Articles | Volume 20, issue 11
https://doi.org/10.5194/nhess-20-3057-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-20-3057-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean area) historical simulations by high-quality observational datasets in southern Italy: insights on drought assessment
David J. Peres
Department of Civil Engineering and Architecture, University of
Catania, Catania, 95123, Italy
Alfonso Senatore
CORRESPONDING AUTHOR
Department of Environmental Engineering, University of Calabria,
Arcavacata di Rende (CS), 87036, Italy
Paola Nanni
Department of Civil Engineering and Architecture, University of
Catania, Catania, 95123, Italy
Antonino Cancelliere
Department of Civil Engineering and Architecture, University of
Catania, Catania, 95123, Italy
Giuseppe Mendicino
Department of Environmental Engineering, University of Calabria,
Arcavacata di Rende (CS), 87036, Italy
Brunella Bonaccorso
Department of Engineering, University of Messina, St Agata, Messina,
98166, Italy
Related authors
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023, https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Short summary
We propose an approach exploiting PCA to derive hydrometeorological landslide-triggering thresholds using multi-layered soil moisture data from ERA5-Land reanalysis. Comparison of thresholds based on single- and multi-layered soil moisture information provides a means to identify the significance of multi-layered data for landslide triggering in a region. In Sicily, the proposed approach yields thresholds with a higher performance than traditional precipitation-based ones (TSS = 0.71 vs. 0.50).
Pierpaolo Distefano, David J. Peres, Pietro Scandura, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 22, 1151–1157, https://doi.org/10.5194/nhess-22-1151-2022, https://doi.org/10.5194/nhess-22-1151-2022, 2022
Short summary
Short summary
In the communication, we introduce the use of artificial neural networks (ANNs) for improving the performance of rainfall thresholds for landslide early warning. Results show how ANNs using rainfall event duration and mean intensity perform significantly better than a classical power law based on the same variables. Adding peak rainfall intensity as input to the ANN improves performance even more. This further demonstrates the potentialities of the proposed machine learning approach.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
David J. Peres, Antonino Cancelliere, Roberto Greco, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 18, 633–646, https://doi.org/10.5194/nhess-18-633-2018, https://doi.org/10.5194/nhess-18-633-2018, 2018
Short summary
Short summary
We investigate the influence of imprecise identification of triggering instants on landslide early warning thresholds by perturbing an error-free synthetic dataset. Combined impacts of uncertainty with respect to temporal discretization of data and criteria for singling out rainfall events are assessed as well. Results show that thresholds can be significantly affected by these uncertainty sources.
D. J. Peres and A. Cancelliere
Hydrol. Earth Syst. Sci., 18, 4913–4931, https://doi.org/10.5194/hess-18-4913-2014, https://doi.org/10.5194/hess-18-4913-2014, 2014
Short summary
Short summary
A Monte Carlo approach, combining rainfall-stochastic models and hydrological and slope stability physically based models, is used to derive rainfall thresholds of landslide triggering. The uncertainty in threshold assessment related to variability of rainfall intensity within events and to past rainfall (antecedent rainfall) is analyzed and measured via ROC-based indexes, with a specific focus dedicated to the widely used power-law rainfall intensity-duration (I-D) thresholds.
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023, https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Short summary
We propose an approach exploiting PCA to derive hydrometeorological landslide-triggering thresholds using multi-layered soil moisture data from ERA5-Land reanalysis. Comparison of thresholds based on single- and multi-layered soil moisture information provides a means to identify the significance of multi-layered data for landslide triggering in a region. In Sicily, the proposed approach yields thresholds with a higher performance than traditional precipitation-based ones (TSS = 0.71 vs. 0.50).
Brunella Bonaccorso, Carmelo Cammalleri, Athanasios Loukas, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 1857–1862, https://doi.org/10.5194/nhess-22-1857-2022, https://doi.org/10.5194/nhess-22-1857-2022, 2022
Pierpaolo Distefano, David J. Peres, Pietro Scandura, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 22, 1151–1157, https://doi.org/10.5194/nhess-22-1151-2022, https://doi.org/10.5194/nhess-22-1151-2022, 2022
Short summary
Short summary
In the communication, we introduce the use of artificial neural networks (ANNs) for improving the performance of rainfall thresholds for landslide early warning. Results show how ANNs using rainfall event duration and mean intensity perform significantly better than a classical power law based on the same variables. Adding peak rainfall intensity as input to the ANN improves performance even more. This further demonstrates the potentialities of the proposed machine learning approach.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Benjamin Fersch, Alfonso Senatore, Bianca Adler, Joël Arnault, Matthias Mauder, Katrin Schneider, Ingo Völksch, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020, https://doi.org/10.5194/hess-24-2457-2020, 2020
Lu Li, Marie Pontoppidan, Stefan Sobolowski, and Alfonso Senatore
Hydrol. Earth Syst. Sci., 24, 771–791, https://doi.org/10.5194/hess-24-771-2020, https://doi.org/10.5194/hess-24-771-2020, 2020
Short summary
Short summary
We assessed the impact of initial conditions on convection-permitting simulations of a flood event over mountainous terrain. The calibrated convection-permitting model performs better than the simpler conceptual model. Discharge is slightly more sensitive to spin-up time than precipitation due to the influence of soil moisture. A maximum of 0.5 m of snow is converted to runoff irrespective of the initial snow depth, and this snowmelt contributes to discharge mostly during peak flow period.
Beatrice Monteleone, Brunella Bonaccorso, and Mario Martina
Nat. Hazards Earth Syst. Sci., 20, 471–487, https://doi.org/10.5194/nhess-20-471-2020, https://doi.org/10.5194/nhess-20-471-2020, 2020
Short summary
Short summary
This study proposes a new drought index that combines meteorological and agricultural drought aspects. The index is scalable, transferable all over the globe, can be updated in near real time and is a
remote-sensing product, since only satellite-based datasets were employed. A set of rules to objectively identify drought events is also implemented. We found that the set of rules, applied together with the new index, outperformed conventional drought indices in identifying droughts in Haiti.
Alfonso Senatore, Luca Furnari, and Giuseppe Mendicino
Hydrol. Earth Syst. Sci., 24, 269–291, https://doi.org/10.5194/hess-24-269-2020, https://doi.org/10.5194/hess-24-269-2020, 2020
Short summary
Short summary
This paper addresses the question of how different resolutions of sea surface temperature (SST) representation affect regional operational hydro-meteorological forecasting chains over coastal Mediterranean catchments by analysing two different severe events that affected southern Italy in 2015. Even if the benefits of high-resolution SST representation are hidden by other sources of uncertainty, the experiments highlight that the impact is non-negligible in most cases.
Elenio Avolio, Ottavio Cavalcanti, Luca Furnari, Alfonso Senatore, and Giuseppe Mendicino
Nat. Hazards Earth Syst. Sci., 19, 1619–1627, https://doi.org/10.5194/nhess-19-1619-2019, https://doi.org/10.5194/nhess-19-1619-2019, 2019
Short summary
Short summary
This is the first scientific report of the flash flood of 20 August 2018 on “Raganello Gorge” (Southern Italy), an extreme event with rather specific features (very localized in space and time), which unfortunately caused 10 victims. The meteo-hydrological dynamics were reasonably reconstructed and the forecasting skills were evaluated using an innovative modelling approach, including fully coupled atmospheric-hydrological modelling and improved representation of Sea Surface Temperature.
