0.05◦ 1 d 50◦ S–50◦ N Jan 1981–present 3 weeks Funk et al. (2015)
CHIRP Satellite 3 d

CMORPH Satellite gauge 0.07◦ 3 h 60◦ S–60◦ N Jan 1998–present 14 d Joyce et al. (2004)
GSMaP Satellite 0.10◦ 1 h 60◦ S–60◦ N Mar 2000–present 12 h Ushio and Kachi (2010)
IMERG Satellite 0.10◦ 30 min 60◦ S–60◦ N Jun 2000–present 12 h Bolvin et al. (2018)
PERSIANN Satellite 0.25◦ 1 h 60◦ S–60◦ N Mar 2000–present 48 h Sorooshian et al. (2000)

Table 2. Main features of the selected soil moisture dataset.

Dataset Type Resolution Frequency Coverage Time span Latency Reference

ERA5 Reanalysis 0.25◦ 1 h Global Jan 1979–present 5 d ECMWF et al. (2018)

tion on four soil moisture layers (layer 1: 0–7 cm, layer 2:
7–28 cm; layer 3: 28–100 cm; layer 4: 100–289 cm). Table 2
shows the main features of the ERA5 dataset.

2.2 Data transformation

The raw environmental variables are subjected to a trans-
formation which is dependent on the hazard at study and is
deemed more appropriate to enhance the performances of the
model, as described below.

2.2.1 Flood

Flood damage is not directly caused by rainfall but from
physical actions originated by water flowing and submerg-
ing assets usually located on land. As a result, even if floods
are triggered by rainfall, a better predictor for the intensity of
a flood and consequent occurrence of damage is warranted.
To achieve this, we adopt a variable transformation to em-
ulate, in a simplified manner, the physical processes behind
the occurrence of flood damage due to rainfall, based on the
approach proposed by Figueiredo et al. (2018), which is now
briefly described.

LetXt (gj ) represent the rainfall amount accumulated over
grid cell gj belonging to G on day t . Potential runoff is first
estimated from daily rainfall. This corresponds to the amount
of rainwater that is assumed to not infiltrate the soil and thus
remain over the surface and is given by

Rt (gj )=max{Xt (gj )− u,0}, (2)

where u is a constant parameter that represents the daily rate
of infiltration.

Overland flow accumulates the excess of rainfall over the
surface of a hydrological catchment. This process is mod-
elled using a weighted moving time average, which preserves
the accumulation effect and allows the contribution of rain-
fall on previous days to be considered. The moving average

is restricted to a 3 d period. The potential runoff volume ac-
cumulated over cell gj over days t , t − 1 and t − 2 is thus
given by

R∗t (gj )= θ0Rt (gj )+ θ1Rt−1(gj )+ θ2Rt−2(gj ), (3)

where θ0, θ1, θ2> 0 and θ0+ θ1+ θ2= 1.
Finally, let Yt be an explanatory variable representing po-

tential flood intensity for day t , which is defined as

Yt =

J∑
j=1

R∗t (gj )
λ
− 1

λ
. (4)

The Box–Cox transformation provides a flexible, non-
linear approach to convert runoff to potential damage for
each grid cell, which is summed over all grid cells in a study
area to obtain a daily index of flood intensity. In order to ob-
tain the Yt variable that best describes potential flood losses
due to rainfall, the transformation parameters u, θ1, θ2 and λ
are optimised by fitting a logistic regression model to con-
current potential flood intensity and reported occurrences of
losses caused by flood events, as well as maximising the like-
lihood using a quasi-Newton method:

Lt ∼ Bernoulli(pt ), (5)

with

log
(

pt

1−pt

)
= β0+β1Yt . (6)

2.2.2 Drought

Before being processed by the ML model, rainfall data are
used to compute the standardised precipitation index (SPI).
The SPI is a commonly used drought index, proposed by
McKee et al. (1993). Based on a comparison between the
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Table 3. Drought classification based on SPI according to McKee
et al. (1993)

Category SPI Probability (%)

Extremely wet 2.00 and above 2.3
Severely wet 1.50 to 1.99 4.4
Moderately wet 1.00 to 1.49 9.2
Near normal −0.99 to 0.99 68.2
Moderately dry −1.49 to −1.00 9.2
Severely dry −1.50 to −1.99 4.4
Extremely dry −2 and below 2.3

long-term precipitation record (at a given location for a se-
lected accumulation period) and the observed total precipi-
tation amount (for the same accumulation period), the SPI
measures the precipitation anomaly. The long-term precipita-
tion record is fitted to the gamma distribution function, which
is defined according to the following equation:

g(x)=
1

βα0(α)
xα−1e

−
x
β for x > 0, (7)

where α and β are, respectively, the shape factor and the scale
factor. The two parameters are estimated using the maximum
likelihood solutions according to the following equations:

α =
1+

√
1+ 4D

3

4D
, (8)

β =
x

α
, (9)

where x is the mean of the distribution and N is the number
of observations.

The cumulative probability G(x) is defined as

G(x)=

x∫
0

g(x)dx =
1

βα0(α)

x∫
0

xα−1e
−
x
β dx. (10)

Since the gamma function is undefined if x = 0 and pre-
cipitation can be null, the definition of cumulative probabil-
ity is adjusted to take into consideration the probability of a
zero:

H(x)= q + (1− q)G(x), (11)

where q is the probability of a zero. H is then transformed
into the standard normal distribution to obtain the SPI value:

SPI= φ−1H(x), (12)

where φ is the standard normal distribution.
The mean SPI value is therefore zero. Negative values

indicate dry anomalies, while positive values indicate wet
anomalies. Table 3 reports drought classification according
to the SPI. Conventionally, drought starts when SPI is lower

Figure 2. Learning process of a neural network (Stevens and
Antiga, 2019).

than −1. The drought event is ongoing until SPI is up to 0
(McKee et al., 1993). The main strengths of the SPI are
the fact that the index is standardised, and therefore can be
used to compare different climate regimes, and that it can be
computed for various accumulation periods (World Meteo-
rological Organization and Global Water Partnership, 2016).
In this study, SPI1, SPI3, SPI6 and SPI12 were computed,
where the numeric values in the acronym refer to the pe-
riod of accumulation in months (e.g. SPI3 indicates the stan-
dard precipitation index computed over a 3-month accumula-
tion period). Shorter accumulation periods (1–3 months) are
used to detect impacts on soil moisture and on agriculture.
Medium accumulation periods (3–6 months) are preferred to
identify reduced streamflow, and longer accumulation peri-
ods (12–48 months) indicate reduced reservoir levels (Euro-
pean Drought Observatory, 2020).

