Articles | Volume 20, issue 11
https://doi.org/10.5194/nhess-20-3057-2020
https://doi.org/10.5194/nhess-20-3057-2020
Research article
 | 
14 Nov 2020
Research article |  | 14 Nov 2020

Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean area) historical simulations by high-quality observational datasets in southern Italy: insights on drought assessment

David J. Peres, Alfonso Senatore, Paola Nanni, Antonino Cancelliere, Giuseppe Mendicino, and Brunella Bonaccorso

Related authors

Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023,https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Brief communication: Introducing rainfall thresholds for landslide triggering based on artificial neural networks
Pierpaolo Distefano, David J. Peres, Pietro Scandura, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 22, 1151–1157, https://doi.org/10.5194/nhess-22-1151-2022,https://doi.org/10.5194/nhess-22-1151-2022, 2022
Short summary
Brief communication: Key papers of 20 years in Natural Hazards and Earth System Sciences
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022,https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds
David J. Peres, Antonino Cancelliere, Roberto Greco, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 18, 633–646, https://doi.org/10.5194/nhess-18-633-2018,https://doi.org/10.5194/nhess-18-633-2018, 2018
Short summary
Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach
D. J. Peres and A. Cancelliere
Hydrol. Earth Syst. Sci., 18, 4913–4931, https://doi.org/10.5194/hess-18-4913-2014,https://doi.org/10.5194/hess-18-4913-2014, 2014
Short summary

Related subject area

Hydrological Hazards
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024,https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024,https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024,https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024,https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024,https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary

Cited articles

Adeniyi, M. O. and Dilau, K. A.: Assessing the link between Atlantic Niño 1 and drought over West Africa using CORDEX regional climate models, Theor. Appl. Climatol., 131, 937–949, https://doi.org/10.1007/s00704-016-2018-0, 2018. 
Arnell, N., Liu, C., Compagnucci, R., da Cunha, L., Hanaki, K., Howe, C., Mailu, G., Shiklomanov, I., Stakhiv, E., and Doll, P.: Hydrology and Water Resources, in: Climate Change2001: Impacts, Adaptation, and Vulnerability, edited by: McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S., Cambridge University Press, Cambridge, UK, 192–234, 2001. 
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., Reinhardt, T., Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. 
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013. 
Bonaccorso, B., Cancelliere, A., and Rossi, G.: An analytical formulation of return period of drought severity, Stoch. Environ. Res. Risk Assess., 17, 157–174, https://doi.org/10.1007/s00477-003-0127-7, 2003. 
Download
Short summary
Regional climate models (RCMs) are commonly used for high-resolution assessment of climate change impacts. This research assesses the reliability of several RCMs in a Mediterranean area (southern Italy), comparing historic climate and drought characteristics with high-density and high-quality ground-based observational datasets. We propose a general methodology and identify the more skilful models able to reproduce precipitation and temperature variability as well as drought characteristics.
Altmetrics
Final-revised paper
Preprint