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Abstract. Many recent studies indicate climate change as a
phenomenon that significantly alters the water cycle in dif-
ferent regions worldwide, also implying new challenges in
water resource management and drought risk assessment.
To this end, it is of key importance to ascertain the quality
of regional climate models (RCMs), which are commonly
used for assessing at proper spatial resolutions future im-
pacts of climate change on hydrological events. In this study,
we propose a statistical methodological framework to as-
sess the quality of the EURO-CORDEX RCMs concerning
their ability to simulate historic climate (temperature and pre-
cipitation, the basic variables that determine meteorological
drought). We then specifically focus on drought characteris-
tics (duration, accumulated deficit, intensity, and return pe-
riod) determined by the theory of runs at seasonal and an-
nual timescales by comparison with high-density and high-
quality ground-based observational datasets. In particular,
the proposed methodology is applied to the Sicily and Cal-
abria regions (southern Italy), where long historical precipi-
tation and temperature series were recorded by the ground-
based monitoring networks operated by the former Regional
Hydrographic Offices, whose density is considerably greater
than observational gridded datasets available at the European
level, such as E-OBS or CRU-TS. Results show that among
the more skilful models able to reproduce, overall, precipita-
tion and temperature variability as well as drought character-
istics, many are based on the CLM-Community RCM, partic-

ularly in combination with the HadGEM2 global circulation
model (GCM). Nevertheless, the ranking of the models may
slightly change depending on the specific variable analysed
as well as the temporal and spatial scale of interest. From this
point of view, the proposed methodology highlights the skills
and weaknesses of the different configurations and can serve
as an aid for selecting the most suitable climate model for
assessing climate change impacts on drought processes and
the underlying variables.

1 Introduction

A growing number of scientific studies claim that climate
change due to global warming will significantly alter the wa-
ter cycle, with an increase in the intensity and frequency of
extreme hydro-climatic events in several areas around the
globe (Arnell et al., 2001; Huntington, 2006; IPCC, 2014,
2018). These include the Mediterranean region, which is rec-
ognized as one of the major hot spots of climate change due
to future projections of temperature increase and annual pre-
cipitation decrease (Giorgi, 2006; Kjellström et al., 2013),
which determines a potential increase in drought frequency
and severity.

Global circulation and regional climate models (GCMs
and RCMs) can play a crucial role in understanding the
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potential spatio-temporal evolution of climate change in
the future, thus improving current monitoring and planning
tools (e.g. Mendicino and Versace, 2007; Hart and Halden,
2019) and supporting decision-makers in choosing and im-
plementing the best solutions to minimize the impact of
climate change on human systems and the environment at
the regional scale. While GCM simulations describe cli-
mate evolution at a large scale by using coarse-resolution
information, RCM simulations, derived through climate-
downscaling techniques, aim to represent regional- and local-
scale weather conditions with grid resolutions lower than
50 km, down to about 10 km (Kotlarski et al., 2014; Peres
et al., 2019).

Several studies focused on the use of climate models to
simulate future climate scenarios for hydrological analyses,
have shown that changes in temperature and precipitation
vary in space depending on the future climate scenario, type,
and resolution of the models as well as on spatial hetero-
geneity of climatic features. This is particularly evident in
the Mediterranean region, where, for instance, precipitation
is partially controlled by orography, shows strong seasonality
and large inter-annual fluctuations, and is characterized by
the occurrence of particularly intense extreme events, such
as prolonged droughts and high-intensity storms leading to
floods (Bonaccorso et al., 2013, 2015a, b; Llasat et al., 2016;
Senatore et al., 2020).

Recently, there has been a growing interest in the imple-
mentation of RCMs derived by dynamical downscaling of
GCM outputs for climate change impact studies at small spa-
tial scales. These are high-resolution models able to provide
a more realistic representation of important surface hetero-
geneities (such as topography, coastlines, and land surface
characteristics) and mesoscale atmospheric processes.

The Coordinated Regional Climate Downscaling Exper-
iment (CORDEX) initiative is the first international pro-
gramme providing a common framework to simulate both
historical and future climate at the regional level, under dif-
ferent representative concentration pathways (RCPs; van Vu-
uren et al., 2011), and over different domains which cover
all the land areas. More specifically, it provides climate data
simulated by an ensemble of RCMs developed by several re-
search centres all over the world that are forced by GCMs
from the Coupled Model Intercomparison Project phase 5
(CMIP5; Taylor et al., 2012). In the present study, we refer
to the CORDEX domain centred on the Euro-Mediterranean
area, known as EURO-CORDEX (Jacob et al., 2014; http:
//www.euro-cordex.net, last access: 6 November 2020). In
particular, EURO-CORDEX provides simulations for a his-
toric reference period (baseline) and future projections up to
2100, with a 12.5 km grid resolution, available for four RCPs
defined at the international level within CMIP5.

The reliability of individual RCMs in representing cli-
mate effects on the hydrological cycle depends on the qual-
ity of historical simulations and must be evaluated before
using their output for impact assessment. Assessing RCM

performance is essential to either select single models for
further applications (e.g. Senatore et al., 2011; Peres et al.,
2017; Smiatek and Kunstmann, 2019) or properly weight in-
dividual RCMs in multi-model ensembles to predict future
impacts of climate change on hydrological processes (e.g.
Christensen et al., 2010; Coppola et al., 2010). Table 1 pro-
vides a broad, although not thorough, list of inter-comparison
studies within the CORDEX framework available in the liter-
ature. Overall, these studies show that CORDEX RCMs can
reproduce the most important climatic features at regional
scales, but important biases remain, especially regarding pre-
cipitation or climate extremes. As reported by Kotlarski et
al. (2014) and references therein, model biases may depend
on the analysed region, choices in model configuration, in-
ternal variability, and uncertainties of the observational ref-
erence data themselves (Gampe et al., 2019). Concerning
the latter, a common approach in evaluation exercises con-
sists of comparing models’ simulations to observational grid-
ded datasets from remote-sensing or model-derived reanaly-
sis products available at global or continental spatial scales.

In general, statistical measures, such as bias, root mean
square error, correlation, and trend analysis, are used to quan-
tify model performance. Regardless of the specific methods
used to assess the differences between simulated and ob-
served data, one of the main limitations in this approach is
that the considered spatial resolution is too coarse for reli-
able climate change impact studies at relevant hydrological
scales, especially in areas of complex topography. From this
point of view, large-scale observational gridded datasets are
of poor applicability since they are built upon low-density
hydro-meteorological networks.

In principle, more accurate evaluations can be achieved
when they rely on gridded reference datasets that are ob-
tained by spatial interpolation of point measurements onto
a regular grid. To this end, two main prerequisites are that
data coverage well reflects the topography, and variables with
limited spatio-temporal climatic variability are investigated
(Wagner et al., 2007). For example, Mascaro et al. (2018)
compared the skill of several EURO-CORDEX RCMs at
∼ 50 and 12 km grid spatial resolution in reproducing annual
and seasonal precipitation regimes and trends in Sardinia
(Italy) against a dense network of rain gauges with long-term
records. Their analysis revealed that, although the simulated
spatial patterns of annual and seasonal means are well corre-
lated with the observations, positive and negative biases up
to ±60 % in the simulation of annual mean and inter-annual
variability are detected. Furthermore, the majority of RCMs
underestimate winter and overestimate summer precipitation.
To the best of our knowledge, the available studies do not
present an analysis on the quality by which drought event
characteristics are reproduced by climate models.

In this study, we present an enhanced analysis over a dif-
ferent Mediterranean area with complex topography, namely
the Sicily and Calabria regions (southern Italy). In particular,
after investigating the ability of the EURO-CORDEX models
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Table 1. Inter-comparison studies of RCM performances within the CORDEX framework.

References Models Variables Region Main conclusions

Schmidli et al. (2007) Six statistical
downscaling
models
(SDMs) and
three
RCMs

Daily precipitation European Alps SDMs and RCMs tend to have similar biases but dif-
fer with respect to inter-annual variations, with SDMs
strongly underestimating the magnitude of the year-
to-year variations, mainly in winter. RCMs indicate a
strong trend toward drier conditions including longer
periods of drought. The SDMs, on the other hand, show
mostly non-significant or even opposite changes.

Endris et al. (2013) 10 RCMs from
CORDEX Africa
domain

Seasonal and annual
precipitation

Eastern Africa and
three subregions

RCMs reasonably simulate the main features of the pre-
cipitation climatology. However significant biases are
detected in individual models depending on subregion
and season. The ensemble mean has better agreement
with observation than individual models.