2.3 Machine learning algorithms

We now focus on the machine learning algorithms adopted in
this work, starting with a short introduction and description
of their basic functioning and next delving into the procedure
used to build a large number of models based on the domain
of possible configurations for each ML method. Finally, the
metrics used to evaluate the models are introduced, and the
reasoning behind their selection is highlighted.

2.3.1 Neural network (NN)

Neural networks are a machine learning algorithm composed
by nodes (or neurons) that are typically organised into three
types of layers: input, hidden and output. Once built, a neu-
ral network is used to understand and translate the under-
lying relationship between a set of input data (represented
by the input layer) and the corresponding target (represented
by the output layer). In recent years and with the advent of
big data, neural networks have been increasingly used to ef-
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ficiently solve many real-world problems, related for exam-
ple with pattern recognition and classification of satellite im-
ages (Dreyfus, 2005), where the capacity of this algorithm
to handle non-linearity can be put to fruition (Stevens and
Antiga, 2019). A key problem when applying neural net-
works is defining the number of hidden layers and hidden
nodes. This must usually be done specifically for each appli-
cation case, as there is no globally agreed-on procedure to de-
rive the ideal configuration of the network architecture (Mas
and Flores, 2008). Although different terminology may be
used to refer to neural networks depending on their architec-
tures (e.g, artificial neural networks, deep neural networks),
in this paper they are addressed simply as neural networks,
specifying where needed the number of hidden layers and
hidden nodes. Figure 2 displays the different parts compos-
ing a neural network and their interaction during the learning
process. A neural network with multiple layers can be repre-
sented as a sequence of equations, where the output of a layer
is the input of the following layer. Each equation is a linear
transformation of the input data, multiplied by a weight (w)
and the addition of a bias (b) to which a fixed non-linear func-
tion is applied (also called activation function):

x1 = f (w0x0+ b0)

x2 = f (w1x1+ b1)

...

y = f (wnxn+ bn). (13)

The goal of these equations is to diminish the difference
between the predicted output and the real output. This is at-
tained by minimising a so-called loss function (LF) through
the fine-tuning of the parameters of the model, the weights.
The latter procedure is carried out by an optimiser, whose
job is to update the weights of the network based on the error
returned by the LF.

The iterative learning process can be summarised by the
following steps:

1. start the network with random weights and bias;

2. pass the input data and obtain a prediction;

3. compare the prediction with the real output and compute
the LF, which is the function that the learning process is
trying to minimise;

4. backpropagate the error, updating each parameter
through an optimiser according to the LF;

5. iterate the previous step until the model is trained prop-
erly – this is achieved by stopping the training process
either when the LF is not decreasing anymore or when
a monitored metric has stopped improving over a set
amount of definition.

Specific to the training process, monitoring the training
history can provide useful information, as this graphic rep-
resentation of the process depicts the evolution over time of
the LF for both training and validation set. Looking at the
history of the training has a twofold purpose: firstly, with
the training being a minimisation problem, as long as the LF
is decreasing the model is still learning, while any eventual
plateau or uprising would mean that the model is overfitting
(or not learning anymore from the data). The latter is avoided
when the LF of the training and validation dataset displays
the same decreasing trend (Stevens and Antiga, 2019). The
monitoring assignment is carried out during the training of
the model, where its capability to store the value of train-
ing and validation loss at each iteration of the process enable
the possibility to stop the training as soon as losses are ei-
ther decreasing or plateauing over a certain number of itera-
tions. In this work, the neural network model is created and
trained using TensorFlow (Abadi et al., 2016). TensorFlow is
an open-source machine learning library that was chosen for
this work due to its flexibility, the capacity to exploit GPU
cards to ease computational costs, its ability to represent a
variety of algorithms and most importantly the possibility to
carefully evaluate the training of the model.

2.3.2 Support vector machine (SVM)

The support vector machine is a supervised learning algo-
rithm used mainly for classification analysis. It construct a
hyperplane (or set of hyperplanes) defining a decision bound-
ary between various data points representing observations in
a multidimensional space. The aim is to create a hyperplane
that separates the data on either side as homogeneously as
possible. Among all possible hyperplanes, the one that cre-
ates the greatest separation between classes is selected. The
support vectors are the points from each class that are the
closest to the hyperplane (Wang, 2005). In parametric trigger
modelling, as in many other real-world applications, the rela-
tionships between variables are non-linear. A key feature of
this technique is its ability to efficiently map the observations
into a higher-dimension space by using the so-called kernel
trick. As a result, a non-linear relationship may be trans-
formed into a linear one. A support vector machine can also
be used to produce probabilistic predictions. This is achieved
by using an appropriate method such as Platt scaling (Platt,
1999), which transforms its output into a probability distri-
bution over classes by fitting a logistic regression model to a
classifier’s scores. In this work, the support vector machine
algorithm was implemented using the C-support vector clas-
sification (Boser et al., 1992) formulation implemented with
the scikit-learn package in Python (Pedregosa et al., 2011).
Given training vectors xi ∈ Rpi = i, . . ., l and a label vector
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Figure 3. Decision boundary of the support vector machine’s algorithm, with changing regularisation parameter C.

y ∈ {0,1}n, this specific formulation is aimed at solving the
following optimisation problem:

min(w,b,ξ)=
1
2
ωtω+C

l∑
i=1

ξi

subject to y1(ω
t9(xi)+ b)≥ 1− ξi

ξi ≥ 0, i = 1, . . ., l, (14)

where ω and b are adjustable parameters of the function gen-
erating the decision boundary, 9i is a function that projects
xi into a higher dimensional space, ξi is the slack variable and
C > 0 is a regularisation parameter, which regulates the mar-
gin of the decision boundary, allowing an increasing number
of misclassifications for a lower value of C and a decreasing
number of misclassifications for higher C (Fig. 3).

2.3.3 Model construction

Below a procedure to assemble the machine learning models
is proposed, which involves techniques borrowed from the
data mining field and a deep understanding of all the com-
ponents of the algorithms. The main purpose is to identify
the actions required to establish a robust chain of model con-
struction. Hypothetically speaking, one may create a neural
network with an infinite number of layers or a support vec-
tor machine model with infinite values of the C regularisa-
tion parameters. Figure 4, an expanded diagram of the ML
algorithm box of the workflow shown in Fig. 1, describes

the steps followed in order to create the best-performing NN
and SVM models from the focus placed on the importance
of data enhancing to the selection of appropriate evaluation
metrics, exploring as many model configuration as possible,
being aware of the several parameters comprising these mod-
els and the wide ranges that these parameters can have.