David J. Peres, Antonino Cancelliere, Roberto Greco, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 18, 633–646, https://doi.org/10.5194/nhess-18-633-2018, https://doi.org/10.5194/nhess-18-633-2018, 2018
Short summary
Short summary
We investigate the influence of imprecise identification of triggering instants on landslide early warning thresholds by perturbing an error-free synthetic dataset. Combined impacts of uncertainty with respect to temporal discretization of data and criteria for singling out rainfall events are assessed as well. Results show that thresholds can be significantly affected by these uncertainty sources.
Giuseppina Brigandì, Giuseppe Tito Aronica, Brunella Bonaccorso, Roberto Gueli, and Giuseppe Basile
Adv. Geosci., 44, 79–88, https://doi.org/10.5194/adgeo-44-79-2017, https://doi.org/10.5194/adgeo-44-79-2017, 2017
Short summary
Short summary
The paper presents the flood and landslide early warning system HEWS developed by the University of Messina for the
Integrated Multi-Risk Decentralised Functional Centreof Sicily (Italy). HEWS implements a methodology based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF) to issue alert bulletins both for floods and landslide. The software Delft-FEWS has been adopted as operation platform to support the implementation of HEWS.
Brunella Bonaccorso, Giuseppina Brigandì, and Giuseppe Tito Aronica
Adv. Geosci., 44, 15–22, https://doi.org/10.5194/adgeo-44-15-2017, https://doi.org/10.5194/adgeo-44-15-2017, 2017
Short summary
Short summary
A Monte Carlo approach for deriving flood frequency curves in ungauged basins in Sicily region (Italy) is proposed. The procedure consists of: (i) a regional frequency analysis of extreme rainfall series, combined with Huff curves-based synthetic hyetographs, for design storms and (ii) a rainfall-runoff model, based on the Time-Area technique, to generate synthetic hydrographs. Validation of the procedure is carried out on four gauged river basins in Sicily (Italy) with promising results.
D. J. Peres and A. Cancelliere
Hydrol. Earth Syst. Sci., 18, 4913–4931, https://doi.org/10.5194/hess-18-4913-2014, https://doi.org/10.5194/hess-18-4913-2014, 2014
Short summary
Short summary
A Monte Carlo approach, combining rainfall-stochastic models and hydrological and slope stability physically based models, is used to derive rainfall thresholds of landslide triggering. The uncertainty in threshold assessment related to variability of rainfall intensity within events and to past rainfall (antecedent rainfall) is analyzed and measured via ROC-based indexes, with a specific focus dedicated to the widely used power-law rainfall intensity-duration (I-D) thresholds.
Related subject area
Hydrological Hazards
Better prepared but less resilient: the paradoxical impact of frequent flood experience on adaptive behavior and resilience
Assessing the spatial spread–skill of ensemble flood maps with remote-sensing observations
An integrated modeling approach to evaluate the impacts of nature-based solutions of flood mitigation across a small watershed in the southeast United States
Indicator-to-impact links to help improve agricultural drought preparedness in Thailand
The potential of open-access data for flood estimations: uncovering inundation hotspots in Ho Chi Minh City, Vietnam, through a normalized flood severity index
Analyzing the informative value of alternative hazard indicators for monitoring drought hazard for human water supply and river ecosystems at the global scale
A methodological framework for the evaluation of short-range flash-flood hydrometeorological forecasts at the event scale
Hydrological drought forecasting under a changing environment in the Luanhe River basin
A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 2: Historical context and relation to climate change
Brief communication: The potential use of low-cost acoustic sensors to detect rainfall for short-term urban flood warnings
Brief communication: On the extremeness of the July 2021 precipitation event in western Germany
A climate-conditioned catastrophe risk model for UK flooding
A globally applicable framework for compound flood hazard modeling
Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany
Brief communication: Inclusiveness in designing an early warning system for flood resilience
Evolution of multivariate drought hazard, vulnerability and risk in India under climate change
A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis
Bare-earth DEM generation from ArcticDEM and its use in flood simulation
Comparison of estimated flood exposure and consequences generated by different event-based inland flood inundation maps
How uncertain are precipitation and peak flow estimates for the July 2021 flooding event?
Estimating the likelihood of roadway pluvial flood based on crowdsourced traffic data and depression-based DEM analysis
A multi-strategy-mode waterlogging-prediction framework for urban flood depth
Multiscale flood risk assessment under climate change: the case of the Miño River in the city of Ourense, Spain
Sensitivity analysis of erosion on the landward slope of an earthen flood defence submitted to wave overtoppings
Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data
Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal
Brief communication: Impact forecasting could substantially improve the emergency management of deadly floods: case study July 2021 floods in Germany
Brief communication: Western Europe flood in 2021 – mapping agriculture flood exposure from synthetic aperture radar (SAR)
Comprehensive space–time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin
A new index to quantify the extremeness of precipitation across scales
Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe
Assessing flood hazard changes using climate model forcing
Characterizing multivariate coastal flooding events in a semi-arid region: the implications of copula choice, sampling, and infrastructure
Different drought types and the spatial variability in their hazard, impact, and propagation characteristics
More than heavy rain turning into fast-flowing water – a landscape perspective on the 2021 Eifel floods
Integrated drought risk assessment to support adaptive policymaking in the Netherlands
INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
Assessing flooding impact to riverine bridges: an integrated analysis
Warming of 0.5 °C may cause double the economic loss and increase the population affected by floods in China
First application of the Integrated Karst Aquifer Vulnerability (IKAV) method – potential and actual vulnerability in Yucatán, Mexico
Brief communication: Seismological analysis of flood dynamics and hydrologically triggered earthquake swarms associated with Storm Alex
System vulnerability to flood events and risk assessment of railway systems based on national and river basin scales in China
Machine-learning blends of geomorphic descriptors: value and limitations for flood hazard assessment across large floodplains
A performance-based approach to quantify atmospheric river flood risk
Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme
Extreme-coastal-water-level estimation and projection: a comparison of statistical methods
Spatiotemporal evolution and meteorological triggering conditions of hydrological drought in the Hun River basin, NE China
The Cambodian Mekong floodplain under future development plans and climate change
Geo-historical database of flood impacts in Alpine catchments (HIFAVa database, Arve River, France, 1850–2015)
Compound flood modeling framework for surface–subsurface water interactions
Lisa Köhler, Torsten Masson, Sabrina Köhler, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 23, 2787–2806, https://doi.org/10.5194/nhess-23-2787-2023, https://doi.org/10.5194/nhess-23-2787-2023, 2023
Short summary
Short summary
We analyzed the impact of flood experience on adaptive behavior and self-reported resilience. The outcomes draw a paradoxical picture: the most experienced people are the most adapted but the least resilient. We find evidence for non-linear relationships between the number of floods experienced and resilience. We contribute to existing knowledge by focusing specifically on the number of floods experienced and extending the rare scientific literature on the influence of experience on resilience.