Kotlarski et al. (2014) Nine EURO-
CORDEX RCMs

Spatio-temporal patterns of the
European climate

Europe The analysis confirms the ability of RCMs to capture
the basic features of the European climate. Seasonally
and regionally averaged temperature biases are mostly
smaller than 1.5 ◦C, while precipitation biases are typi-
cally located in the ±40 % range.

Meque and Abiodun (2015) 10 RCMs from
CORDEX Africa
domain

Link between El Niño–
Southern Oscillation (ENSO)
and southern African droughts
expressed by the Standardized
Precipitation and Evapotranspi-
ration Index (SPEI)

Southern Africa ARPEGE model shows the best simulation, while
CRCM shows the worst.

Mascaro et al. (2015) Six RCMs driven
by 10 GCMs from
CORDEX Africa
domain

Properties of the hydrological
cycle

Niger River basin (West
Africa)

Most RCMs overestimate (order of +10 % to +400 %,
depending on model and sub-basin) the mean annual
difference between precipitation (P ) and evaporation
(E).

Wu et al. (2016) Four RCMs from
the RMIP project
and their regional
multi-model en-
semble and their
driving GCM
ECHAM5

Summer extreme precipitation East Asia All models can adequately reproduce the spatial distri-
bution of extremely heavy precipitation. However, they
do not perform well in simulating summer consecutive
dry days. The ensemble average of multi-RCMs sub-
stantially improves model capability to simulate sum-
mer precipitation in both total and extreme categories
when compared to each individual RCM.

Park et al. (2016) Five RCMs form
the CORDEX
East Asia
domain

Climatology of summer ex-
tremes (seasonal maxima of
daily mean temperature and
precipitation)

East Asia RCMs show systematic bias patterns in both seasonal
means and extremes. The models simulate temperature
means more accurately compared to extremes because
of the higher spatial correlation, whereas precipitation
extremes are simulated better than their means because
of the higher spatial variability.

Smiatek et al. (2016) 13 EURO-
CORDEX RCMs

Mean temperature and precip-
itation, frequency distribution
of precipitation intensity, max-
imum number of consecutive
dry days

Greater Alpine Region
(GAR)

Though the models reproduce spatial seasonal precip-
itation patterns, the seasonal mean temperature is un-
derestimated (from−0.8 to−1.9 ◦C), and mean precip-
itation is overestimated (from +14.8 % in summer to
+41.5 % in winter). Larger errors are
found for further statistics and various GAR subregions.

Diasso and Abiodun (2017) 10 RCMs from
CORDEX Africa
domain

Drought characteristics eval-
uated through four principal
components of the SPEI

West Africa Only two models (REMO and CNRM) reproduce all
the four drought modes. REMO and WRF give the best
simulation of the seasonal variation in the drought mode
over the Sahel in March–May and June–August sea-
sons, while CNRM gives the best simulation of seasonal
variation in the drought pattern over the savanna.

Um et al. (2017) Four RCMs from
CORDEX East
Asia domain,
their ensemble
mean, and a
driving GCM

Drought characteristics based
on the SPEI

East Asia Drought severity diverges markedly among the RCMs.
Estimates of drought spatial extent are generally accu-
rate in wet regions but inaccurate in dry regions. In gen-
eral, the spatial extents of the droughts diverge among
the RCMs, and the models fail to accurately capture
droughts with large spatial scales.

https://doi.org/10.5194/nhess-20-3057-2020 Nat. Hazards Earth Syst. Sci., 20, 3057–3082, 2020



3060 D. J. Peres et al.: Evaluation of EURO-CORDEX historical simulations

Table 1. Continued.

References Models Variables Region Main conclusions

Foley and Kelman (2018) Seven EURO-
CORDEX RCMs
and five driving
GCMs

Several precipitation indices
(accumulated precipitation
amount, mean daily precip-
itation amount, max 1 and
5 d precipitation amounts,
simple daily intensity, num-
ber of heavy and very heavy
precipitation days)

Scottish islands While no models perform skilfully across all the metrics
studied, some models capture aspects of the precipita-
tion climate at each location particularly well.

Adeniyi and Dilau (2018) 10 RCMs from
CORDEX Africa
domain

Precipitation, temperature, and
drought

West Africa ARPEGE has the highest skill at the Guinea coast, while
PRECIS is the most skilful over the savanna and RCA
over the Sahel.

Senatore et al. (2019) Eight RCMs
from
CORDEX South
Asia domain

Annual and seasonal precipita-
tion and temperature

Iran and six subregions No model is significantly better than others for every
season and zone. Some enhancements are obtained by
a weighting approach to take into account useful infor-
mation from every RCM in the subzones. More reliable
models show a strong precipitation decrease.

Di Virgilio et al. (2019) Six RCMs from
CORDEX
Australasia
domain

Near-surface max and min tem-
perature and precipitation at
annual, seasonal, and daily
timescales

Australia All RCMs showed widespread, statistically significant
cold biases in maximum temperature and overestimated
precipitation, especially over Australia’s populous east-
ern seaboard.

to simulate the annual and seasonal temperature and precip-
itation regime, we analysed the skill in reproducing drought
event characteristics identified through the run method (Yev-
jevich, 1967). Within the drought analysis, we also investi-
gated the return period of drought events of fixed duration at
both the annual and seasonal scales. In this case, given the
limited number of droughts in a 30-year-long time series, an
analytical framework was applied that allows the computa-
tion of the return period based on reasonable assumptions of
the probabilistic structure of annual and seasonal precipita-
tion (Bonaccorso et al., 2003; Cancelliere and Salas, 2004).
Furthermore, we analysed model skills at a subregional level.
To this aim, we proposed the use of principal component
analysis (PCA) for delimitation of climatically homogeneous
areas. The ability of climate models to reproduce observed
precipitation, temperature, and drought features was anal-
ysed both per single characteristic and per multiple charac-
teristics (e.g. precipitation and temperature together) by in-
troducing a specific ranking criterion.

A total of 19 coupled GCM and RCM simulations within
the EURO-CORDEX framework were evaluated against
a high-density and high-quality monitoring-station-based
reference dataset. Monthly temperature and precipitation
records were retrieved by two monitoring networks, operated
by the former Regional Hydrographic Services, whose den-
sity is significantly higher than observational datasets avail-
able at the European scale, such as E-OBS (Haylock et al.,
2008) or CRU-TS (Harris et al., 2014), allowing for a more
accurate evaluation of the models.

2 Study area and datasets

Our analyses were focused on the Calabria and Sicily re-
gions in southern Italy, which, respectively, have an exten-
sion of 15 080 and 25 460 km2, for a total area of 40 540 km2

(Fig. 1a). Climate is of the Mediterranean type, with hot
and dry summers and moderately cold winters with peak
monthly precipitation occurring mostly in late autumn and
winter. About 75 % of the total precipitation in the study area
occurs from October to March because of cyclonic storms.
These climate features make the area particularly prone to
droughts, with the most recent severe episode occurring in
2017 (Rossi and Benedini, 2020). Climate features are also
highly variable in space due to a rather complex orography.
In particular, the mountain chains close to the coast enhance
intense orographic precipitation and lead to relatively cold
temperatures at the highest altitudes.

2.1 Observed data

Within the EURO-CORDEX control period (1951–2005),
the comparison with observations was performed in the pe-
riod from 1971 to 2000. These three decades had the greatest
availability of historical series of precipitation and temper-
ature recorded by the regional monitoring networks of both
Calabria and Sicily, managed by the Multirisk Operational
Centre of Calabria region (ArpaCal) and the Water Observa-
tory of the Sicily region (WOS), respectively. Specifically, 84
thermometers (43 in Sicily and 41 in Calabria and near the re-
gional borders) and 335 rain gauges (173 in Sicily and 162 in
Calabria and near the regional borders) were used (Fig. 1a).
Details on the monitoring network are given in the Supple-
ment to this paper.
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Figure 1. (a) Study area (Calabria is the southernmost peninsula of Italy, and Sicily is the neighbouring island) with the locations of the
gauges of the high-density observational network and the CORDEX reference grid; (b) the six homogeneous zones identified through PCA.