Preprocessing of data

Data preprocessing (DPP) is a vital step to any ML under-
taking, as the application of techniques aimed at improving
the quality of the data before training leads to improvement
of the accuracy of the models (Crone et al., 2006). Moreover,
data preprocessing usually results in smaller and more reli-
able datasets, boosting the efficiency of the ML algorithm
(Zhang et al., 2003). The literature presents several opera-
tions that can be adopted to transform the data depending on
the type of task the model is required to carry out (Huang
et al., 2015; Felix and Lee, 2019). In this paper, preprocess-
ing operations were split into four categories: data quality
assessment, data partitioning, feature scaling and resampling
techniques aimed at dealing with class imbalance. The first
three are crucial for the development of a valid model, while
the latter is required when dealing with the classification of
rare events. Data quality assessment was carried out to en-
sure the validity of the input data, filtering out any anomalous
value (e.g. negative values of rainfall).

The partitioning of the dataset into training, validation and
testing portions is fundamental to give the model the ability
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Figure 4. Framework used to analyse the domain of possible model
configurations.

to learn from the data and avoid a problem often encountered
in ML application: overfitting. This phenomenon takes place
when a model starts overlearning from the training dataset,
picking up patterns that belong solely to the specific set of
data it is training on and that are not depictive of the real-
world application at hand, making the model unable to gen-
eralise to sample outside this specific set of data. To avoid
overfitting one should split the data into at least two parts
(McClure, 2017): the training set, upon which the model will
learn, and a validation dataset functioning as a counterpart
during the training process of the model, where the losses
obtained from the training set and those obtained from the
validation set are compared to avoid overfitting. A further
step would be to set aside a testing set of data that the model
has never seen. Evaluating the performances of the model
using data that it has never encountered before is an excel-
lent indicator of its ability to generalise. Thus, the splitting
of the data is key to the validation of the model. In this work,
the training of the NN was carried out splitting the dataset
into three parts: training (60 %), validation (15 %) and test-
ing (25 %) sets. During training, the neural networks used
only the training set, evaluating the loss on the validation set
at each iteration of the training process. After the training,
the performance of the model was evaluated on the testing

set that the model has never seen. Concerning the SVMs, a
k-fold cross validation (Mosteller and Tukey, 1968) was used
to validate the model, using 5 folds created by preserving the
percentage of sample of each class; the algorithm was there-
fore trained on 80 % of the data and its performances were
evaluated on 20 % of the remaining data that the model had
never seen.

Feature scaling is a procedure aimed at improving the
quality of the data by scaling and normalising numeric val-
ues so as to help the ML model in handling varying data in
magnitude or unit (Aksoy and Haralick, 2001). The variables
are usually rescaled to the [0,1] range or to the [−1,1] range
or normalised subtracting the mean and dividing by the stan-
dard deviation. The scaling is carried on after the splitting of
the data and is usually calibrated over the training data, and
then the testing set is scaled with the mean and variance of
the training variables (Massaron and Muller, 2016).

Lastly, when undertaking a classification task, particular
attention should be paid to addressing class imbalance, which
reflects an unequal distribution of classes within a dataset.
Imbalance means that the number of data points available
for different classes is significantly different; if there are two
classes, a balanced dataset would have approximately 50 %
points for each of the classes. For most machine learning
techniques, a little imbalance is not a problem, but when the
class imbalance is high, e.g. 85 % points for one class and
15 % for the other, standard optimisation criteria or perfor-
mance measures may not be as effective as expected (Garcia
et al., 2012). Extreme events are by definition rare; hence,
the imbalance existing in the dataset should be addressed.
One approach to address imbalances is using resampling
techniques such as oversampling (Ling and Li, 1998) and
SMOTE (Chawla et al., 2002). Oversampling is the pro-
cess of up-sampling the minority class by randomly duplicat-
ing its elements. SMOTE (Synthetic Minority Oversampling
Technique) involves the synthetic generation of data looking
at the feature space for the minority class data points and con-
sidering its k nearest neighbour where k is the desired num-
ber of synthetic generated data. Another possible approach to
address imbalances is weight balancing, which restores bal-
ance in the data by altering the way the model “looks” at the
under-represented class. Oversampling, SMOTE and class
weight balancing were the resampling techniques deemed
more appropriate to the scope of this work, namely, identi-
fying events in the minority class.

Analysis of model configurations

Up to this point, several models characteristics and a consid-
erable amount of possible operations aimed at data augmen-
tation were presented, creating an almost boundless domain
of model configurations. In order to explore such a domain,
for each ML method multiple key aspects were tested. Both
methods shared an initial investigation of the sampling tech-
nique and the combination of input datasets to be fed into the
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models; all the data resampling techniques previously intro-
duced were tested along with the data in their pristine con-
dition where the model tries to overcome the class imbal-
ance by itself. All the possible combinations of input dataset
were tested starting from one dataset for SVM and with two
datasets for NN up to the maximum number of environmen-
tal variables used. The latter procedure can be used to deter-
mine whether the addition of new information is beneficial
to the predictive skill of the model and also to identify which
datasets provide the most relevant information.

As previously discussed, these models present a multitude
of customisable facets and parameters. For the support vector
machine, the regularisation parameter C and the kernel type
were the elements chosen as the changing parts of the algo-
rithm. Five different values of C were adopted, starting from
a soft margin of the decision boundary moving towards nar-
rower margins, while three kinds of kernel functions were
used to find the separating hyperplane: linear, polynomial
and radial. The setup for a neural network is more complex
and requires the involvement of more parameters, namely,
the LF and the optimisers concerning the training process,
plus the number of layers and nodes and the activation func-
tions as key building blocks of the model architecture. Each
of the aforementioned parameters can be chosen among a
wide range of options; moreover, there is not a clear indi-
cation for the number of hidden layers or hidden nodes that
should be used for a given problem. Thus, for the purpose of
this study, the intention was to start from what was deemed
the “standard” for the classification task for each of these pa-
rameters, deviating from these standard criteria towards more
niche instances of the parameters trying to cover as much as
possible of the entire domain.

2.4 Evaluation of predictive performance

The evaluation of the predictive performance of the mod-
els is fundamental to select the best configuration within the
entire realm of possible configurations. A reliable tool to
objectively measure the differences between model outputs
and observations is the confusion matrix. Table 4 shows a
schematic confusion matrix for a binary classification case.
When dealing with thousands of configurations and, for each
configuration, with an associated range of possible threshold
probabilities, it is impracticable to manually check a table or
a graph for each setup of the model. Therefore, a numeric
value, also called evaluation metric, is often employed to
synthesise the information provided by the confusion matrix
and describe the capability of a model (Hossin and Sulaiman,
2015).