Helen Hooker, Sarah L. Dance, David C. Mason, John Bevington, and Kay Shelton
Nat. Hazards Earth Syst. Sci., 23, 2769–2785, https://doi.org/10.5194/nhess-23-2769-2023, https://doi.org/10.5194/nhess-23-2769-2023, 2023
Short summary
Short summary
Ensemble forecasts of flood inundation produce maps indicating the probability of flooding. A new approach is presented to evaluate the spatial performance of an ensemble flood map forecast by comparison against remotely observed flooding extents. This is important for understanding forecast uncertainties and improving flood forecasting systems.
Betina I. Guido, Ioana Popescu, Vidya Samadi, and Biswa Bhattacharya
Nat. Hazards Earth Syst. Sci., 23, 2663–2681, https://doi.org/10.5194/nhess-23-2663-2023, https://doi.org/10.5194/nhess-23-2663-2023, 2023
Short summary
Short summary
We used an integrated model to evaluate the impacts of nature-based solutions (NBSs) on flood mitigation across the Little Pee Dee and Lumber River watershed, the Carolinas, US. This area is strongly affected by climatic disasters, which are expected to increase due to climate change and urbanization, so exploring an NBS approach is crucial for adapting to future alterations. Our research found that NBSs can have visible effects on the reduction in hurricane-driven flooding.
Maliko Tanguy, Michael Eastman, Eugene Magee, Lucy J. Barker, Thomas Chitson, Chaiwat Ekkawatpanit, Daniel Goodwin, Jamie Hannaford, Ian Holman, Liwa Pardthaisong, Simon Parry, Dolores Rey Vicario, and Supattra Visessri
Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, https://doi.org/10.5194/nhess-23-2419-2023, 2023
Short summary
Short summary
Droughts in Thailand are becoming more severe due to climate change. Understanding the link between drought impacts on the ground and drought indicators used in drought monitoring systems can help increase a country's preparedness and resilience to drought. With a focus on agricultural droughts, we derive crop- and region-specific indicator-to-impact links that can form the basis of targeted mitigation actions and an improved drought monitoring and early warning system in Thailand.
Leon Scheiber, Mazen Hoballah Jalloul, Christian Jordan, Jan Visscher, Hong Quan Nguyen, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2313–2332, https://doi.org/10.5194/nhess-23-2313-2023, https://doi.org/10.5194/nhess-23-2313-2023, 2023
Short summary
Short summary
Numerical models are increasingly important for assessing urban flooding, yet reliable input data are oftentimes hard to obtain. Taking Ho Chi Minh City as an example, this paper explores the usability and reliability of open-access data to produce preliminary risk maps that provide first insights into potential flooding hotspots. As a key novelty, a normalized flood severity index is presented which combines flood depth and duration to enhance the interpretation of hydro-numerical results.
Claudia Herbert and Petra Döll
Nat. Hazards Earth Syst. Sci., 23, 2111–2131, https://doi.org/10.5194/nhess-23-2111-2023, https://doi.org/10.5194/nhess-23-2111-2023, 2023
Short summary
Short summary
This paper presents a new method for selecting streamflow drought hazard indicators for monitoring drought hazard for human water supply and river ecosystems in large-scale drought early warning systems. Indicators are classified by their inherent assumptions about the habituation of people and ecosystems to the streamflow regime and their level of drought characterization, namely drought magnitude (water deficit at a certain point in time) and severity (cumulated magnitude since drought onset).
Maryse Charpentier-Noyer, Daniela Peredo, Axelle Fleury, Hugo Marchal, François Bouttier, Eric Gaume, Pierre Nicolle, Olivier Payrastre, and Maria-Helena Ramos
Nat. Hazards Earth Syst. Sci., 23, 2001–2029, https://doi.org/10.5194/nhess-23-2001-2023, https://doi.org/10.5194/nhess-23-2001-2023, 2023
Short summary
Short summary
This paper proposes a methodological framework designed for event-based evaluation in the context of an intense flash-flood event. The evaluation adopts the point of view of end users, with a focus on the anticipation of exceedances of discharge thresholds. With a study of rainfall forecasts, a discharge evaluation and a detailed look at the forecast hydrographs, the evaluation framework should help in drawing robust conclusions about the usefulness of new rainfall ensemble forecasts.
Min Li, Mingfeng Zhang, Runxiang Cao, Yidi Sun, and Xiyuan Deng
Nat. Hazards Earth Syst. Sci., 23, 1453–1464, https://doi.org/10.5194/nhess-23-1453-2023, https://doi.org/10.5194/nhess-23-1453-2023, 2023
Short summary
Short summary
It is an important disaster reduction strategy to forecast hydrological drought. In order to analyse the impact of human activities on hydrological drought, we constructed the human activity factor based on the method of restoration. With the increase of human index (HI) value, hydrological droughts tend to transition to more severe droughts. The conditional distribution model involving of human activity factor can further improve the forecasting accuracy of drought in the Luanhe River basin.
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Nadav Peleg, Herminia Torelló-Sentelles, Grégoire Mariéthoz, Lionel Benoit, João P. Leitão, and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1233–1240, https://doi.org/10.5194/nhess-23-1233-2023, https://doi.org/10.5194/nhess-23-1233-2023, 2023
Short summary
Short summary
Floods in urban areas are one of the most common natural hazards. Due to climate change enhancing extreme rainfall and cities becoming larger and denser, the impacts of these events are expected to increase. A fast and reliable flood warning system should thus be implemented in flood-prone cities to warn the public of upcoming floods. The purpose of this brief communication is to discuss the potential implementation of low-cost acoustic rainfall sensors in short-term flood warning systems.
Katharina Lengfeld, Paul Voit, Frank Kaspar, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 1227–1232, https://doi.org/10.5194/nhess-23-1227-2023, https://doi.org/10.5194/nhess-23-1227-2023, 2023
Short summary
Short summary
Estimating the severity of a rainfall event based on the damage caused is easy but highly depends on the affected region. A less biased measure for the extremeness of an event is its rarity combined with its spatial extent. In this brief communication, we investigate the sensitivity of such measures to the underlying dataset and highlight the importance of considering multiple spatial and temporal scales using the devastating rainfall event in July 2021 in central Europe as an example.