The corresponding data were retrieved by the WOS (http:
//www.acq.isprambiente.it/annalipdf/, last access: 6 Novem-
ber 2020) and the ArpaCal (http://www.cfdcalabria.it, last ac-
cess: 6 November 2020) websites. Observations were enough
widespread to represent the quite heterogeneous features of
the study area. The temperature stations were located be-
tween 2 and 1295 m a.s.l., with annual average values rang-
ing from 9.2 to 20.6 ◦C (mean value = 16.2± 2.4 ◦C), while
the rain gauge elevations varied from 1 to 1369 m a.s.l., with
annual accumulated values ranging from 373 to 1736 mm
(mean value = 812± 287 mm).

2.2 Climate models

Monthly precipitation and monthly mean air temperature
data from the EURO-CORDEX CMIP5 simulations (Ja-
cob et al., 2014; https://www.euro-cordex.net/ last access:
6 November 2020) were retrieved from the nodes of the Earth
System Grid Federation (ESGF; e.g. https://esgf.llnl.gov, last
access: 6 November 2020).

We analysed the data at the finest resolution, 0.11◦

(∼ 12.5 km; EUR-11) and considered the period 1971–2000
as a baseline. In particular, the combination of six GCMs (Ta-
ble 2) and eight RCMs (Table 3), leading to 17 datasets, re-
ported in Table 4, were collected for the study. Moreover,
for two GCM–RCM combinations, two versions were avail-
able from the ESGF portal. Therefore, an overall ensemble
of 19 combined models (CMs) was analysed. The ensemble
mean of the 19 CMs was also evaluated. Even if the CMs
have the same spatial resolution, each one is distributed on a
specific grid (with slightly different origin and orientation of
the axis). Therefore, the various datasets were resampled on

the grid of the ECE-HIRH CM (Table 4), which is shown in
Fig. 1a.

We choose EUR-11 rather than EUR-44 simulations as
several studies (Torma et al., 2015; Prein et al., 2016) have
found that generally higher-resolution CORDEX RCMs have
better skills in simulating seasonal precipitation in regions
with complex terrain.

3 Methodology

3.1 Data processing and PCA

To allow the comparison between the spatially distributed
RCM data and site-specific observations, the latter were spa-
tially interpolated using the CORDEX 0.11◦ grid as refer-
ence (Fig. 1a). In this way, month by month, each cell of the
CORDEX grid could be associated with a single tempera-
ture or precipitation value derived from the observation net-
work. Specifically, concerning temperature, an inverse dis-
tance weighted (IDW) interpolation was applied to the resid-
uals of the values obtained using a regression model with
the altitude. For precipitation, whose measurement network
is much denser, a simple IDW interpolation was performed.
As shown in Fig. 1a, the CORDEX grid cells which are not
covered by any rain gauge are relatively few (less than 30 %),
and, except one case, the distance of the closest rain gauge to
every grid cell is always less than 10 km.

The precipitation patterns obtained by the interpolation
procedure were analysed, adopting a methodology based on
the principal component analysis (PCA) to distinguish zones
with rather independent climatic variability within the area
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Table 2. List of GCMs, together with the abbreviations used in this paper, included at least once in the EURO-CORDEX ensemble.

Model name Abbreviation Reference Institution

CNRM-CERFACS-CNRM-CM5 CM5 Voldoire et al. (2013) Centre National de Recherches Météorologiques
ICHEC-EC-EARTH ECE Hazeleger et al. (2010) Irish Centre for High-End Computing

EC-Earth Consortium, Europe
IPSL-IPSL-CM5A-MR IPS Dufresne et al. (2013) Institut Pierre Simon Laplace
MOHC-HadGEM2-ES Had Collins et al. (2011) Met Office Hadley Centre
MPI-M-MPI-ESM-LR MPI Giorgetta et al. (2013) Max Planck Institute for Meteorology
NCC-NorESM1-M Nor Bentsen et al. (2013), Iversen et al. (2013) Norwegian Earth System Model

Table 3. List of RCMs, together with the abbreviations used in this paper, included at least once in the EURO-CORDEX ensemble.

Model name Abbreviation Reference Institution

CNRM-ALADIN53 ALAD Colin et al. (2010) Météo-France/Centre National de Recherches
Météorologiques

RMIB-UGent-ALARO-0 ALAR De Troch et al. (2013) Royal Meteorological Institute of Belgium and Ghent
University

CLMcom-CCLM4-8-17 CCLM Baldauf et al. (2011), Rockel et
al. (2008)

Climate Limited-area Modelling Community (CLM-
Community)

DMI-HIRHAM5 HIRH Christensen et al. (2007) Danish Meteorological Institute

KNMI-RACMO22E RACM van Meijgaard et al. (2008) Royal Netherlands Meteorological Institute, De Bilt, the
Netherlands

SMHI-RCA4 RCA4 Strandberg et al. (2014) Swedish Meteorological and Hydrological Institute,
Rossby Centre

MPI-CSC-REMO2009 REMO Teichmann et al. (2013) Helmholtz-Zentrum Geesthacht, Climate Service Cen-
ter, Max Planck Institute for Meteorology

IPSL-INERIS-WRF331F WRF3 – Institut Pierre-Simon Laplace and French National In-
stitute for Industrial Environment and Risks (Ineris)

under investigation. PCA is a well-known statistical tool used
to transform an original set of intercorrelated variables into
a reduced number of new linearly uncorrelated ones explain-
ing most of the total variance (Rencher, 1998). The latter,
derived as linear combinations of the original variables, are
the principal components (PCs), while the coefficients of the
linear combinations are the loadings, which in turn represent
the weight of the original variables in the PCs. From a pro-
cedural standpoint, PCA consists of solving an eigenvalue–
eigenvector problem applied to the covariance matrix. The
eigenvectors, properly normalized, are the loadings of the
principal components, while the eigenvalues provide a mea-
sure of the total variance explained by each loading (Bordi
and Sutera, 2001, and references therein). Under this decom-
position, the loadings represent the correlation between the
associated PCs and observed time series. Mapping the load-
ing patterns of each PC among those selected, based on the
percentage of the total explained variance of the process,
largely allows the identification of independent climatic ar-
eas within the study region. Moreover, it may be useful to
apply a rotation operation to the eigenvectors so that the cor-

responding loadings are more spatially localized. In other
words, the rotation leads to loadings with a high correla-
tion with a smaller set of spatial variables and a low correla-
tion with the remaining variables. Here, only orthogonal ro-
tations were considered, computed by the varimax algorithm
in MATLAB® (2016). Clearly, each rotated pattern will not
explain the same variance of the unrotated one, although the
total variance explained remains unchanged.

In the present study, the first nine rotated PCs at both
the annual and seasonal (December–February, DJF; March–
May, MAM; June–August, JJA; September–November,
SON) scales were investigated. Regardless of the considered
period, the selected PCs always explain more than 78 % of
the total variance, with a maximum of 85 % in the winter
season (DJF). The loading patterns of these rotated PCs were
mapped for each considered period to identify climatically
homogeneous regions. Homogeneous subregions were de-
tected at the annual scale and in autumn and winter, whereas
a confusing picture arose in spring and summer. Further-
more, since about 75 % of the total annual rainfall of the
case study area occurs between autumn and winter (as a re-
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sult of cyclonic storms), the climatically homogeneous sub-
regions identified at the annual scale approximately overlap
with those identified in SON and DJF. Isolated grid cells
showing a different PC correspondence with respect to the
surrounding cells were manually corrected to simplify the
delimitation of the homogeneous subregions. This approach
led to dividing the whole area into six climatically homoge-
nous zones, three for Sicily and three for Calabria (Fig. 1b),
for which separate performance assessments were carried
out. Concerning the Sicily region, the three identified sub-
regions roughly coincide with the ones detected by Bonac-
corso et al. (2003), who investigated the spatial variability of
droughts in the Sicily region based on Standardized Precipi-
tation Index (SPI) series computed on monthly precipitation
observed in traditional rain gauges and on NCEP/NCAR re-
analysis data from 1926 to 1996. In particular, three distinct
areas, namely north-eastern (identified in the PCA as Zone
5), south-central-eastern (Zone 4), and central-western (Zone
1), were identified. In Calabria, three main zones were also
determined, namely north-western (Zone 2), north-eastern
(Zone 3), and south-eastern (Zone 6), broadly corresponding
to climatically homogenous areas found in previous studies
(e.g. Versace et al., 1989). Interestingly, the south-western tip
of Calabria is identified as a part of a broader area (Zone 5)
extending over the north-eastern Sicily.