There are basic measures that are obtained from the pre-
dictions of the model for a single threshold value (i.e. value
above which an event is considered to occur). These in-
clude the precision, sensitivity, specificity and false alarm
rate, which take into consideration only one row or column
of the confusion matrix, thus overlooking other elements of

the matrix (e.g. high precision may be achieved by a model
that is predicting a high value of false negatives). Nonethe-
less, they are staples in the evaluation of binary classifica-
tion, providing insightful information depending on the prob-
lem addressed. Accuracy and F1 score, on the other hand,
are obtained by considering both directions of the confu-
sion matrix, thus giving a score that incorporates both cor-
rect predictions and misclassifications. The accuracy is the
ratio between the correct prediction over all the instances of
the dataset and is able to tell how often, overall, a model is
correct. The F1 score is the harmonic mean of precision and
recall. In its general formulation derived from the effective-
ness measure of Jones and Van Rijsbergen (1976), one may
define a Fβ score for any positive real β (Eq. 15):

Fβ = 1+β2 precision · sensitivity
(β2 · precision)+ sensitivity

, (15)

where β denotes the importance assigned to precision and
sensitivity. In the F1 score both are considered to have the
same weight. For values of β higher than 1 more significance
is given to false negatives, while β lower than 1 puts attention
on the false positive.

The goodness of a model may also be assessed in broader
terms with the aid of receiver operating characteristic (ROC)
and precision-sensitivity curves (PS). The ROC curve is
widely employed and is obtained by plotting the sensitivity
against the false alarm rate over the range of possible trig-
ger thresholds (Krzanowski and Hand, 2009). The PS curve,
as the name suggests, is obtained by plotting the precision
against the sensitivity over the range of possible thresholds.
For this work, the threshold corresponds to the range of prob-
abilities between 0 and 1. These methods allow for evaluating
a model in terms of its overall performance over the range
of probabilities, by calculating the so-called area under the
curve (AUC). It should be noted that both the ROC curve
and the accuracy metric should be used with caution when
class imbalance is involved (Saito and Rehmsmeier, 2015),
as having a large amount of true negative tends to result in a
low false-positive-rate value (FPR= 1− specificity). Table 5
summarises the metrics described above used in this paper to
evaluate model performances.

In the context of performance evaluation, it is also rele-
vant to discuss how class imbalance might affect measures
that use the true negative in their computation. Saito and
Rehmsmeier (2015) tested several metrics on datasets with
varying class imbalance and showed how accuracy, sensi-
tivity and specificity are insensitive to the class imbalance.
This kind of behaviour from a metric can be dangerous and
definitely misleading when assessing the performances of a
ML algorithm and might lead to the selection of a poorly
designed model (Sun et al., 2009), emphasising the impor-
tance of using multiple metrics when analysing model perfor-
mances. Lastly, once the domain of all configurations was es-
tablished and the best settings of the ML algorithms were se-
lected based on the highest values of F1 score and area under
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Table 4. Contingency table for the deterministic estimates of a series of binary events.

Event observed

Event predicted Yes No Total

Yes a (true positive) b (false positive) a+ b

No c (false negative) d (true negative) c+ d

Total a+ c b+ d a+ b+ c+ d = n

Figure 5. Average annual rainfall over the Dominican Republic according to the six considered datasets. (a) CCS, (b) CHIRPS, (c) CMORPH,
(d) IMERG, (e) GSMaP and (f) PERSIANN.
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Table 5. Key metrics for the evaluation of model performance; a, b,
c and d are defined in Table 4.

Metric Equation

Accuracy (a+ d)/n

Precision a/(a+ b)

Sensitivity (recall) a/(a+ c)

False alarm rate b/(b+ d)

F1 score 2 · precision·sensitivity
precision+sensitivity

AUC under the ROC curve
∫ 1

0 ROC(t)dt
AUC under the PS curve

∫ 1
0 PS(t)dt

the PS curve, the predictive performances of the models were
compared to those of logistic regression (LR) models. The
logistic regression adopted as a baseline takes as input mul-
tiple environmental variables, in line with the procedure fol-
lowed for the ML methods, and used a logit function (Eq. 6)
as a link function, neglecting interaction and non-linear ef-
fects amid predictors. The logistic regression is a more tradi-
tional statistical model whose application to index insurance
has recently been proposed and can be said to already rep-
resent in itself an improvement over common practice in the
field (Calvet et al., 2017; Figueiredo et al., 2018). Thus, this
comparison is able to provide an idea about the overall ad-
vantages of using a ML method.

3 Case study

This study adopts the Dominican Republic as its case study.
The Dominican Republic is located on the eastern part of
the island of Hispaniola, one of the Greater Antilles, in the
Caribbean region. Its area is approximatively 48 671 km2.
The central and western parts of the county are mountain-
ous, while extensive lowlands dominate the south-east (Izzo
et al., 2010).

The climate of the Dominican Republic is classified as
“tropical rainforest”. However, due to its topography, the
country’s climate shows considerable variations over short
distances. The average annual temperature is about 25 ◦C,
with January being the coldest month (average monthly tem-
perature over the period 1901–2009 of about 22 ◦C) and Au-
gust the hottest (average monthly temperature over the pe-
riod 1901–2009 of about 26 ◦C) (World Bank, 2019). Rain-
fall varies from 700 to 2400 mmyr−1, depending on the re-
gion (Payano-Almanzar and Rodriguez, 2018). The six con-
sidered rainfall datasets (described in Table 1) exhibit con-
siderable differences in average annual precipitation values
over the Dominican Republic (Fig. 5), with CMORPH show-
ing the lowest values and CHIRPS and IMERG the highest
ones. Nevertheless, the difference among absolute precipi-
tation values does not affect the results of this study since
precipitation is transformed into potential damage or SPI, as
described in Sect. 2.2.2, and therefore only relative values

are considered. It is interesting to note that all the datasets
show similar precipitation patterns; on average, over the pe-
riod from 2000 to 2019, rainfall was mainly concentrated in
north-western regions, along the Haitian borders, with the
south-western regions being the driest. The situation is dif-
ferent when considering the average soil moisture (Fig. 6).
The central regions are the wettest, while the driest areas
are located on the coast. There are no significant differences
among the four soil moisture layers.

Weather-related disasters have a significant impact on the
economy of the Dominican Republic. The country is ranked
as the 10th most vulnerable in the world and the second in
the Caribbean, as per the Climate Risk Index for 1997–2016
report (Eckstein et al., 2017). It has been affected by spatial
and temporal changes in precipitation, sea level rise, and in-
creased intensity and frequency of extreme weather events.
Climate events such as droughts and floods have had signif-
icant impacts on all the sectors of the country’s economy,
resulting in socio-economic consequences and food insecu-
rity for the country. According to the International Disaster
Database EMDAT (CRED, 2019), over the period from 1960
to present, the most frequent natural disasters were tropical
cyclones (45 % of the total natural disasters that hit the coun-
try), followed by floods (37 %) . Floods, storms and droughts
were the disasters that affected the largest number of people
and caused huge economic losses.