Paul D. Bates, James Savage, Oliver Wing, Niall Quinn, Christopher Sampson, Jeffrey Neal, and Andrew Smith
Nat. Hazards Earth Syst. Sci., 23, 891–908, https://doi.org/10.5194/nhess-23-891-2023, https://doi.org/10.5194/nhess-23-891-2023, 2023
Short summary
Short summary
We present and validate a model that simulates current and future flood risk for the UK at high resolution (~ 20–25 m). We show that UK flood losses were ~ 6 % greater in the climate of 2020 compared to recent historical values. The UK can keep any future increase to ~ 8 % if all countries implement their COP26 pledges and net-zero ambitions in full. However, if only the COP26 pledges are fulfilled, then UK flood losses increase by ~ 23 %; and potentially by ~ 37 % in a worst-case scenario.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 809–822, https://doi.org/10.5194/nhess-23-809-2023, https://doi.org/10.5194/nhess-23-809-2023, 2023
Short summary
Short summary
Data-driven models are becoming more of a surrogate that overcomes the limitations of the computationally expensive 2D hydrodynamic models to map urban flood hazards. However, the model's ability to generalize outside the training domain is still a major challenge. We evaluate the performance of random forest and convolutional neural networks to predict urban floodwater depth and investigate their transferability outside the training domain.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Venkataswamy Sahana and Arpita Mondal
Nat. Hazards Earth Syst. Sci., 23, 623–641, https://doi.org/10.5194/nhess-23-623-2023, https://doi.org/10.5194/nhess-23-623-2023, 2023
Short summary
Short summary
In an agriculture-dependent, densely populated country such as India, drought risk projection is important to assess future water security. This study presents the first comprehensive drought risk assessment over India, integrating hazard and vulnerability information. Future drought risk is found to be more significantly driven by increased vulnerability resulting from societal developments rather than climate-induced changes in hazard. These findings can inform planning for drought resilience.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Yinxue Liu, Paul D. Bates, and Jeffery C. Neal
Nat. Hazards Earth Syst. Sci., 23, 375–391, https://doi.org/10.5194/nhess-23-375-2023, https://doi.org/10.5194/nhess-23-375-2023, 2023
Short summary
Short summary
In this paper, we test two approaches for removing buildings and other above-ground objects from a state-of-the-art satellite photogrammetry topography product, ArcticDEM. Our best technique gives a 70 % reduction in vertical error, with an average difference of 1.02 m from a benchmark lidar for the city of Helsinki, Finland. When used in a simulation of rainfall-driven flooding, the bare-earth version of ArcticDEM yields a significant improvement in predicted inundation extent and water depth.
Joseph L. Gutenson, Ahmad A. Tavakoly, Mohammad S. Islam, Oliver E. J. Wing, William P. Lehman, Chase O. Hamilton, Mark D. Wahl, and T. Christopher Massey
Nat. Hazards Earth Syst. Sci., 23, 261–277, https://doi.org/10.5194/nhess-23-261-2023, https://doi.org/10.5194/nhess-23-261-2023, 2023
Short summary
Short summary
Emergency managers use event-based flood inundation maps (FIMs) to plan and coordinate flood emergency response. We perform a case study test of three different FIM frameworks to see if FIM differences lead to substantial differences in the location and magnitude of flood exposure and consequences. We find that the FIMs are very different spatially and that the spatial differences do produce differences in the location and magnitude of exposure and consequences.
Mohamed Saadi, Carina Furusho-Percot, Alexandre Belleflamme, Ju-Yu Chen, Silke Trömel, and Stefan Kollet
Nat. Hazards Earth Syst. Sci., 23, 159–177, https://doi.org/10.5194/nhess-23-159-2023, https://doi.org/10.5194/nhess-23-159-2023, 2023
Short summary
Short summary
On 14 July 2021, heavy rainfall fell over central Europe, causing considerable damage and human fatalities. We analyzed how accurate our estimates of rainfall and peak flow were for these flooding events in western Germany. We found that the rainfall estimates from radar measurements were improved by including polarimetric variables and their vertical gradients. Peak flow estimates were highly uncertain due to uncertainties in hydrological model parameters and rainfall measurements.
Arefeh Safaei-Moghadam, David Tarboton, and Barbara Minsker
Nat. Hazards Earth Syst. Sci., 23, 1–19, https://doi.org/10.5194/nhess-23-1-2023, https://doi.org/10.5194/nhess-23-1-2023, 2023
Short summary
Short summary
Climate change, urbanization, and aging infrastructure contribute to flooding on roadways. This study evaluates the potential for flood reports collected from Waze – a community-based navigation app – to predict these events. Waze reports correlate primarily with low-lying depressions on roads. Therefore, we developed two data-driven models to determine whether roadways will flood. Analysis showed that in the city of Dallas, drainage area and imperviousness are the most significant contributors.
Zongjia Zhang, Jun Liang, Yujue Zhou, Zhejun Huang, Jie Jiang, Junguo Liu, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 4139–4165, https://doi.org/10.5194/nhess-22-4139-2022, https://doi.org/10.5194/nhess-22-4139-2022, 2022
Short summary
Short summary
An innovative multi-strategy-mode waterlogging-prediction framework for predicting waterlogging depth is proposed in the paper. The framework selects eight regression algorithms for comparison and tests the prediction accuracy and robustness of the model under different prediction strategies. Ultimately, the accuracy of predicting water depth after 30 min can exceed 86.1 %. This can aid decision-making in terms of issuing early warning information and determining emergency responses in advance.
Diego Fernández-Nóvoa, Orlando García-Feal, José González-Cao, Maite deCastro, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3957–3972, https://doi.org/10.5194/nhess-22-3957-2022, https://doi.org/10.5194/nhess-22-3957-2022, 2022
Short summary
Short summary
A multiscale analysis, where the historical and future precipitation data from the CORDEX project were used as input in a hydrological model (HEC-HMS) that, in turn, feeds a 2D hydraulic model (Iber+), was applied to the case of the Miño-Sil basin (NW Spain), specifically to Ourense city, in order to analyze future changes in flood hazard. Detailed flood maps indicate an increase in the frequency and intensity of future floods, implying an increase in flood hazard in important areas of the city.
Clément Lutringer, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, and Jena Jeong
EGUsphere, https://doi.org/10.5194/egusphere-2022-1204, https://doi.org/10.5194/egusphere-2022-1204, 2022
Short summary
Short summary
We developped a system able to to predict, knowing the appropriate characteristics of the flood defence structure and sea state, the return periods of potentially dangerous events as well as a ranking of parameters by order of uncertainty. The model is a combination of statistical and empirical methods that have been applied to a mediterranean earthen dyke. This shows that the most important characteristics of the dyke are its geometrical features such as its height slope angles.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Melanie Fischer, Jana Brettin, Sigrid Roessner, Ariane Walz, Monique Fort, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 22, 3105–3123, https://doi.org/10.5194/nhess-22-3105-2022, https://doi.org/10.5194/nhess-22-3105-2022, 2022
Short summary
Short summary
Nepal’s second-largest city has been rapidly growing since the 1970s, although its valley has been affected by rare, catastrophic floods in recent and historic times. We analyse potential impacts of such floods on urban areas and infrastructure by modelling 10 physically plausible flood scenarios along Pokhara’s main river. We find that hydraulic effects would largely affect a number of squatter settlements, which have expanded rapidly towards the river by a factor of up to 20 since 2008.
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022, https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Short summary
The paper presents a fast 2D hydraulic simulation model for flood propagation that enables operational forecasts of spatially distributed inundation depths, flood extent, flow velocities, and other flood impacts. The detailed spatial forecast of floods and flood impacts is a large step forward from the currently operational forecasts of discharges at selected gauges, thus enabling a more targeted flood management and early warning.
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022, https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Short summary
This study depicts the flood-affected areas in western Europe in July 2021 and particularly the agriculture land that was under flood inundation. The results indicate that the total inundated area over western Europe is about 1920 km2, of which 1320 km2 is in France. Around 64 % of the inundated area is agricultural land. We expect that the agricultural productivity in western Europe will have been severely impacted.