3.2 Performance metrics and model ranking

The CMs were evaluated based on their performances in cap-
turing specific properties, namely the inter-annual and sea-
sonal variability of precipitation, temperature, and drought
characteristics. Such properties were expressed based on
some relevant statistics.

Let X(j) and Xτ (j) be the variable under investigation
(precipitation or mean temperature) at grid cell j at the an-
nual and seasonal scale, respectively. For precipitation and
mean air temperature, the following statistics were derived
for each CM and cell in the area of interest:

– seasonal mean µm (Xτ (j))=

N∑
v=1

xv,τ,m(j)

N
,

where xv,τm (j) is the value of the variable in season
τ (τ = 1, 2, 3, 4) and year v (v = 1, 2, . . .N) produced
by themth CM (m= 1, 2, . . .M) at grid cell j . Seasons
are DJF, MAM, JJA, and SON;

– seasonal standard deviation σm (Xτ (j))=√
N∑
v=1
(xv,τ,m(j)−µm(Xτ (j)))

2

N−1 ;

– annual mean µm (X (j))=

N∑
v=1

Xv,m(j)

N
;

where xv,m is the value of the variable at year v (v =
1,2, . . .N) produced by the mth CM at the grid cell j ;

– annual standard deviation σm (X (j))=√
N∑
v=1
(xv,m(j)−µm(X(j)))

2

N−1 .

Drought events were identified on both annual and seasonal
(DJF, MAM, JJA, SON) precipitation values simulated for
the period 1971–2000 according to the theory of runs (Yev-
jevich, 1967). In particular, drought events were selected as
the periods during which consecutive annual or seasonal val-
ues of precipitation did not exceed a given threshold, here as-
sumed equal to the long-term means of annual and seasonal
data (i.e. one threshold for each season). Once drought events
were identified, the corresponding drought characteristics in
each cell were determined. In particular, the following statis-
tics for drought characteristics are considered hereafter to as-
sess the models’ performance.

– Maximum drought duration Lmax: maximum length of
periods with consecutive annual precipitation values be-
low the threshold;

– Maximum drought accumulated deficit Dmax: maxi-
mum of the sums of the differences between the thresh-
old and the precipitation values along with the drought
duration;

– Maximum drought intensity Imax: maximum of the ratio
between drought accumulated deficit and duration;

– Return period of drought events of fixed duration (at
both annual and seasonal scales).

Concerning the return period of drought events, let E be a
critical drought (e.g. a drought with duration L equal to a
fixed value). Assuming independence between consecutive
drought events, the return period of drought events E can be
expressed as (Gonzales and Valdes, 2003; Cancelliere and
Salas, 2004, 2010; Bonaccorso et al., 2012)

TE =
E [L]+E [Ln]

P [E]
, (1)

where E[L] is the expected value of drought duration L,
E[Ln] is the expected value of the non-drought duration
Ln, and P [E] is the probability of occurrence of a critical
droughtE, which can be determined once the probability dis-
tribution function of the event E is known.

Regarding the probability distribution of drought duration,
let us consider a stochastic hydrological variable denoted as
Xν,τ , where ν represents the year, and τ represents the sea-
son. According to the theory of runs, drought duration L
is the number of consecutive time intervals (seasons) where
Xν,τ ≤ xo,τ is preceded and followed by at least one season
where Xν,τ >xo,τ , where xo,τ is a threshold level represent-
ing water demand. The original variable can be replaced by
a Bernoulli variable Yν,τ such that Yv,τ = 0 if Xv,t ≤ x0,τ (deficit)

Yv,τ = 1 if Xv,t > x0,τ (surplus).
(2)
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Assuming that Yv,τ is a lag-1 Markov stationary process, it
can be shown (Sen, 1976; Cancelliere and Salas, 2004, 2010)
that the probability distribution of drought duration L is ge-
ometric with parameter p01:

fL(l)= P [L= l]= (1−p01)
l−1p01. (3)

The parameter p01 represents the transition probability from
a deficit to a surplus, namely p01 =

[
Yv,τ = 1

∣∣Yv,τ−1 = 0
]
.

Estimation of transition probabilities can be carried out
following a non-parametric approach based on maximum
likelihood, which leads to (Bonaccorso et al., 2012)

p01 = 1−p00 = 1−
n00

n00+ n01
, (4)

where n00 is the number of observations yv,τ = 0, for which
yv,τ−1 = 0,, and n01 is the number of observations yv,τ = 1,
for which yv,τ−1 = 0.

For independent stationary series, the probability distri-
bution of drought duration L is geometric with parameter
p1 = P [Yτ = 1]. The latter can be simply estimated by ap-
plying a frequency analysis on Yτ .

Following previous studies (Bonaccorso et al., 2003; Can-
celliere and Salas, 2004), the annual series were assumed in-
dependent stationary, whereas the seasonal series were as-
sumed as lag-1 stationary Markov.

Models’ skills in reproducing the inter-annual and sea-
sonal variability of precipitation and mean air temperature
variables were first assessed through

– box plots of the errors and percentage errors of the mean
values in all the grid cells of the investigated areas,
which allow the analysis of the spatial variability of the
models’ bias;

– Taylor diagrams (Taylor, 2001), which show three met-
rics at the same time, i.e.: coefficient of correlation,
standard deviation, and centred root mean square er-
ror of the anomalies (i.e. the variables of interest minus
the corresponding means). It is noteworthy that standard
Taylor diagrams do not provide any information about
first-order statistics (i.e. bias).

Later, to provide synthetic information about each CM start-
ing from the various statistics computed for each property,
a method based on Mascaro et al. (2018) was used. Specifi-
cally, for each property (i.e. seasonal and inter-annual vari-
ability of precipitation and mean temperature and drought
characteristics), a single dimensionless error metric that
combines multiple statistics characterizing that property was
estimated. The error metric follows the equation

εm =

√√√√ S∑
k=1

( ∑P
j=1Ek,m (j)∑M

m=1
∑P
j=1Ek,m (j)

)2

, (5)

where Ek,m (j) represents an error metric between observed
and simulated data of the statistics k (k = 1, . . .,S) at grid

cell j (j = 1, . . .P , where P is the total number of grid cells),
whose sum over the whole area was divided by the sum of
the error metrics of all models, therefore resulting in a di-
mensionless indicator for each statistic k of any property. Ta-
ble 5 summarizes the statistics chosen for each property and
describes how the corresponding errors were calculated.

Based on the values of the error metrics in Eq. (5), a rank-
ing of the models, describing the skills in reproducing each
property, was obtained. It should be specified that while, for
the sake of brevity, the box plots and the Taylor diagrams il-
lustrated in the next section refer to the whole study area, the
ranking of the models for the mean air temperature, precip-
itation, and drought characteristics also refers to the six cli-
matically homogenous zones identified through PCA. This
analysis, indeed, can help to highlight whether some models
are more suitable than others to simulate certain variables in
a given zone.

4 Results

In this section, results are presented and discussed separately
for temperature, precipitation, and drought characteristics.
Results are differentiated for the following temporal and spa-
tial aggregation scales: annual data, seasonal data, the whole
case study region, and the six climatically homogenous areas
identified via PCA.

4.1 Mean air temperature

4.1.1 Inter-annual variability

The observed and modelled means of the annual mean air
temperature values in each of the grid cells within the study
area were calculated and compared. More specifically, for
each cell j , the error corresponding to themth CM was com-
puted as

Em,j = µm (T (j))−µ0 (T (j)) , (6)

where T (j) is the mean annual temperature at cell j , whereas
µm(·) and µ0(·) are the modelled and observed means, re-
spectively. For each model, the distribution of the errors com-
puted for all the grid cells of the study area based on Eq. (6)
is represented in the form of box plots in Fig. 2a. In particu-
lar, the central line represents the median value, and the box
is delimited by the first and the third quartile. The width of
the box corresponds to the inter-quartile range (IQR), a well-
known measure of dispersion. Values outside the whiskers
beyond at least 1.5 times the IQR from the box can be as-
sumed as outliers.

The overall tendency of the models is to underestimate
temperatures as the medians are negative. Errors are pre-
dominantly between the values−5 and−1 ◦C, thus implying
that the models underestimate up to 5 ◦C. The CMs that pro-
duce the most extreme negative errors are the ECE-RACM,
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Figure 2. (a) Box plots representing the frequency distribution of RCM errors in mean annual temperature for the whole study area. (b) Taylor
diagram comparing model performances in reproducing the inter-annual variability of mean temperature for the whole study area.