The performances of a ML model are strictly related to the
data the algorithm is trained on; hence, the reconstruction of
historical events (i.e. the targets), although time-consuming,
is paramount to achieve solid results. Therefore, a wide range
of text-based documents from multiple sources have been
consulted to retrieve information on past floods and droughts
that hit the Dominican Republic over the period from 2000
to 2019. International disasters databases, such as the world-
renowned EMDAT, Desinventar and ReliefWeb, have been
considered as primary sources. The events reported by the
datasets have been compared with the ones present in hazard-
specific datasets (such as FloodList and the Dartmouth Flood
Observatory) and in specific literature (Payano-Almanzar
and Rodriguez, 2018; Herrera and Ault, 2017) to produce a
reliable catalogue of historical events. Only events reported
by more than one source were included in the catalogue. Fig-
ure 7 shows the past floods and droughts hitting the Domini-
can Republic over the period from 2000 to 2019. More de-
tails on the events can be found in Tables A1 (floods) and A2
(droughts).

4 Results and discussion

The results are presented in this section separating the two
types of extreme events investigated, flood and drought. As
described in Sect. 2, both NN and SVM models require the
assembling of several components. Table 6 collects the num-
ber of model configurations explored, broken down by type
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Figure 6. Average soil moisture over the Dominican Republic in the four soil moisture layers. (a) First layer, 0–7 cm; (b) second layer,
7–28 cm; (c) third layer, 28–100 cm; (d) fourth layer, 100–289 cm.

Figure 7. Overview of floods and droughts hitting the Dominican Republic over the period 2000–2019.

of hazard and ML algorithm with their respective parameters.
The main differences between the ML models parameters for
the two hazards reside in which data are provided to the algo-
rithm and which sampling techniques are adopted. The input
dataset combination were chosen as follows:

1. all the possible combinations from one up to six rainfall
datasets (for neural networks two rainfall datasets were
considered the starting point);

2. the remaining combinations are obtained adding pro-
gressively layers of soil moisture to the ensemble of six
rainfall datasets;

3. the drought case required the investigation of the SPI
over different accumulation periods, and 1-, 3-, 6- and
12-month SPI values were used.

Neural networks and support vector machines alike are
able to return predictions (i.e. outputs) as a probability when
the activation function allows it (e.g. sigmoid function), en-
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Table 6. Breakdown of all the configuration explored by algorithm and type of hazard.

Model Parameter Flood Drought

NN

Input dataset combinations 61 combinations of environmental variables 61 combinations of environmental variables
4 SPI (1,3,6,12)

Sampling Unweighted Unweighted
Class weight Class weight
Oversampling
SMOTE

Loss Binary cross entropy Binary cross entropy

Optimiser ADAM ADAM

Number of layers & nodes Layers: [1;9] Layers: [1;9]
Nodes: 2nl+1

: 2nl+9(∗) Nodes 2nl+1
: 2nl+9(∗)

Activations ReLU ReLU
Tanh Tanh

Number of configurations 4392 8784

SVM Input dataset combinations 67 combinations of environmental variables 67 combinations of environmental variables
4 SPI (1,3,6,12)

Sampling technique Unweighted Unweighted
Class weight Class weight
Oversampling
SMOTE

C regularisation parameter C = (0.1,1,10,100,500) C = (0.1,1,10,100,500)

Kernel function Linear Linear
Polynomial Polynomial
Radial basis Radial basis

Number of configurations 4020 8040

∗ nl: number of layers.

Figure 8. Comparison of the predictions of the three methods over the testing set vs. the observed events. Flood case.

abling the possibility to find an optimal value of probabil-
ity to assess the quality of the predictions . Therefore, for
each hazard, the results are presented by introducing at first
the models achieving the highest value of the F1 score for
a given configuration and threshold probability (i.e. a point
in the ROC or precision-sensitivity space). Secondly, the

best-performing model configurations for the whole range
of probabilities according to the AUC of the precision-
sensitivity curve are presented and discussed. The reasoning
behind the selection of these metrics is discussed in Sect. 2.4.
As described in the same section, the performances of the
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Figure 9. Performance evaluation for the flood case: (a) perfor-
mances of the top 1 % configurations in the precision-sensitivity
space highlighting the highest F1 score and (b) comparison of ML
methods with LR with combination using increasing number of in-
put datasets.

ML algorithms are evaluated through a comparison with a
LR model.

4.1 Flooding

The flood case presented a strong challenge from the data
point of view. Inspecting the historical catalogue of events
the case study reported 5516 d with no flood events occur-
ring and 156 d of flood, meaning approximately a 35 : 1 ratio
of no event / event. This strong imbalance required the use
of the data augmentation techniques presented in Sect. 2.3.1.
The neural network settings returning the highest F1 score
were given by the model using all 10 datasets applying an

oversampling to the input data. The network architecture was
made up of nine hidden layers with the number of nodes for
each layer as already described, activated by a ReLU func-
tion. The LF adopted was the binary cross entropy, and the
weights update was regulated by an Adam optimiser. The
highest F1 score for the support vector machine was attained
by the model configuration using an unweighted model tak-
ing advantage of all 10 environmental variables with a radial
basis function as kernel type and a C parameter equal to 500
(i.e. harder margin). Figure 8 shows the predictions of the
two machine learning models and the baseline logistic re-
gression, as well as the observed events. The corresponding
evaluation metrics are summarised in Table 7, which refer to
results measured on the testing set and, therefore, never seen
by the model. Overall, the two ML methods outperform de-
cisively the logistic regression with a slightly higher F1 score
for the neural network.

In Fig. 9a the highest F1 scores by method are reported in
the precision-sensitivity space along with all the points be-
longing to the top 1 % configurations according to F1 score.
The separation between the ML methods and the logistic re-
gression can be appreciated, particularly when looking at the
emboldened dots in Fig. 9 representing the highest F1 score
for each method. Also, the plot highlights a denser cloud of
orange points in the upper left corner and a denser cloud of
red points in the lower right corner, attesting, on average, a
higher sensitivity achieved by the NNs and a higher precision
by the SVMs.