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022, https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary
Short summary
Estimating the magnitude of rare to very rare floods is a challenging task due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and amounts differ considerably between individual events and floods from different parts of the basin coincide. We show that a hydrometeorological model chain can provide plausible estimates in this setting and can thus inform flood risk and safety assessments for critical infrastructure.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 22, 2791–2805, https://doi.org/10.5194/nhess-22-2791-2022, https://doi.org/10.5194/nhess-22-2791-2022, 2022
Short summary
Short summary
To better understand how the frequency and intensity of heavy precipitation events (HPEs) will change with changing climate and to adapt disaster risk management accordingly, we have to quantify the extremeness of HPEs in a reliable way. We introduce the xWEI (cross-scale WEI) and show that this index can reveal important characteristics of HPEs that would otherwise remain hidden. We conclude that the xWEI could be a valuable instrument in both disaster risk management and research.
Angelica Tarpanelli, Alessandro C. Mondini, and Stefania Camici
Nat. Hazards Earth Syst. Sci., 22, 2473–2489, https://doi.org/10.5194/nhess-22-2473-2022, https://doi.org/10.5194/nhess-22-2473-2022, 2022
Short summary
Short summary
We analysed 10 years of river discharge data from almost 2000 sites in Europe, and we extracted flood events, as proxies of flood inundations, based on the overpasses of Sentinel-1 and Sentinel-2 satellites to derive the percentage of potential inundation events that they were able to observe. Results show that on average 58 % of flood events are potentially observable by Sentinel-1 and only 28 % by Sentinel-2 due to the obstacle of cloud coverage.
David P. Callaghan and Michael G. Hughes
Nat. Hazards Earth Syst. Sci., 22, 2459–2472, https://doi.org/10.5194/nhess-22-2459-2022, https://doi.org/10.5194/nhess-22-2459-2022, 2022
Short summary
Short summary
A new method was developed to estimate changes in flood hazard under climate change. We use climate projections covering New South Wales, Australia, with two emission paths of business as usual and one with reduced emissions. We apply our method to the lower floodplain of the Gwydir Valley with changes in flood hazard provided over the next 90 years compared with the previous 50 years. We find that changes in flood hazard decrease over time within the Gwydir Valley floodplain.
Joseph T. D. Lucey and Timu W. Gallien
Nat. Hazards Earth Syst. Sci., 22, 2145–2167, https://doi.org/10.5194/nhess-22-2145-2022, https://doi.org/10.5194/nhess-22-2145-2022, 2022
Short summary
Short summary
Coastal flooding can result from multiple flood drivers (e.g., tides, waves, river flows, rainfall) occurring at the same time. This study characterizes flooding events caused by high marine water levels and rain. Results show that wet-season coinciding sampling may better describe extreme flooding events in a dry, tidally dominated region. A joint-probability-based function is then used to estimate sea wall impacts on urban coastal flooding.
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Marjolein J. P. Mens, Gigi van Rhee, Femke Schasfoort, and Neeltje Kielen
Nat. Hazards Earth Syst. Sci., 22, 1763–1776, https://doi.org/10.5194/nhess-22-1763-2022, https://doi.org/10.5194/nhess-22-1763-2022, 2022
Short summary
Short summary
Many countries have to prepare for droughts by proposing policy actions to increase water supply, reduce water demand, or limit the societal impact. Societal cost–benefit analysis is required to support decision-making for a range of future scenarios, accounting for climate change and socio-economic developments. This paper presents a framework to assess drought policy actions based on quantification of drought risk and exemplifies it for the Netherlands’ drought risk management strategy.
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley
Nat. Hazards Earth Syst. Sci., 22, 1559–1576, https://doi.org/10.5194/nhess-22-1559-2022, https://doi.org/10.5194/nhess-22-1559-2022, 2022
Short summary
Short summary
The interaction of flow, structure and network is complex, and yet to be fully understood. This study aims to establish rigorous practices of computational fluid dynamics (CFD) for modelling hydrodynamic forces on inundated bridges, and understanding the consequences of such impacts on the surrounding network. The objectives of this study are to model hydrodynamic forces as the demand on the bridge structure, to advance a structural reliability and network-level analysis.
Lulu Liu, Jiangbo Gao, and Shaohong Wu
Nat. Hazards Earth Syst. Sci., 22, 1577–1590, https://doi.org/10.5194/nhess-22-1577-2022, https://doi.org/10.5194/nhess-22-1577-2022, 2022
Short summary
Short summary
The impact of extreme events is increasing with global warming. Based on future scenario data and an improved quantitative assessment model of natural-disaster risk, this study analyses the spatial and temporal patterns of floods in China at 1.5 °C and 2 °C of global warming, quantitatively assesses the socioeconomic risks posed by floods, and determines the integrated risk levels. Global warming of 1.5 °C can effectively reduce the population affected and the economic risks of floods.
Miguel Moreno-Gómez, Carolina Martínez-Salvador, Rudolf Liedl, Catalin Stefan, and Julia Pacheco
Nat. Hazards Earth Syst. Sci., 22, 1591–1608, https://doi.org/10.5194/nhess-22-1591-2022, https://doi.org/10.5194/nhess-22-1591-2022, 2022
Short summary
Short summary
Current vulnerability methods, as tools to protect groundwater resources from pollution, present some limitations and drawbacks: the roles of population and economic activities are not considered by such methods. The methodology presented in this work combines natural characteristics and human-driven conditions of a given region to improve the process of groundwater vulnerability analysis. Results indicate the reliability of this alternative method to improve groundwater protection strategies.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 22, 1469–1486, https://doi.org/10.5194/nhess-22-1469-2022, https://doi.org/10.5194/nhess-22-1469-2022, 2022
Short summary
Short summary
We retrieve descriptors of the terrain morphology from a digital elevation model of a 105 km2 study area and blend them through decision tree models to map flood susceptibility and expected water depth. We investigate this approach with particular attention to (a) the comparison with a selected single-descriptor approach, (b) the goodness of decision trees, and (c) the performance of these models when applied to data-scarce regions. We find promising pathways for future research.
Corinne Bowers, Katherine A. Serafin, and Jack Baker
Nat. Hazards Earth Syst. Sci., 22, 1371–1393, https://doi.org/10.5194/nhess-22-1371-2022, https://doi.org/10.5194/nhess-22-1371-2022, 2022
Short summary
Short summary
Atmospheric rivers (ARs) cause significant flooding on the US west coast. We present a new Performance-based Atmospheric River Risk Analysis (PARRA) framework that connects models of atmospheric forcings, hydrologic impacts, and economic consequences to better estimate losses from AR-induced river flooding. We apply the PARRA framework to a case study in Sonoma County, CA, USA, and show that the framework can quantify the potential benefit of flood mitigation actions such as home elevation.
Yves Tramblay and Pere Quintana Seguí
Nat. Hazards Earth Syst. Sci., 22, 1325–1334, https://doi.org/10.5194/nhess-22-1325-2022, https://doi.org/10.5194/nhess-22-1325-2022, 2022
Short summary
Short summary
Monitoring soil moisture is important during droughts, but very few measurements are available. Consequently, land-surface models are essential tools for reproducing soil moisture dynamics. In this study, a hybrid approach allowed for regionalizing soil water content using a machine learning method. This approach proved to be efficient, compared to the use of soil property maps, to run a simple soil moisture accounting model, and therefore it can be applied in various regions.