ECE-RACMr12, and CM5-ALAD, with the latter showing
the broader IQR (e.g. the highest spatial variability of the er-
rors) and the greatest median error. All the CMs with RCA4
show the smallest IQR. The models with the smallest median
error are MPI-REMO and MPI-REMOr2.

To extend the CM skill comparison to other statistics, the
Taylor diagram for the annual mean air temperature values
was developed (Fig. 2b). For the sake of simplicity, standard
deviations of the CMs are indicated as σ hereinafter. The di-
agram allows the visualization of possible clusters of perfor-
mances related to specific GCMs or RCMs among those con-
sidered. In the diagram, GCMs are indicated with different
markers, while RCMs are indicated with different colours.
The value corresponding to the observations is the dot on the
x axis, whose standard deviation is marked through a con-
tinuous circular arc. In addition to every single model, the
ensemble mean model result is reported in the diagram.

Figure 2b shows that the simulated means are well corre-
lated with the observations, with values larger than 0.8 for
all the considered models. Furthermore, the diagram seems
to reveal that, on equal GCMs, RCMs play a significant role
in determining the performance of the combinations. In gen-
eral, for most of the models, the best performances are ob-
tained when the RCM RCA4 is used. The only exception
is CM5, performing better in combination with CCLM. The
worst models are CM5-ALAD and IPS-WRF.

Finally, the ranking analysis described in Sect. 3.2 yields
the results in Fig. 3. The lower the rank is, the lower the error
metrics in Eq. (5) are and the better the model is. For better
readability, ranking values are indicated through a chromatic
scale, ranging from dark green (first-ranked model) to dark
red (last-ranked model).

The best-performing models, in terms of ranking order
for the whole study area, are MPI-CCLM, MPI-REMO, and
Had-CCLM. ECE-RCA4 and CM5-CCLM are also good

Figure 3. RCM ranking with respect to inter-annual variability of
mean temperature, for the entire area and the climatically homoge-
nous zones.

models, as highlighted by the Taylor diagrams. Figure 3 also
shows rankings for each of the six homogeneous areas. As
can be observed, based on the range of colours in each row,
MPI-CCLM and MPI-REMO provide the best performance
for almost all the zones.
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Figure 4. Taylor diagram comparing model performances in reproducing the seasonal variability of mean temperature for the whole study
area.

Indeed, some differences exist for Zones 3 and 6 (north
and south-eastern Calabria), whose best CM is IPS-RCA4.
Overall, results show that the worst model is CM5-ALAD
for entity and dispersion of errors, lower correlations, higher
RMSE, and greater departure from the standard deviation
of the observed values, both for the whole study area and

individual zones. ECE-RACM, ECE-RACMr12, and ECE-
RCA4 also show bad performance (the latter mainly because
of its relatively strong bias).

Nat. Hazards Earth Syst. Sci., 20, 3057–3082, 2020 https://doi.org/10.5194/nhess-20-3057-2020



D. J. Peres et al.: Evaluation of EURO-CORDEX historical simulations 3067

Ta
bl

e
4.

L
is

ta
nd

ab
br

ev
ia

tio
ns

of
cl

im
at

e
m

od
el

s
(G

C
M

–R
C

M
co

m
bi

na
tio

ns
)i

nc
lu

de
d

at
le

as
to

nc
e

in
th

e
E

U
R

O
-C

O
R

D
E

X
en

se
m

bl
e.

T
he

as
te

ri
sk

(∗
)m

ea
ns

th
at

tw
o

ve
rs

io
ns

of
th

e
G

C
M

–R
C

M
co

m
bi

na
tio

n
ar

e
av

ai
la

bl
e.

T
he

fir
st

ro
w

lis
ts

th
e

G
C

M
s,

w
hi

le
th

e
fir

st
co

lu
m

n
lis

ts
th

e
R

C
M

s.

C
N

R
M

-C
E

R
FA

C
S-

C
N

R
M

-C
M

5
IC

H
E

C
-E

C
-E

A
R

T
H

IP
SL

-I
PS

L
-C

M
5A

-M
R

M
O

H
C

-H
ad

G
E

M
2-

E
S

M
PI

-M
-M

PI
-E

SM
-L

R
N

C
C

-N
or

E
SM

1-
M

C
N

R
M

-A
L

A
D

IN
53

C
M

5-
A

L
A

D
–

–
–

–
–

R
M

IB
-U

G
en

t-
A

L
A

R
O

-0
C

M
5-

A
L

A
R

–
–

–
–

–
C

L
M

co
m

-C
C

L
M

4-
8-

17
C

M
5-

C
C

L
M

E
C

E
-C

C
L

M
–

H
ad

-C
C

L
M

M
PI

-C
C

L
M

–
D

M
I-

H
IR

H
A

M
5

–
E

C
E

-H
IR

H
–

–
–

N
or

-H
IR

H
K

N
M

I-
R

A
C

M
O

22
E

–
E

C
E

-R
A

C
M
∗

–
H

ad
-R

A
C

M
–

–
SM

H
I-

R
C

A
4

C
M

5-
R

C
A

4
E

C
E

-R
C

A
4

IP
S-

R
C

A
4

H
ad

-R
C

A
4

M
PI

-R
C

A
4

–
M

PI
-C

SC
-R

E
M

O
20

09
–

–
–

–
M

PI
-R

E
M

O
∗

–
IP

SL
-I

N
E

R
IS

-W
R

F3
31

F
–

–
IP

S-
W

R
F

–
–

–

4.1.2 Seasonal variability

For the sake of brevity, the box plots related to the seasonal
variability of mean air temperature are not shown since they
provide similar results to the case of annual variability.

Figure 4 shows the Taylor diagrams obtained from the
analysis of the individual seasons. CM5-ALAD and IPS-
WRF (and, to a slightly lesser extent, CM5-ALAR) appear as
the worst models regardless of the season, although in sum-
mer (JJA) the worst-performing models are MPI-REMO and
MPI-REMOr2. Summer is also the season with the (slightly)
lowest values of correlation coefficients.

Regarding the best models, in general, all the combina-
tions with RCA4 and the CM5-CCLM work better, as for the
analysis of inter-annual variability. However, in summer, bet-
ter performances are obtained with ECE-RACM and ECE-
RACMr12.

Figure 5 represents the rankings of the models for the in-
dividual seasons and all the study areas, namely the whole
case study and the six zones. There is a certain correspon-
dence of the worst-performing models between Figs. 4 and
5. Nonetheless, differently from the results in Fig. 3, mod-
els’ performances may change significantly from season to
season and, in the same season, from zone to zone. The best
models for most of the zones are ECE-HIRH in winter (DJF),
ECE-CCLM in spring (MAM), IPS-RCA4 in summer (JJA),
and MPI-REMOr2 in autumn (SON). It is worth highlighting
that the latter provides the best performances also for Zones
2 and 4 in spring and Zones 5 and 6 in summer. Conversely,
ECE-HIRH, which is the best model in winter, works poorly
in summer and autumn. Zones 1 (western Sicily) and 2 (west-
ern Calabria) show a uniform behaviour in all seasons, with
the only exception being spring, while Zones 5 (north-eastern
Sicily) and 6 (south-eastern Calabria) show a uniform be-
haviour in all seasons but autumn. Besides, in summer and
autumn, the best-performing models for Zones 1, 2, and 4
(south-eastern Sicily) are the same as for the whole study
area. Zone 3 (north-eastern Calabria) behaves like Zone 4 in
winter and like Zones 1, 5, and 6 in spring.

4.2 Precipitation

4.2.1 Inter-annual variability

Figure 6a shows box plots for the percentage errors in mean
annual precipitation, namely

Em,j =
µm (P (j))−µ0 (P (j))

µ0 (P (j))
· 100, (7)

where P(j) is the total annual precipitation at the grid cell j .
In comparison to temperature, the errors are much larger as

well as the differences between the various models. There is
a general tendency for the models to underestimate the total
annual precipitation, except for some models like IPS-WRF,
which also shows the largest IQR. The median value of the
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Table 5. Summary of the statistics involved in the ranking process. Statistics with subscript 0 refer to observed values.