Figure 9b depicts the goodness of NN and SVM vs. the LR
model, showing how the F1 scores of the best-performing
settings for each of the three methods vary by increasing
the number of input datasets. This plot shows that the SVM
and LR models have similar performances up to the sec-
ond layer of soil moisture, while NN performs considerably
better overall. The NN and the SVM as opposed to the LR
show an increase in the performances of the models with in-
creasing information provided. The LR seems to plateau af-
ter four rainfall datasets, and the improvements are minimal
after the first layer of soil moisture is fed to the model. This
would suggest, as expected, that the ML algorithms are better
equipped to treat larger amounts of data.

Figure 10 presents the best-performing configurations ac-
cording to the area under the PS curve. For neural network,
this configuration is the one that also contains the highest
F1 score, whereas for support vector machine the optimal
configuration shares the same feature of the one with the
best F1 score with the exception of a softer decision bound-
ary in the form of C equal to 100. The results reported in
Fig. 10a and b about the best-performing configurations are
further confirmation of the importance of picking the right
compound measurement to evaluate the predictive skill of a
model. In fact, according to the metrics using the true nega-
tive in their computation (i.e. specificity, accuracy and ROC),
one may think that these models are rather good, and this
deceitful behaviour is not scaled appropriately for very bad
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Table 7. Comparison metrics best configuration for flood by method.

Method Precision Sensitivity Specificity F1 score Accuracy

NN 0.57 0.57 0.99 0.57 0.98
SVM 0.63 0.49 0.99 0.55 0.98
LR 0.46 0.42 0.99 0.43 0.97

Figure 10. Best-performing configurations for the flood case: (a) PS curve; (b) ROC curve; and variation of true positive, false positive, true
negative and F1 score for the range of probability (c) in NN and (d) in SVM.

models. The aim of this work is to correctly identify a flood
event rather than being correct when none occur; hence, over-
looking the correct rejections seems reasonable.

Figure 10a and b shed a light on the inaccuracy of the ROC
curve and the relative area under the curve (AUC). On the
right the ROC curves are displayed, whilst on the left the PS
curves of the ideal configurations for each method according
to the highest AUC are displayed. The points in both curves
represent a 0.01 increment in the trigger probability. The re-
ceiving operator curve indicates the NN as the worst model
being the closest to the 45◦ line and having, along with SVM,
a lower AUC with respect to the logistic model. This signal
is strongly contradicted by other metrics and the precision-
sensitivity curve, where the red dots are the closest to the

upper-right corner where the perfect model resides. The be-
haviour of these curves is linked, once again, to the disparity
in the classes. Additionally, looking at Fig. 10a, all models
are pretty distant from the always-positive classifier (i.e. a
baseline independent from class distribution represented by
the black hyperbole in bold) more appropriate as a baseline
to beat than a random classifier (Flach and Kull, 2015).

Figure 10c and d show the behaviour of the prediction re-
turn by the ML models over the whole range of probabilities.
It is noticeable that although the peak value of the F1 score is
very close for both ML methods, the neural network displays
steadier prediction over an extended range of probabilities.
In fact, a robust identification of the true positive and low
variability in false-positive and false-negative detection al-
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Figure 11. Properties of top 1 % model configurations for the flood
case. The stars denote the characteristics of the best-performing
configurations according to the highest area under the precision-
sensitivity curve.

lows the model to have strong performances independently
of which probability threshold one may choose.

Figure 11 portrays the properties of the top 1 % model
configuration for both methods according to the area under
the PS curve. Neural networks prefer the adoption of over-
sampling to enhance the input data, and almost 60 % of the
configurations use a rectified linear unit function to activate
its layer. Relative to the architecture of the network, a double
peak can be observed at eight and nine layers, where the best-
performing configurations can be found, but an even larger
presence of model configuration with layers is noticeable.
On the other hand, support vector machines use the high-
est value of the C parameter, which is the one used by the
configuration attaining the highest F1 score. A bigger divide
can be observed amid the sampling technique and the ker-
nel function, where data input with no manipulation provided
(i.e. unweighted) is the most recurrent option occurring more

than 40 % of the time; a similar percentage is attained by the
radial basis function.

4.2 Drought

The data transformation for drought required the computa-
tion of the SPI from the precipitation data. The SPI was
computed for different accumulation periods: shorter accu-
mulation periods (1–3 months) detect immediate impacts of
drought (on soil moisture and on agriculture), while longer
accumulation periods (12 months) indicate reduced stream-
flow and reservoir levels. As shown in tables B1 and B2
models using SPI6 and SPI12 showed the best results, and
the values of the metrics are close to each other; thus, for
brevity and in favour of clarity only one of the two is re-
ported, namely, SPI over a 6-month accumulation period.
Contrary to the flood case, the drought historical catalogue of
events reported 1283 weeks with no droughts and 696 weeks
of drought, with a ratio around 1.85 : 1 of no event / event.
Albeit balanced, models with weights assigned were also in-
vestigated. The performances of the neural networks and the
support vector machines were evaluated, like before, by a set
of evaluation metrics and curves and a comparison against
a logistic regression. It is important to point out that SPI is
updated at a weekly scale, with the same temporal resolu-
tion of the predictions, implying that each week counts as an
event. Considering the duration of the drought in our histori-
cal catalogue of events (i.e. 17 weeks for the shortest one and
148 weeks for the longest), the temporal resolution adopted is
an aspect to keep in mind when analysing the results obtained
for these models. The highest F1 scores for the drought case
were obtained for the NN model using all the datasets with
weights for the classes. The network architecture was made
up of eight hidden layers with the relative number of nodes
activated by a ReLU function. The LF adopted was the binary
cross entropy, and the parameter updates were regulated by
an Adam optimiser. Regarding the SVM, the highest F1 score
was achieved from the unweighted model using all 10 envi-
ronmental variables with radial basis function as kernel type
and a C parameter equal to 100.

Figure 12 displays the predictions of the three methods
against the observed events. In particular, it is possible to ap-
preciate the reduction of false positive provided by NN and
SVM. The strong improvements brought by the ML algo-
rithms are confirmed by the metrics summarised in Table 8,
where NN and SVM show high values across all the predic-
tion skill measurements. The NN results as the most accurate
model, while the SVM is the more precise overall. The im-
plementation of either model should take into account the
job that these models are required to take on. If the purpose
of the model is to balance the occurrences of false alarms and
missed events, the NN is preferable. For a task that would re-
quire a stronger focus on the minimisation of false positives
(i.e. reduce the number of false alarms), the SVM should be
used. Figure 13 remarks the distance between the ML meth-
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Table 8. Comparison metrics best configuration for drought by method.

Method Precision Sensitivity Specificity F1 score Accuracy

NN 0.95 1.00 0.99 0.97 0.99
SVM 0.96 0.96 0.99 0.96 0.98
LR 0.63 0.74 0.89 0.68 0.85

Figure 12. Comparison of the predictions of the three methods over the testing set vs. the observed events. Drought case.

ods and the logistics regression as well as echoes what is
observed for flood – that the points for NN gravitate towards
the area of the plot with a higher sensitivity value, while the
SVM points tend to stay on the precision side of the plot.