Maria Francesca Caruso and Marco Marani
Nat. Hazards Earth Syst. Sci., 22, 1109–1128, https://doi.org/10.5194/nhess-22-1109-2022, https://doi.org/10.5194/nhess-22-1109-2022, 2022
Short summary
Short summary
We comparatively evaluate the predictive performance of traditional and new approaches to estimate the probability distributions of extreme coastal water levels. The metastatistical approach maximizes the use of observational information and provides reliable estimates of high quantiles with respect to traditional methods. Leveraging the increased estimation accuracy afforded by this approach, we investigate future changes in the frequency of extreme total water levels.
Shupeng Yue, Xiaodan Sheng, and Fengtian Yang
Nat. Hazards Earth Syst. Sci., 22, 995–1014, https://doi.org/10.5194/nhess-22-995-2022, https://doi.org/10.5194/nhess-22-995-2022, 2022
Short summary
Short summary
To develop drought assessment and early warning systems, it is necessary to explore the characteristics of drought and its propagation process. In this article, a generalized and efficient drought research framework is studied and verified. It includes the evaluation of the spatiotemporal evolution, the construction of the return period calculation model, and the quantitative analysis of the meteorological trigger conditions of drought based on an improved Bayesian network model.
Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu
Nat. Hazards Earth Syst. Sci., 22, 967–983, https://doi.org/10.5194/nhess-22-967-2022, https://doi.org/10.5194/nhess-22-967-2022, 2022
Short summary
Short summary
We studied the cumulative impact of future development and climate change scenarios on discharge and floods in the Cambodian Mekong floodplain. We found that hydropower impacts dominate, acting in opposition to climate change impacts to drastically increase dry season flows and reduce wet season flows even when considering the higher RCP8.5 level. The consequent reduction in flood extent and duration may reduce regional flood risk but may also have negative impacts on floodplain productivity.
Eva Boisson, Bruno Wilhelm, Emmanuel Garnier, Alain Mélo, Sandrine Anquetin, and Isabelle Ruin
Nat. Hazards Earth Syst. Sci., 22, 831–847, https://doi.org/10.5194/nhess-22-831-2022, https://doi.org/10.5194/nhess-22-831-2022, 2022
Short summary
Short summary
We present the database of Historical Impacts of Floods in the Arve Valley (HIFAVa). It reports flood occurrences and impacts (1850–2015) in a French Alpine catchment. Our results show an increasing occurrence of impacts from 1920 onwards, which is more likely related to indirect source effects and/or increasing exposure rather than hydrological changes. The analysis reveals that small mountain streams caused more impacts (67 %) than the main river.
Francisco Peña, Fernando Nardi, Assefa Melesse, Jayantha Obeysekera, Fabio Castelli, René M. Price, Todd Crowl, and Noemi Gonzalez-Ramirez
Nat. Hazards Earth Syst. Sci., 22, 775–793, https://doi.org/10.5194/nhess-22-775-2022, https://doi.org/10.5194/nhess-22-775-2022, 2022
Short summary
Short summary
Groundwater-induced flooding, a rare phenomenon that is increasing in low-elevation coastal cities due to higher water tables, is often neglected in flood risk mapping due to its sporadic frequency and considerably lower severity with respect to other flood hazards. A loosely coupled flood model is used to simulate the interplay between surface and subsurface flooding mechanisms simultaneously. This work opens new horizons on the development of compound flood models from a holistic perspective.
Cited articles
Adeniyi, M. O. and Dilau, K. A.: Assessing the link between Atlantic
Niño 1 and drought over West Africa using CORDEX regional climate
models, Theor. Appl. Climatol., 131, 937–949,
https://doi.org/10.1007/s00704-016-2018-0, 2018.
Arnell, N., Liu, C., Compagnucci, R., da Cunha, L., Hanaki, K., Howe, C., Mailu, G., Shiklomanov, I., Stakhiv, E., and Doll, P.: Hydrology and Water Resources, in: Climate Change2001: Impacts, Adaptation, and Vulnerability, edited by: McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S.,
Cambridge University Press, Cambridge, UK, 192–234, 2001.
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M.,
Reinhardt, T., Baldauf, M., Seifert, A., Förstner, J., Majewski, D.,
Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical
Weather Prediction with the COSMO Model: Description and Sensitivities, Mon.
Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
Bonaccorso, B., Cancelliere, A., and Rossi, G.: An analytical formulation of
return period of drought severity, Stoch. Environ. Res. Risk Assess., 17, 157–174,
https://doi.org/10.1007/s00477-003-0127-7, 2003.
Bonaccorso, B., Cancelliere, A., and Rossi, G.: Methods for Drought Analysis
and Forecasting, in: Methods and Applications of Statistics in the
Atmospheric and Earth Sciences, Hoboken, John Wiley and Sons,
ISBN: 9780470503447, 150–184, 2012.
Bonaccorso, B., Peres, D. J., Cancelliere, A., and Rossi, G.: Large Scale
Probabilistic Drought Characterization Over Europe, Water Resour. Manag.,
27, 1675–1692, https://doi.org/10.1007/s11269-012-0177-z, 2013.
Bonaccorso, B., Peres, D. J., Castano, A., and Cancelliere, A.: SPI-Based
Probabilistic Analysis of Drought Areal Extent in Sicily, Water Resour.
Manag., 29, 459–470, https://doi.org/10.1007/s11269-014-0673-4, 2015a.
Bonaccorso, B., Cancelliere, A., and Rossi, G.: Probabilistic forecasting of
drought class transitions in Sicily (Italy) using Standardized Precipitation
Index and North Atlantic Oscillation Index, J. Hydrol., 526, 136–150, https://doi.org/10.1016/j.jhydrol.2015.01.070, 2015b.
Bordi, I. and Sutera, A.: An analysis of drought in Italy in the least fifty
years, Nuovo Cimento C, 25, 185–206, 2002.
Cancelliere, A. and Salas, J.: Drought length properties for periodic
stochastic hydrological data, Water Resour. Res., 10, 1–13, 2004.
Cancelliere, A. and Salas, J.: Drought probabilities and return period for
annual streamflows series, J. Hydrol., 391, 77–89, 2010.
Centro Funzionale Multirischi ARPACAL: Dati Storici, available at: http://www.cfd.calabria.it/, last access: 6 November 2020.
Christensen, J. H., Kjellström, E. K., Giorgi, F., Lenderink, G., and
Rummukainen, M.: Weight assignment in regional climate models, Clim. Res., 44,
179–194, 2010.
Christensen, O. B., Drews, M., Christensen, J. H., Dethloff, K., Ketelsen,
K., Hebestadt, I., and Rinke, A.: The HIRHAM Regional Climate Model Version 5
(beta), Tech. Rep. 06-17, 5, 1–22, 2007.
Colin, J., Déqué, M., Radu, R., and Somot, S.: Sensitivity study of
heavy precipitation in Limited Area Model climate simulations: influence of
the size of the domain and the use of the spectral nudging technique, Tellus
A, 62, 591–604,
https://doi.org/10.1111/j.1600-0870.2010.00467.x, 2010.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Coordinated Downscaling Experiment – European Domain (EURO-CORDEX): EURO-CORDEX Data, available at: http://www.cfd.calabria.it/, last access: 6 November 2020.
Coppola, E., Giorgi, F., Rauscher, S. A., and Piani, C.: Model weighting based on
mesoscale structures in precipitation and temperature in an ensemble of
regional climate models, Clim. Res., 44, 121–134, 2010.