Property Statistics k Error Ek,m(j)

Seasonal variability Seasonal mean |µ0 (Xτ (j))−µm (Xτ (j)) |
Seasonal standard deviation |σ0 (Xτ (j))− σm (Xτ (j)) |

Inter-annual variability Annual mean |µ0 (X (j))−µm (X (j)) |
Annual standard deviation |σ0 (X (j))− σm (X (j)) |

Drought characteristics Maximum drought duration |Lmax,0 (j)−Lmax,m (j) |
Maximum drought accumulated deficit |Dmax,0 (j)−Dmax,m (j) |
Maximum drought intensity

∣∣Imax,0 (j)− Imax,m (j)
∣∣

Return period
∣∣Tr,0 (j)− Tr,m (j)

∣∣

Figure 5. RCM ranking with respect to seasonal variability of mean temperature for the entire area and the climatically homogenous zones.
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Figure 6. (a) As Fig. 2a but for annual precipitation. (b) As Fig. 2b but for annual precipitation.

relative errors for some models is less than 20 %; however,
many models have a large dispersion with error values over
100 %. The CM with the highest positive error is IPS-WRF,
while the ones with the highest negative errors are the IPS-
RCA4 and Nor-HIRH models. The GCM–RCM combina-
tions with the smallest IQR of errors are those using CCLM
RCMs. The model with the smallest bias is Had-RACM.

The Taylor diagram in Fig. 6b confirms that the best com-
binations are those with CCLM RCMs. In particular, the best
one seems to be ECE-CCLM. However, when used in com-
bination with CM5, the corresponding model provides poor
performance. The worst-performing models are ECE-HIRH
and Nor-HIRH. The diagram confirms that precipitation is
modelled with less accuracy than temperature as correlations
are lower (< 0.8).

The application of the ranking criteria (see Fig. 7) sug-
gests Had-RACM and ECE-CCLM as the best combinations
for the entire area and most of the zones. Also, CM5-ALAD
works well for the whole area and almost all the zones, ex-
cept for Zone 4, where it ranks 11th. IPS-WRF, IPS-RCA4,
Nor-HIR, and CM5-RCA4 are the worst models.

4.2.2 Seasonal variability

The seasonal variability analysis carried out on precipitation
shows (Fig. 8) a lower error dispersion in the wet seasons
(i.e. autumn and winter) with respect to summer. In summer,
several models show broader IQRs, such as all the CM5 mod-
els and IPS-WRF, with the latter showing the largest median
error. On the one hand, these outcomes depend on the poor
performance of some models in reproducing the seasonal cy-
cle and on the other hand are due to the fact that in the dry
season, when rainfall is normally low, large errors may result
even though the departure from the observed mean is rela-
tively small. These results are consistent with those obtained
by Giorgi and Lionello (2008) in a subdomain of the Mediter-

Figure 7. As Fig. 3 but for annual precipitation.

ranean region and by Mascaro et al. (2018) for the Sardinia
region.

The Taylor diagrams in Fig. 9 highlight that NOR-HIRH
and ECE-HIRH are the worst models for all the seasons but
summer, where the IPS-WRF is the worst-performing.

These indications are confirmed by the ranking results in
Fig. 10. Concerning the best models, the following CMs per-
form the best in their respective seasons: ECE-RACMr12 in
winter (DJF), ECE-CCLM in spring (MAM), MPI-REMOr2
in summer (JJA), MPI-CCLM and Had-RACM in autumn
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Figure 8. Box plots representing the frequency distribution of RCM percentage errors in seasonal precipitation for the whole study area.

(SON). It is worth highlighting that ECE-RACMr12 provides
the best rank also for Zone 2 in autumn; ECE-CCLM is the
best-performing also for Zone 6 in summer; MPI-CCLM pro-
vides the best performances also for Zone 1 in winter and
Zone 4 in spring, and Had-RACM is the best model for Zone
2 in spring. For summer precipitation, MPI-REMOr2 is the
best-performing CM also for Zones 1, 2, 3, and 4. As for
the ranking of seasonal mean temperature, once again there
is no uniform behaviour of the models between the different
seasons and zones.

4.3 Drought characteristics

4.3.1 Annual scale

The models’ performance in reproducing historical drought
characteristics at both the annual and the seasonal scale was
also tested. In particular, the following drought characteris-
tics derived from the theory of runs were analysed: maximum
duration (Lmax), maximum accumulated deficit (Dmax), and
maximum intensity (Imax) and return period of drought dura-
tion.

With reference to the drought characteristics identified on
annual precipitation, Fig. 11a, b, and c represent the box plots
of the errors related to maximum drought duration, accu-
mulated deficit, and intensity, respectively. In particular, for
drought duration, the errors were computed through Eq. (6)
by simply replacing T with Lmax, whereas for maximum
drought accumulated deficit and intensity, the percentage er-

rors were calculated through Eq. (7) by replacing P first with
Dmax and then with Imax.

There is a slight tendency of some models to underesti-
mate drought duration (Fig. 11a). Overall, the errors span
from −3 to +2 years. The broadest IQR is associated with
MPI-REMO, while some models, such as CM5-CCLM,
CM5-ALAR, ECE-RACM, and Nor-HIRH, seem equally re-
liable.

The box plots obtained for Dmax (Fig. 11b) show that the
models may yield considerable errors, which can potentially
be larger than those for annual precipitation as the accumu-
lated deficit, given by the sum of precipitation deficits in a
time interval lasting several years, can be affected by mul-
tiple errors. For some models, the IQRs are not larger than
50 %. The most reliable model is Had-CCLM, but compara-
ble performances are given by models CM5-CCLM, CM5-
ALAR, and ECE-CCLM, while the least dispersed is MPI-
CCLM (for this model, however, the median error is larger
than others). The least reliable is IPS-WRF, followed by
CM5-RCA4 and MPI-REMOr2. In general, as can be seen
from the box plots, this feature is underestimated. Con-
cerning Imax, the results indicate Had-RACM as the best
model and CM5-RCA4 as the worst, followed by IPS-WRF
(Fig. 11c). Errors for this feature are less scattered than for
accumulated deficit, and there is a general tendency for Imax
to be underestimated by models.

Figure 12 shows box plots of the errors in the return period
of drought events of duration L equal to 1, 3, 5, and 7 years,
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Figure 9. As Fig. 4 but for seasonal precipitation.

respectively. In particular, the error was calculated as

Em,j = µm
(
Ty (j)

)
−µ0

(
Ty (j)

)
εj = µm (X (j))−µ0 (X (j)),

(8)

where Ty(j) is the return period of a drought event of fixed
duration at the grid cell j .

As expected, for any given model, the error increases as
the considered drought duration increases. However, regard-
less of the drought duration, there is no general tendency of
the models towards overestimation or underestimation of the
return periods. ECE-CCLM and Had-RACM are the mod-
els with the smallest IQR, with ECE-CCLM showing the
lowest median error. Overall, the performance of the mod-
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Figure 10. As Fig. 5 but for seasonal precipitation.

els looks rather similar, with limited errors until L= 3 years
(±0.5 years).

Finally, the models were also ranked according to their
ability to reproduce both observed drought maximum in-
tensities and return periods of drought events with dura-
tion L= 3 years (Fig. 14a). Drought intensity was selected
as it merges drought accumulated deficit and duration of
each drought event. Concerning the return period, it is worth
pointing out that the choice of the considered drought du-
ration only affects the magnitude of the errors, while the
performance of each model with respect to the others does
not change (see Fig. 12). As shown in Fig. 14a, the best
models for the whole study area are confirmed to be ECE-
CCLM, Had-RACM, ECE-RACM, and Had-CCLM. Inter-
estingly, CM5-ALAR is the best model for Zone 3 but un-

suitable for the remaining zones. The worst model for all the
zones is CM5-RCA4, whereas poor performances are associ-
ated with ECE-RACMr12 for Zones 1 and 2, Had-RCA4 for
Zone 3, MPI-REMOr2 for Zones 4 and 6, and IPS-WRF for
Zone 5.

4.3.2 Seasonal scale

Figure 11d, e, and f represent the box plots of the errors re-
lated to maximum drought duration, accumulated deficit, and
intensity identified on seasonal precipitation data.

Concerning drought duration (Fig. 11d), several models (9
out of 19) show a median error equal to 0, while the other
models tend to underestimate, with the only exception being
IPS-WRF. Overall, the errors span from −4 to +3 seasons.
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Figure 11. Box plots representing the frequency distribution of RCM percentage errors in (a) maximum drought duration (annual analy-
sis), (b) maximum drought accumulated deficit (annual analysis), (c) maximum drought intensity (annual analysis), (d) maximum drought
duration (seasonal analysis), (e) maximum drought accumulated deficit (seasonal analysis), and (f) maximum drought intensity (seasonal
analysis).