The addition of further datasets is still beneficial to the
performances of the ML methods as displayed by Fig. 13b.
The increasing trend for both ML models starts to slow down
from the fourth rainfall datasets onward, which might be
due to the redundancy of the rainfall datasets. On the other
hand, the addition of the layers of soil moisture improves
the performances especially for the support vector machine,
which keeps improving steadily, reaching the highest value
of F1 score when the whole set of information is fed to the
model.

Figure 14 refers to the best-performing configurations
identified as the ones with the highest area under the
precision-sensitivity curve. The best configurations for ei-
ther neural network and support vector machine are the ones
containing the point with the highest F1 score, thus having
the same features previously listed. The disparities between
classes for drought are closer than those for flood, giving the
accuracy, and the ROC curve, more reliability from a quality
assessment point of view. Looking at Fig. 14a and b, both
precision-sensitivity and ROC curves show the ML methods
decisively outperforming the no-skill and always-positive
classifier. Furthermore, both plots exhibit a tendency of the
neural network to group the points closer to each other to-
wards the area containing the ideal model, which may indi-
cate a more dependable prediction of the events as indicated
by Fig. 14c. In fact, while the two configurations have a high

value of F1 score for a wide range of probabilities, the neural
network has steadier prediction of true positive, false posi-
tive and false negative. This behaviour of the neural network
could also be linked to the miscalibration of the confidence
(i.e. distance between the probability returned by the model
and the ground truth) associated with the predicted probabil-
ity (Guo et al., 2017). The phenomenon arose with the advent
of modern neural networks that employ several layers (i.e.
tens and hundreds) and a multitude of nodes were able to im-
prove the accuracy of their prediction while worsening the
confidence of said prediction. Indeed, a miscalibrated neural
network would return a probability that would not reflect the
likelihood that the event will occur, turning into a numeric
output produced by the model.

The feature breakdown of the top 1 % model configura-
tions shown in Fig. 15 shows that the best NN configurations
are predominantly the ones using weight for the two classes
and the ReLU activation function. Also, a large number of
models use a high number of layers in accordance with the
configuration with the highest area under the PS curve. The
fact that most of the configurations obtaining the best per-
formances have deeper layers may be a confirmation of the
miscalibration affecting the estimated probabilities. For the
SVM models, Fig. 15 denotes a marked component of the
models using harder margins (i.e. high values of the C pa-
rameter) and the radial basis function as a kernel.
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Figure 13. Performance evaluation for the drought case: (a) per-
formances of the top 1 % configurations in the precision-sensitivity
space highlighting the highest F1 score and (b) comparison of ML
methods with LR with combination using increasing number of in-
put datasets.

5 Conclusions

In this study we developed and implemented a machine
learning framework with the aim of improving the identifica-
tion of extreme events, particularly for parametric insurance.
The framework merges a priori knowledge of the underly-
ing physical processes of weather events with the ability of
ML methods to efficiently exploit big data and can be used
to support informed decision making regarding the selection
of a model and the definition of a trigger threshold. Neural
network and support vector machine models were used to
classify flood and drought events for the Dominican Repub-
lic, using satellite data of environmental variables describ-
ing these two types of natural hazards. Model performance
was assessed using state-of-the-art evaluation metrics. In this
context, we also discussed the importance of using appro-

priate metrics to evaluate the performances of the models,
especially when dealing with extreme events that may have
a strong influence on some performance evaluators. It should
be noted that while here we have focused on performance-
based evaluation measures, an alternative approach would be
to quantify the utility of the predictive systems. By taking
into account actual user expenses and thus specific weights
for different model outcomes, a utility-based approach could
potentially lead to different decisions regarding model se-
lection and definition of the trigger threshold (Murphy and
Ehrendorfer, 1987; Figueiredo et al., 2018). This aspect is
outside the scope of the present article and warrants further
research.

The proposed approach involves a preceding data manipu-
lation phase where the data are preprocessed to enhance the
performances of the ML methods. A procedure aimed at de-
signing and selecting the best parameters for the models was
also introduced. Once trained, the ML algorithms decisively
outperformed the logistic regression, here used as a base-
line for both hazards. The predictive skill of both NN and
SVM improved with increasing information fed to the mod-
els; indeed, the best performances were always obtained by
models using the maximum number of data available, hint-
ing at the possibility of introducing additional and more di-
verse environmental variables to further improve the results.
While the ML models performed well for both hazards, the
drought case showed exceptionally high values for all the
adopted model evaluation metrics. This discrepancy in the
results between flood and drought might have several expla-
nations. Indeed, the two hazards behave differently both in
time and space. On the one hand, the aggregation at a national
scale is surely an obstacle for a rather local phenomenon like
flood. On the other hand, defining a drought event weekly
could be misleading since droughts are events spanning sev-
eral months and even years. Using a higher resolution (e.g.
regional scale) and introducing data describing the terrain of
the area should enhance the detection of flood events. For
the drought case, introducing a threshold for the number of
consecutive weeks predicted before considering an event or
contemplating weekly predictions as a fraction of the overall
duration of the event are extensions to this work that deserve
investigation to address the issue of potential overestimation
of predictive skill.

Neural networks showed more robustness when com-
pared to support vector machines, showing a higher value
of F1 score for a wide range of parameters. As already men-
tioned, this insensitivity of NN to the probability threshold
adopted may lead back to the inability of the model to re-
produce probability estimates that are a fair representation of
the likelihood of occurrence of the event. Further develop-
ments of neural networks models should take into considera-
tion procedures that allow the assessment and the quantifica-
tion of the confidence calibration of probability estimates.

A preliminary investigation of the characteristics shared
by the best-performing model showed that some features are
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Figure 14. Best-performing configurations for the drought case: (a) PS curve; (b) ROC curve; and variation of true positive, false positive,
true negative and F1 score for the range of probability (c) in NN and (d) in SVM.

more relevant than others when building the ML model, de-
pending on the type of algorithm and also the type of haz-
ard. An in-depth study of how the performances of the mod-
els change when changing model properties could highlight
which are the most important properties of the model to tune,
speeding up the model construction phase and reducing the
computational cost of running the algorithms. It is also worth
noting that albeit this work focuses on the application of neu-
ral network and support vector machine models, we expect
that comparable results could be obtained using other ma-
chine learning algorithms, which calls for further research.