De Troch, R., Hamdi, R., Van de Vyver, H., Geleyn, J.-F., Termonia, P.,
Troch, R. De, Hamdi, R., Vyver, H. Van de, Geleyn, J.-F., and Termonia, P.:
Multiscale Performance of the ALARO-0 Model for Simulating Extreme Summer
Precipitation Climatology in Belgium, J. Climate, 26, 8895–8915,
https://doi.org/10.1175/JCLI-D-12-00844.1, 2013.
Diasso, U. and Abiodun, B. J.: Drought modes in West Africa and how well
CORDEX RCMs simulate them, Theor. Appl. Climatol., 128, 223–240,
https://doi.org/10.1007/s00704-015-1705-6, 2017.
Di Virgilio, G., Evans, J. P., Di Luca, A., Olson, R., Argüeso, D.,
Kala, J., Andrys, J., Hoffmann, P., Katzfey, J. J., and Rockel, B.:
Evaluating reanalysis-driven CORDEX regional climate models over Australia:
model performance and errors, Clim. Dynam., 53, 2985–3005, https://doi.org/10.1007/s00382-019-04672-w, 2019.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp,
L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1,
2013.
Endris, H. S., Omondi, P., Jain, S., Lennard, C., Hewitson, B., Chang'a, L.,
Awange, J. L., Dosio, A., Ketiem, P., Nikulin, G., Panitz, H. J.,
Büchner, M., Stordal, F., and Tazalika, L.: Assessment of the performance
of CORDEX regional climate models in simulating East African precipitation,
J. Climate, 26, 8453–8475, https://doi.org/10.1175/JCLI-D-12-00708.1, 2013.
Foley, A. and Kelman, I.: EURO-CORDEX regional climate model simulation of
precipitation on Scottish islands (1971–2000): model performance and
implications for decision-making in topographically complex regions, Int. J.
Climatol., 38, 1087–1095, https://doi.org/10.1002/joc.5210, 2018.
Gampe, D., Schmid, J., and Ludwig, R.: Impact of Reference Dataset Selection
on RCM Evaluation, Bias Correction, and Resulting Climate Change Signals of
Precipitation, J. Hydrometeorol., 20, 1813–1828, https://doi.org/10.1175/JHM-D-18-0108.1, 2019.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak,
K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh,
L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D.,
Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H.,
Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C.,
Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM
simulations for the Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, 1–4,
https://doi.org/10.1029/2006GL025734, 2006.
Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean
region, Global Planet. Change, 63, 90–104,
https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Gonzalez, J. and Valdes, J.: Bivariate drought recurrence analysis using
tree ring reconstructions, J. Hydrol. Eng., 8, 247–258, 2003.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hart, O. E. and Halden, R. U.: On the need to integrate uncertainty into
U.S. water resource planning, Sci. Total Environ., 691, 1262–1270,
https://doi.org/10.1016/j.scitotenv.2019.07.164, 2019.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D.,
and New, M.: A European daily high-resolution gridded data set of surface
temperature and precipitation for 1950–2006, J. Geophys. Res.-Atmos.,
113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Hazeleger, W., Severijns, C., Semmler, T., Ştefănescu, S., Yang, S.,
Wang, X., Wyser, K., Dutra, E., Baldasano, J. M., Bintanja, R., Bougeault,
P., Caballero, R., Ekman, A. M. L., Christensen, J. H., van den Hurk, B.,
Jimenez, P., Jones, C., Kållberg, P., Koenigk, T., McGrath, R., Miranda,
P., van Noije, T., Palmer, T., Parodi, J. A., Schmith, T., Selten, F.,
Storelvmo, T., Sterl, A., Tapamo, H., Vancoppenolle, M., Viterbo, P., and
Willén, U.: EC-Earth, B. Am. Meteorol. Soc., 91, 1357–1364,
https://doi.org/10.1175/2010BAMS2877.1, 2010.
Huntington, T. G.: Evidence for intensification of the global water cycle:
Review and synthesis, J. Hydrol., 319, 83–95,
https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change,
IPCC, Geneva, Switzerland, 151 pp., 2014.
IPCC: Global warming of 1.5∘C. An IPCC Special Report on the
impacts of global warming of 1.5∘C above pre-industrial levels
and related global greenhouse gas emission pathways, in the context of
strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty, edited by:
Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S.,
Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T.,
Tignor, M., and Waterfield, T., Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2018.
Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA): Annali idrologici Storici, available at: http://www.acq.isprambiente.it/annalipdf/, last access: 6 November 2020.
Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevåg, A., Seland, Ø., Drange, H., Kristjansson, J. E., Medhaug, I., Sand, M., and Seierstad, I. A.: The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections, Geosci. Model Dev., 6, 389–415, https://doi.org/10.5194/gmd-6-389-2013, 2013.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N.,
Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C.,
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D.,
Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C.,
Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new
high-resolution climate change projections for European impact research,
Reg. Environ. Chang., 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Kjellström, E., Thejll, P., Rummukainen, M., Christensen, J. H., Boberg,
F., Christensen, O. B., and Maule, C. F.: Emerging regional climate change
signals for Europe under varying large-scale circulation conditions, Clim.
Res., 56, 103–119, https://doi.org/10.3354/cr01146, 2013.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kotlarski, S., Szabó, P., Herrera, S., Räty, O., Keuler, K., Soares,
P. M., Cardoso, R. M., Bosshard, T., Pagé, C., Boberg, F., Gutiérrez,
J. M., Isotta, F. A., Jaczewski, A., Kreienkamp, F., Liniger, M. A., Lussana,
C., and Pianko-Kluczyńska, K.: Observational uncertainty and regional
climate model evaluation: A pan-European perspective, Int. J. Climatol., 39
3730–3749, 2017.
Llasat, M. C., Marcos, R., Turco, M., Gilabert, J., and Llasat-Botija, M.:
Trends in flash flood events versus convective precipitation in the
Mediterranean region: The case of Catalonia, J. Hydrol., 541, 24–37,
10.1016/j.jhydrol.2016.05.040, 2016.
Mascaro, G., White, D. D., Westerhoff, P., and Bliss, N.: Performance of the
CORDEX-Africa regional climate simulations in representing the hydrological
cycle of the Niger river basin, J. Geophys. Res., 120, 12425–12444,
2015.
Mascaro, G., Viola, F., and Deidda, R.: Evaluation of Precipitation From
EURO-CORDEX Regional Climate Simulations in a Small-Scale Mediterranean
Site, J. Geophys. Res.-Atmos., 123, 1604–1625, https://doi.org/10.1002/2017JD027463,
2018.
Mendicino, G. and Versace P.: Integrated Drought Watch System: A Case Study
in Southern Italy, Water Resour. Manage., 21, 1409–1428,
https://doi.org/10.1007/s11269-006-9091-6, 2007.
Meque, A. and Abiodun, B. J.: Simulating the link between ENSO and summer
drought in Southern Africa using regional climate models, Clim. Dynam.,
44, 1881–1900, https://doi.org/10.1007/s00382-014-2143-3, 2015.
Park, C., Min, S. K., Lee, D., Cha, D. H., Suh, M. S., Kang, H. S., Hong, S.