The broadest IQR is associated with CMC5-ALAR and ECE-
CCLM, while some models, such as IPS-RCA4, MPI-RCA4,
MPI-REMOr2, and Nor-HIRH, seem equally reliable.

As for Dmax (Fig. 11e), some similarities can be observed
concerning the annual timescale (Fig. 11b) in terms of mag-
nitude of percentage errors, although in the seasonal case
most of the models tend to overestimate. The most reliable
models are CM5-ALAD, ECE-CCLM, and Had-RACM. As
for the annual scale, the least reliable is IPS-WRF, followed
by CM5-RCA4 and Nor-HIRH.

Concerning Imax, also in the seasonal case Had-RACM is
confirmed as the best model, while MPI-REMOr2 and IPS-
WRF are the worst (Fig. 11e). Once again, errors for this
feature are less scattered than for accumulated deficit. Only
four models underestimate Imax, while most of the models
are close to a zero median percentage error.

Figure 13 shows box plots of the errors in the return period
of drought events of duration L equal to 2, 4, 6, and 8 sea-
sons, respectively. In particular, the error was calculated as in
Eq. (8) by replacing Ty with Ts, namely the return period of
a drought event of fixed duration identified on seasonal data.
As for the annual case, the performance of the models looks
rather similar, with limited errors (±5 seasons) until L= 4
seasons, with the exception of CM5-ALAD, CM5-ALAR,
CM5-RCA4, and Had-RCA4.

Figure 14b illustrates the ranking of the models in repro-
ducing the drought maximum intensities and return periods
of drought events with duration L= 4 seasons. With respect
to the annual scale, there is a certain agreement in identify-
ing the best-performing models, which in this case are Had-
RACM, Had-CCLM, and ECE-CCLM. In particular, Had-
RACM performs well in every zone, while Had-CCLM is

https://doi.org/10.5194/nhess-20-3057-2020 Nat. Hazards Earth Syst. Sci., 20, 3057–3082, 2020



3074 D. J. Peres et al.: Evaluation of EURO-CORDEX historical simulations

Figure 12. Box plots representing the frequency distribution of RCM errors in the return period of drought events of duration L equal to 1,
3, 5, and 7 years.

Figure 13. Box plots representing the frequency distribution of RCM percentage errors in the return period of drought events of duration L
equal to 2, 4, 6, and 8 seasons.
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Figure 14. RCM ranking with respect to their ability to reproduce both observed drought maximum intensities and return periods of drought
events with duration L= 3 years (left) and L= 4 seasons (right).

the best model for Zones 1, 2, 5, and 6. The worst-performing
models are CM5-ALAD, CM5-ALAR (albeit it ranks second
for Zone 5), CM5-RCA4, and Nor_HIRH.

5 Discussion

Table 6 illustrates the best-performing models according to
the ranking approach for each of the considered variables
over the whole area and the six homogeneous zones, respec-
tively. In particular, the three best-performing models are
reported for the mean temperature and precipitation inter-
annual variability and drought intensity and return period of
drought duration, while only the best CM for each season is
indicated for seasonal variability.

It is worth underlining that the rankings are aimed at pro-
viding straightforward information about the relative accu-
racies of the models, e.g. for supporting the selection of a
single or a few models in a specific area; therefore, for the
sake of simplicity, they provide reduced information based
on cardinal numbering. However, the actual performance of
each CM compared to the others can be highlighted by look-
ing closer at the εm values, which reflect and summarize the
results provided by the box plots and the Taylor diagrams.

Two kinds of comparisons are carried out in this sec-
tion: (1) on the same variable, across different timescales;
(2) on the same timescale, across different variables. Fur-
ther discussion is provided about relative impacts of differ-
ent GCMs and RCMs, and, finally, an overall ranking is at-
tempted aimed at providing a global evaluation of the CMs’
performance.

5.1 Analyses across different timescales (inter-annual
and seasonal)

Concerning temperature, the inter-comparison between the
inter-annual and seasonal variability is rather straightfor-
ward. All the simulations are characterized by a more or less
pronounced underestimation (Fig. 2a), together with a usu-
ally high correlation with observations (Figs. 2b and 4); i.e.
both the observed inter-annual and seasonal variability are
well reproduced. This is somehow confirmed by the rank-
ings, where the relative differences among the models’ per-
formances are not very marked.

Conversely, in the case of precipitation, the performances
of the models change significantly with the timescale. The
most interesting case with this variable is CM5-ALAD,
which, considering the total area, ranked 3rd for annual
precipitation but provided low performances in most of
the seasons (9th in MAM, 11th in DJF, and 18th in JJA).
Though CM5-ALAD can reproduce relatively well the an-
nual amount of rainfall, it is not as much able to simulate
the seasonal variability; therefore the good performance at
the annual timescale is due to the counterbalancing effects of
the errors in different seasons. This feature of CM5-ALAD
is amplified in several of the six zones, e.g. Zone 2 (where it
is ranked 4th for the mean annual value but 14th in DJF and
18th in MAM and JJA) or Zone 6 (1st for the mean annual
value but 13th in DJF and 18th in JJA). On the other hand,
MPI-CCLM in the total area ranked eighth considering the
annual precipitation but provided rather good results in sin-
gle seasons (it is ranked third in MAM and first in SON).

However, considering the total area and the annual precip-
itation, the values of the error metric εm leading to the rank-
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Table 6. Best-performing RCMs according to the ranking at the annual and seasonal scale.

ings are not very different among the first nine models, the
εm value of the model ranked ninth (i.e. CM5-ALAR) being
only 37 % higher than the best. The difference with respect to
the best εm value is lower than 50 % in DJF for the first seven
models, in MAM for the first five models, in JJA for the first
six models, and in SON for the first seven models. The mod-
els always providing (i.e. considering both the annual and the
seasonal values) differences lower than 50 % with respect to
the best εm value are Had-RACM, ECE-CCLM, and Had-
CCLM.

Figure 15 shows a comparison between the ranking of
inter-annual variability of annual precipitation and the aver-
age position in the ranking of seasonal precipitation. It high-
lights possible deviations of the performances of the models
at different timescales (the higher the deviation, the higher
the distance from the bisector). When considering the sea-
sonal scale, the reduced performance of CM5-ALAD is ev-
ident, such as the better ranking of MPI-CCLM. In gen-
eral, the best models, at both the inter-annual and the sea-
sonal scale, are Had-RACM and ECE-CCLM, followed by
the two versions of ECE-RACM and two other CCLM mod-
els (namely, MPI-CCLM and Had-CCLM, the latter being
penalized by the relatively lower ranking in winter).

Figure 15. Comparison between the RCM position in the ranking
of inter-annual variability of annual precipitation versus the average
position in the ranking of seasonal variability of seasonal precipita-
tion. Data concern the whole study area (Calabria and Sicily).
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Focusing on drought analysis, box plots highlight a rele-
vant variability in the frequency distribution of the error for
all the considered drought characteristics. As for drought du-
ration (Fig. 11a and d), the differences among the models
appear more evident at the annual scale, while at the sea-
sonal scale the models’ behaviour looks rather similar. A
general agreement can be observed between the box plots
of drought accumulated deficit at the annual and the seasonal
scale (Fig. 11b and e), where the IPS-WRF is confirmed as
the worst model. Concerning drought intensity (Fig. 11c and
f), CM5-RC4 provides a very poor performance at the an-
nual scale, but a light improvement can be observed at the
seasonal scale.

As for the return periods (Figs. 12 and 13), the seasonal
scale emphasizes the poor quality of CM5-ALAD, which
is also confirmed at the annual scale, together with CM5-
ALAR, ECE-RACMr12, and MPI-CCLM.

Finally, the rankings combining the performance of the
models to simulate maximum drought intensity and return
period of drought events of fixed duration (Fig. 14a and b)
agree in considering Had-RACM and ECE-CCLM as the
best models at both the annual and seasonal scale.

5.2 Analyses across different variables

In terms of inter-annual variability, it is worth observing that,
while MPI models appear the most suitable for mean tem-
perature regardless of the area of investigation, especially
regarding those in combination with REMO and CCLM
RCMs, this is not the case for precipitation, although both
the box plot and the Taylor diagram indicate some poten-
tial of the MPI-CCLM for precipitation (Fig. 6a and b). The
box plots for both variables displayed a large spatial variabil-
ity of the errors, suggesting the limited capacity of RCMs to
properly capture spatial variations in both temperature and
precipitation patterns. Regarding precipitation, a similar re-
sult was obtained by Mascaro et al. (2018) for the Sardinia
region. To find a possible explanation, we decided to investi-
gate possible relationships between the number of errors and
the cells’ mean altitude. In particular, correlation analyses
between the elevation and the mean and the standard devi-
ation of the mean annual air temperature and precipitation
errors were carried out. Nonetheless, results, here not shown
for the sake of brevity, did not provide significant correla-
tions.