Although several issues raised in this article warrant fur-
ther research, there is clear potential in the application of ma-
chine learning algorithms in the context of weather index in-
surance. The first reason for this is strictly linked to the per-
formances of the models. Indeed, the capability of these algo-
rithms to reduce basis risk with respect to traditional methods
could play a key role in the adoption of parametric insurance
in the Dominican context and more generally for those coun-

tries that possess a low level of information about risk. The
second aspect, perhaps the most intriguing from the weather
index insurance point of view, regards the ability of these al-
gorithms to utilise and improve their performances using a
growing amount of information (i.e. increasing the number
of input variables). Indeed, the significant advances in data
collection and availability observed in the last decades (i.e.
improved instruments, more satellite missions, open access
to data store services) made it so that a vast number of data
are readily and freely available on a daily basis. Being able to
rely on global data that are disentangled from the resources
of a given territory, both from the point of view of climate
data (e.g. lack of rain-gauge networks) and from the point of
view of information about past natural disasters, is an impor-
tant feature of the work presented that would make the pro-
posed approach feasible and appealing for other countries.
Furthermore, similar technological improvements might be
expected in the further development of machine learning al-
gorithms. The scientific evolution of these models and the
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Figure 15. Properties of top 1 % model configurations for the
drought case. The stars denote the characteristics of the best-
performing configurations according to the highest area under the
precision-sensitivity curve.

possibility of establishing a pipeline that automatically and
objectively trains the algorithm over time with updated and
improved data (always allowing the monitoring of the pro-
cess) are other appealing features of these kinds of models.
In conclusion, the framework presented and topics discussed
in this study provide a scientific basis for the development of
robust and operationalisable ML-based parametric risk trans-
fer products.
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Appendix A: Catalogue of historical events

The following tables report the catalogue of historical events
for floods (Table A1) and droughts (Table A2).

Table A1. Past flood events in the Dominican Republic over the period from 2000 to 2019.

Start date End date Duration (d) Reference

16 Apr 2003 18 Apr 2003 3 ADRC and UNDRR (2020), CRED (2019)
14 Nov 2003 14 Nov 2003 1 ADRC and UNDRR (2020), CRED (2019)
20 Nov 2003 24 Nov 2003 5 Brakenridge (2002)
6 Dec 2003 8 Dec 2003 3 Brakenridge (2002)
23 May 2004 25 May 2004 3 ADRC and UNDRR (2020), CRED (2019)
16 Sep 2004 18 Sep 2004 3 ADRC and UNDRR (2020)
23 Oct 2005 26 Oct 2005 4 Brakenridge (2002)
26 Mar 2007 30 Mar 2007 5 Brakenridge (2002), CRED (2019)
18 Aug 2007 21 Aug 2007 4 OCHA (2020)
28 Oct 2007 1 Nov 2007 5 Brakenridge (2002), CRED (2019)
11 Dec 2007 12 Dec 2007 2 ADRC and UNDRR (2020), CRED (2019)
15 Aug 2008 18 Aug 2008 4 ADRC and UNDRR (2020), CRED (2019)
23 Jan 2009 30 Jan 2009 8 ADRC and UNDRR (2020), Brakenridge (2002)
21 May 2009 25 May 2009 5 ADRC and UNDRR (2020)
15 Feb 2010 16 Feb 2010 2 ADRC and UNDRR (2020), CRED (2019), Brakenridge (2002)
22 Jun 2010 27 Jun 2010 6 ADRC and UNDRR (2020), Brakenridge (2002)
15 Jul 2010 24 Jul 2010 10 CRED (2019)
2 Jun 2011 7 Jun 2011 6 ADRC and UNDRR (2020)
4 Aug 2011 8 Aug 2011 5 Brakenridge (2002), CRED (2019)
23 Apr 2012 25 Apr 2012 3 ADRC and UNDRR (2020), CRED (2019)
25 Aug 2012 30 Aug 2012 6 OCHA (2020)
22 Oct 2012 30 Oct 2012 9 OCHA (2020)
23 Aug 2014 25 Aug 2014 3 Brakenridge (2002)
1 Nov 2014 6 Nov 2014 6 Davies et al. (2008), CRED (2019)
20 Feb 2015 21 Feb 2015 2 ADRC and UNDRR (2020), CRED (2019), Davies et al. (2008)
28 Aug 2015 29 Aug 2015 2 OCHA (2020)
7 May 2016 8 May 2016 2 Brakenridge (2002), Davies et al. (2008)
31 Jul 2016 2 Aug 2016 3 Davies et al. (2008)
2 Oct 2016 6 Oct 2016 5 The International Charter Space and Major Disasters (2016)
7 Nov 2016 15 Nov 2016 9 Brakenridge (2002), CRED (2019)
22 Apr 2017 25 Apr 2017 4 Brakenridge (2002), CRED (2019), Davies et al. (2008)
6 Sep 2017 7 Sep 2017 2 OCHA (2020)
20 Sep 2017 25 Sep 2017 6 Davies et al. (2008)
15 Mar 2018 20 Mar 2018 6 Brakenridge (2002), Davies et al. (2008)
4 May 2018 7 May 2018 4 Davies et al. (2008)

Table A2. Past drought events in the Dominican Republic over the period from 2000 to 2019.

Start date End date Duration (d) Reference

May 2000 Mar 2003 1034 Cornell University (2018)
Oct 2009 Apr 2010 182 Payano-Almanzar and Rodriguez (2018)
Nov 2013 Sep 2014 304 Payano-Almanzar and Rodriguez (2018)
Apr 2015 Jan 2017 641 Payano-Almanzar and Rodriguez (2018)
Nov 2018 Mar 2019 120 Global Disaster Alert and Coordination System (2018)
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Appendix B: Performance of NN and SVM in drought
event identification when using different SPI
accumulation periods

The following tables report the performances of NN (Ta-
ble B1) and SVM (Table B2) in drought event identification
when using different SPI accumulation periods.

Table B1. NN metrics median value of the top 5 % configuration according to F1 score.

Precision Sensitivity Specificity F1 score Accuracy

SPI1 0.7931 0.9000 0.9448 0.8387 0.9202
SPI3 0.8163 0.8864 0.9581 0.8454 0.9336
SPI6 0.9024 0.8919 0.9819 0.9167 0.9704
SPI12 0.9423 0.9800 0.9868 0.9524 0.9751

Table B2. SVM metrics median value of the top 5 % configuration according to F1 score.

Precision Sensitivity Specificity F1 score Accuracy

SPI1 0.8764 0.7915 0.9684 0.7709 0.9048
SPI3 0.8977 0.8660 0.9744 0.8341 0.9300
SPI6 0.9459 0.9629 0.9861 0.9317 0.9716
SPI12 0.9532 0.9606 0.9856 0.9465 0.9751
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