Y., Lee, D. K., Baek, H. J., Boo, K. O., and Kwon, W. T.: Evaluation of
multiple regional climate models for summer climate extremes over East Asia,
Clim. Dynam., 46, 2469–2486, https://doi.org/10.1007/s00382-015-2713-z, 2016.
Peres, D. J., Caruso, M. F., and Cancelliere, A.: Assessment of
climate-change impacts on precipitation based on selected RCM projections,
European Water, E. W. Publications, 59, 9–15, 2017.
Peres, D. J., Modica, R., and Cancelliere, A.: Assessing Future Impacts of Climate
Change on Water Supply System Performance: Application to the Pozzillo
Reservoir in Sicily, Italy, Water, 11, 2531, https://doi.org/10.3390/w11122531,
2019.
Prein, A., Gobiet, A., Truhetz, H., Keuler, K., Goergen, K., Teichmann, C.,
and Nikulin, G.: Precipitation in the EURO-CORDEX 0.11∘ and
0.44∘ simulations: High resolution, high benefits?, Clim.
Dynam., 46, 383–412, https://doi.org/10.1007/s00382-015-2589-y, 2016.
Rencher, A. C.: Multivariate Statistical Inference and Applications, John
Wiley and Sons, INC., 559 pp., 1998.
Rockel, B., Will, A., and Hense, A.: The Regional Climate Model COSMO-CLM
(CCLM), Meteorol. Z., 17, 347–348,
https://doi.org/10.1127/0941-2948/2008/0309, 2008.
Rossi, G. and Benedini, M.: Water Resources of Italy. Protection, Use and
Control; Springer International Publishing, 365 pp., 2020.
Schmidli, J., Goodess, C. M., Frei, C., Haylock, M. R., Hundecha, Y.,
Ribalaygua, J., and Schmith, T.: Statistical and dynamical downscaling of
precipitation: An evaluation and comparison of scenarios for the European
Alps, J. Geophys. Res.-Atmos., 112, D04105, https://doi.org/10.1029/2005JD007026m 2007.
Sen, Z.: Wet and dry periods of annual flow series, J. Hydraul. Div., 102,
1503–1514, 1976.
Senatore, A., Mendicino, G., Smiatek, G., and Kunstmann, H.: Regional climate
change projections and hydrological impact analysis for a Mediterranean
basin in southern Italy, J. Hydrol., 399, 70–92, 2011.
Senatore, A., Hejabi, S., Mendicino, G., Bazrafshan, J., and Irannejad, P.:
Climate conditions and drought assessment with the Palmer Drought Severity
Index in Iran: evaluation of CORDEX South Asia climate projections
(2070–2099), Clim. Dynam., 52, 865–891, https://doi.org/10.1007/s00382-018-4171-x,
2019.
Senatore, A., Furnari, L., and Mendicino, G.: Impact of high-resolution sea surface temperature representation on the forecast of small Mediterranean catchments' hydrological responses to heavy precipitation, Hydrol. Earth Syst. Sci., 24, 269–291, https://doi.org/10.5194/hess-24-269-2020, 2020.
Smiatek, G. and Kunstmann, H.: Simulating Future Runoff in a Complex Terrain
Alpine Catchment with EURO-CORDEX Data, J. Hydrometeorol., 20,
1925–1940, https://doi.org/10.1175/JHM-D-18-0214.1, 2019.
Smiatek, G., Kunstmann, H., and Senatore, A.: EURO-CORDEX regional climate
model analysis for the Greater Alpine region: performance and expected
future change, J. Geophys. Res.-Atmos., 121, 7710–7728, 2016.
Strandberg, G., Bärring, L., Hansson, U., Jansson, C., Jones, C.,
Kjellström, E., Kolax, M., Kupiainen, M., Nikulin, G., Samuelsson, P.,
Ullerstig, A., and Wang, S.: CORDEX scenarios for Europe from the Rossby
Centre regional climate model RCA4, Report meteorology and climatology No. 116, Swedish Meteorological and Hydrological Institute (SMHI), ISSN: 0347-2116, 2014.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Teichmann, C., Eggert, B., Elizalde, A., Haensler, A., Jacob, D., Kumar, P.,
Moseley, C., Pfeifer, S., Rechid, D., Remedio, A. R., Ries, H., Petersen,
J., Preuschmann, S., Raub, T., Saeed, F., Sieck, K., and Weber, T.: How does
a regional climate model modify the projected climate change signal of the
driving GCM: A study over different CORDEX regions using REMO, Atmosphere, 4, 214–236, https://doi.org/10.3390/atmos4020214, 2013.
Torma, C., Giorgi, F., and Coppola, E.: Added value of regional climate
modeling over areas characterized by complex terrain-Precipitation over the
Alps, J. Geophys. Res.-Atmos., 120, 3957–3972, https://doi.org/10.1002/2014JD022781,
2015.
Um, M. J., Kim, Y., and Kim, J.: Evaluating historical drought
characteristics simulated in CORDEX East Asia against observations, Int. J.
Climatol., 37, 4643–4655, https://doi.org/10.1002/joc.5112, 2017.
Versace, P., Ferrari, E., Gabriele, S., and Rossi, F.: Valutazione delle
piene in Calabria, Geodata, 30, 1989 (in Italian).
Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B.,
Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier,
M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G.,
Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S.,
Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin,
F.: The CNRM-CM5.1 global climate model: description and basic evaluation,
Clim. Dynam., 40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y, 2013.
van Meijgaard, E., van Ulft, B., van de Berg, W. J., Bosveld, F. C., van den
Hurk, B., Lenderink, G., and Siebesma, A. P.: The KNMI regional atmospheric
climate model RACMO version 2.1 (KNMI TR-302), Tech. Rep., Technical Report
TR-302, 2008.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A.,
Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: An overview, Climatic Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
von Trentini, F., Leduc, M. and Ludwig, R. Assessing natural variability in
RCM signals: comparison of a multi-model EURO-CORDEX ensemble with a
50-member single model large ensemble. Clim Dyn 53, 1963–1979,
https://doi.org/10.1007/s00382-019-04755-8, 2019.
Wagner, S., Kunstmann, H., and Bardossy, A.: Uncertainties in
water balance estimations due to scarce meteorological information: A case
study for the White Volta catchment in West Africa, IAHS publication, 313,
86–97, 2007.
Wu, F. T., Wang, S. Y., Fu, C. B., Qian, Y., Gao, Y., Lee, D. K., Cha, D. H.,
Tang, J. P., and Hong, S. Y.: Evaluation and projection of summer extreme
precipitation over east Asia in the regional model inter-comparison project,
Clim. Res., 69, 45–58, 2016.
Yevjevich, V.: An objective approach to definitions and investigations of
continental hydrologic droughtsm Hydrology paper 23, Colorado State
University, Fort Collins, Colorado, 1967.
Short summary
Regional climate models (RCMs) are commonly used for high-resolution assessment of climate change impacts. This research assesses the reliability of several RCMs in a Mediterranean area (southern Italy), comparing historic climate and drought characteristics with
high-density and high-quality ground-based observational datasets. We propose a general methodology and identify the more skilful models able to reproduce precipitation and temperature variability as well as drought characteristics.
Regional climate models (RCMs) are commonly used for high-resolution assessment of climate...
Altmetrics
Final-revised paper
Preprint