Turning to seasonal variability, some similarities between
mean temperature and precipitation arise in spring, with
the ECE-CCLM model looking valuable for both variables.
ECE models also perform well in winter but in combination
with different RCMs (i.e. HIRH for temperature and RACM
for precipitation). In summer, the MPI-REMOr2 model is
the best option for precipitation but works well also for
mean temperature, mainly for Zones 5 and 6. In autumn,
MPI-REMOr2 is once again the best-performing model but
for mean temperature only. Alternatively, MPI-CCLM looks

valuable for both mean temperature and precipitation during
this season, as also confirmed by the Taylor diagrams (Figs. 4
and 9). Finally, the best models for drought intensity broadly
recall those identified for annual precipitation, specifically
for ECE-CCLM and Had-RACM.

The skills of CMs in reproducing drought characteris-
tics and variability of precipitation are significantly linked.
Drought characteristics, derived through the application of
theory of runs, are functions of the departure from the thresh-
olds rather than of the modelled precipitation itself. In other
words, although a CM could significantly underestimate or
overestimate annual and seasonal precipitation values (i.e.
the data in the box plots in Figs. 6a and 8 may look loosely
grouped and the medians very far from 0), it could still pro-
vide good performance in terms of drought characteristics
simulation if it can reproduce time variability. It is interest-
ing to observe that the distribution of the percentage error
of drought intensity (Fig. 11c and f) is, in general, less scat-
tered than that related to the accumulated deficit (Fig. 11b
and e); therefore, one can conclude that a partial error com-
pensation occurs when the modelled accumulated deficit is
divided by the modelled duration. Despite the differences in
the percentage errors, however, there is a general agreement
in the identification of the best and, mainly, the worst models,
also confirmed by the ranking of the models in reproducing
drought intensity and return period of drought events with
fixed duration (Fig. 14a and b) at both the annual and the
seasonal timescale.

5.3 Impact of GCM and RCM choice and different
realizations

Overall, no GCM prevails over the others because the RCMs
deeply affect the final results. For example, concerning an-
nual precipitation, the simulations relying on the Had GCM
provide two high-ranked models (i.e. Had-CCLM and Had-
RACM) and a low-ranked model (i.e. Had-RCA4). In the
case of precipitation, only one among the GCMs used more
than once coherently provides always bad results (IPS).

Concerning the most used RCMs, CCLM seems able to
improve performances always with temperature (Fig. 3) and
in most cases with precipitation (Fig. 7). Also, RACM usu-
ally provides high rankings with precipitation, while lower
performances are found with temperature. The five occur-
rences of RCA4 very seldom provide high rankings with pre-
cipitation as well as the two occurrences of HIRH.

It is of some interest to analyse the behaviour of differ-
ent realizations of the same CM, which provide insight into
the effects of the variability of a multi-member GCM ensem-
ble (von Trentini et al., 2019). In this study, two cases oc-
cur, i.e. ECE_RACM and MPI_REMO. Looking at all the
box plots and Taylor diagrams, the two versions of the mod-
els behave rather coherently. Nevertheless, because of the
variability of the overall model ensemble, they are usually
not ranked in subsequent positions. For example, consider-
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Figure 16. Overall ranking.

ing annual drought ranking and the total area, ECE-RACM
is ranked 3rd and ECE-RACMr12 17th, while in the sea-
sonal drought ranking MPI-REMO is ranked 7th and MPI-
REMOr2 15th. This result highlights that, at least to a certain
extent, the variability induced by different driving ensemble
members is of the same order of the variability given by other
GCM–RCM combinations. On the other hand, given the sim-
ilar performances of the different realizations pointed out by
the box plots and Taylor diagrams, it is confirmed that rather
slight differences in models’ performance can be found even
for distances of four to five positions in the rankings.

5.4 Overall ranking and comparison with the literature

For a final evaluation of the models, an overall ranking crite-
rion was applied. This ranking takes into consideration both
the skills of the considered GCM–RCMs to replicate annual
precipitation and temperature variability as well as drought
characteristics. As shown in Fig. 16, the models with the best
overall performances in both the whole case study area and
in the six climatically homogeneous zones are those in com-
bination with CCLM RCMs, with the significant exception
of Had-RACM, which is ranked first considering the total
area and Zones 2 and 4 for the annul timescale. Generally,
the worst models at both the annual and the seasonal scale
are Nor-HIRH, IPS-WRF, and CM5-RCA4, although at the
seasonal scale also CM5-ALAD and CM5-ALAR have poor
performances.

An attempt can be made to compare the results of our rank-
ing exercise with similar studies. Such a comparison here is
limited to the Euro-CORDEX climate models, for which, in-
deed, only a few studies exist. Perhaps the study from Kot-

larski et al. (2014) allows the most interesting comparisons
for our purposes, being focused on both precipitation and
temperature at seasonal and yearly timescales and covering
all areas of Europe, with specific results for the Mediter-
ranean area. Models here denoted as CCLM (CLMCOM-
11 in the mentioned study) perform well in reproducing an-
nual temperature and precipitation in both studies. Differ-
ences arise for precipitation in the MAM season since CCLM
models show poor performances according to Kotlarski et
al. (2014), in contrast to our findings. Mascaro et al. (2018),
whose study is focused on the Sardinia region (Italy), also
found that the Had-RACM and ECE-CCLM models per-
form well in reproducing annual precipitation, while there
is no agreement on the CM5-ALAD model. At the seasonal
level, ECE-RACMr12, MPI-REMOr2, and MPI-CCLM per-
form well in both studies in the seasons DJF, JJA, and SON,
respectively, while, in contrast to our results, in the MAM
season the ECE-CCLM does not perform well. These differ-
ences in the ranking could be partially due to the different
observational datasets used, which have been found to play a
key role in climate model evaluations (Kotlarski et al., 2017).

6 Conclusions

In this study we compared the skill of 19 EURO-CORDEX
RCMs at 0.11◦ (∼ 12.5 km) grid spatial resolution in repro-
ducing the annual and seasonal temperature and precipita-
tion regime as well as several drought features observed in
the period 1971–2000 in a dense network of rain gauges
in Sicily and Calabria (southern Italy). From our investiga-
tion a few general and specific conclusions can be drawn.
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From a general point of view, the model combinations are
able to simulate temperature better than precipitation, even
though important biases do exist in both variables. Models
which are reliable in simulating precipitation may not be
the same with respect to temperature. This is the case, for
instance, with the ECE-RACM model, which is in the top
ranks for precipitation while being in the lower ranks for
temperature. Models that perform best for precipitation do
almost the same for drought features. Differences between
the rankings of annual with respect to seasonal character-
istics do exist, but top-ranking models at the annual scale
mostly perform well in a single season for both precipita-
tion and temperature. Looking more specifically to the mod-
els, the Had-RACM, ECE-CCLM, Had-CCLM, and ECE-
RACM are those that perform best for precipitation and
drought, while the CM5-RCA4 and IPS-WRF are those that
perform worst. For temperature, the models that perform
best are MPI-CCLM, MPI-REMO, and Had-CCLM, while
the worst are CM5-ALAD, ECE-RCA4, ECE-RACM, and
CM5-RCA4. Had-CCLM performs well for both precipita-
tion and temperature, while the CM5-RCA4 performs bad
for both. Slight changes in models’ performance occur when
moving from the whole study area to the single zones, mainly
at the seasonal scale. For instance, IPS-WRF is the best-
performing model for Zone 3 (north-eastern Calabria) for
seasonal precipitation in SON in contrast to what happens
in the other zones. Differing behaviour of Zone 3 is also ob-
served for drought investigations for CM5-ALAR and IPS-
WRF models, respectively.

Results of this study reveal insight into RCM perfor-
mances in small-scale regions, which are often targeted by
impact studies and have so far received less attention, and
provide some guidance to select the best models about the
variable and the area under investigation. This is a key is-
sue before addressing projection changes in the evolution of
extreme hydro-meteorological events, such as drought char-
acteristics (frequency, duration, and magnitude).
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