Articles | Volume 20, issue 11
Nat. Hazards Earth Syst. Sci., 20, 2961–2977, 2020
https://doi.org/10.5194/nhess-20-2961-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Advances in extreme value analysis and application to natural...
Research article
06 Nov 2020
Research article
| 06 Nov 2020
Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards
Erwan Le Roux et al.
Related authors
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022, https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary
Short summary
Anticipating risks related to climate extremes is critical for societal adaptation to climate change. In this study, we propose a statistical method in order to estimate future climate extremes from past observations and an ensemble of climate change simulations. We apply this approach to snow load data available in the French Alps at 1500 m elevation and find that extreme snow load is projected to decrease by −2.9 kN m−2 (−50 %) between 1986–2005 and 2080–2099 for a high-emission scenario.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 15, 4335–4356, https://doi.org/10.5194/tc-15-4335-2021, https://doi.org/10.5194/tc-15-4335-2021, 2021
Short summary
Short summary
Extreme snowfall can cause major natural hazards (avalanches, winter storms) that can generate casualties and economic damage. In the French Alps, we show that between 1959 and 2019 extreme snowfall mainly decreased below 2000 m of elevation and increased above 2000 m. At 2500 m, we find a contrasting pattern: extreme snowfall decreased in the north, while it increased in the south. This pattern might be related to increasing trends in extreme snowfall observed near the Mediterranean Sea.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
EGUsphere, https://doi.org/10.5194/egusphere-2022-1494, https://doi.org/10.5194/egusphere-2022-1494, 2023
Short summary
Short summary
In mountain catchments, damage during floods are generally primarily driven by the supply of massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper use data gathered during the maintenance operation of about one hundred debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Juliette Blanchet, Alix Reverdy, Antoine Blanc, Jean-Dominique Creutin, Périne Kiennemann, and Guillaume Evin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-276, https://doi.org/10.5194/nhess-2022-276, 2023
Preprint under review for NHESS
Short summary
Short summary
We study the atmospheric conditions at the origin of damaging torrential events in the Northern French Alps over the long run. We consider seven atmospheric variables that describe the nature of the air masses involved and the possible triggers of precipitation and we try to isolate the most discriminating variables. The results show that humidity and particularly humidity transport plays the greatest role under westerly flows while instability potential is mostly at play under southerly flows.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-16, https://doi.org/10.5194/essd-2023-16, 2023
Preprint under review for ESSD
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health and cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Etiene Leblois, and Marie Dumont
EGUsphere, https://doi.org/10.5194/egusphere-2022-1186, https://doi.org/10.5194/egusphere-2022-1186, 2022
Short summary
Short summary
Ski resorts are a key socio-economic asset of several mountain areass. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstreams. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale but rather neutral on the annual scale.
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022, https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary
Short summary
Estimating the magnitude of rare to very rare floods is a challenging task due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and amounts differ considerably between individual events and floods from different parts of the basin coincide. We show that a hydrometeorological model chain can provide plausible estimates in this setting and can thus inform flood risk and safety assessments for critical infrastructure.
Cécile Duvillier, Nicolas Eckert, Guillaume Evin, and Michael Deschâtres
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-177, https://doi.org/10.5194/nhess-2022-177, 2022
Preprint under review for NHESS
Short summary
Short summary
Identification of snow avalanche Potential Release Areas (PRAs) is useful for objective hazard assessment. This study develops a method that efficiently identifies individual PRAs based on terrain analysis and watershed delineation, and demonstrates its efficiency in the French Alps context using an extensive cadastre of past avalanche limits. Crucial steps to reach high accuracy in PRA detection are highlighted and outlooks for further progresses are discussed.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022, https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary
Short summary
Anticipating risks related to climate extremes is critical for societal adaptation to climate change. In this study, we propose a statistical method in order to estimate future climate extremes from past observations and an ensemble of climate change simulations. We apply this approach to snow load data available in the French Alps at 1500 m elevation and find that extreme snow load is projected to decrease by −2.9 kN m−2 (−50 %) between 1986–2005 and 2080–2099 for a high-emission scenario.
Léo Viallon-Galinier, Pascal Hagenmuller, and Nicolas Eckert
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-108, https://doi.org/10.5194/tc-2022-108, 2022
Preprint under review for TC
Short summary
Short summary
Avalanches are a significant issue in mountain areas where they threaten recreationists and human infrastructure. Assessments of avalanche hazards and the related risks are therefore an important challenge for local authorities. Meteorological and snow cover simulations are thus important to support operational forecasting. In this study, we combine it with mechanical analysis of snow profiles and observed avalanche data improves avalanche activity prediction through statistical methods.
Abubakar Haruna, Juliette Blanchet, and Anne-Catherine Favre
Hydrol. Earth Syst. Sci., 26, 2797–2811, https://doi.org/10.5194/hess-26-2797-2022, https://doi.org/10.5194/hess-26-2797-2022, 2022
Short summary
Short summary
Reliable prediction of floods depends on the quality of the input data such as precipitation. However, estimation of precipitation from the local measurements is known to be difficult, especially for extremes. Regionalization improves the estimates by increasing the quantity of data available for estimation. Here, we compare three regionalization methods based on their robustness and reliability. We apply the comparison to a dense network of daily stations within and outside Switzerland.
Matthieu Vernay, Matthieu Lafaysse, Diego Monteiro, Pascal Hagenmuller, Rafife Nheili, Raphaëlle Samacoïts, Deborah Verfaillie, and Samuel Morin
Earth Syst. Sci. Data, 14, 1707–1733, https://doi.org/10.5194/essd-14-1707-2022, https://doi.org/10.5194/essd-14-1707-2022, 2022
Short summary
Short summary
This paper introduces the latest version of the freely available S2M dataset which provides estimates of both meteorological and snow cover variables, as well as various avalanche hazard diagnostics at different elevations, slopes and aspects for the three main French high-elevation mountainous regions. A complete description of the system and the dataset is provided, as well as an overview of the possible uses of this dataset and an objective assessment of its limitations.
Isabelle Ousset, Guillaume Evin, Damien Raynaud, and Thierry Faug
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-93, https://doi.org/10.5194/nhess-2022-93, 2022
Preprint under review for NHESS
Short summary
Short summary
This paper deals with an exceptional rain-on-snow event in a Mediterranean area (France) in 2018 that led to a research center building collapse. A back analysis is done using multiple sources of information to quantify the meteorological event and conducting simulations of the building. Thanks to the two latter approaches, the collapse is attributed to both the event intensity and an inadequate roof drainage. This raises questions about extreme snow loads mitigation in Mediterranean areas.
Lucas Berard-Chenu, Hugues François, Emmanuelle George, and Samuel Morin
The Cryosphere, 16, 863–881, https://doi.org/10.5194/tc-16-863-2022, https://doi.org/10.5194/tc-16-863-2022, 2022
Short summary
Short summary
This study investigates the past snow reliability (1961–2019) of 16 ski resorts in the French Alps using state-of-the-art snowpack modelling. We used snowmaking investment figures to infer the evolution of snowmaking coverage at the individual ski resort level. Snowmaking improved snow reliability for the core of the winter season for the highest-elevation ski resorts. However it did not counterbalance the decreasing trend in snow cover reliability for lower-elevation ski resorts and in spring.
Antoine Blanc, Juliette Blanchet, and Jean-Dominique Creutin
Weather Clim. Dynam., 3, 231–250, https://doi.org/10.5194/wcd-3-231-2022, https://doi.org/10.5194/wcd-3-231-2022, 2022
Short summary
Short summary
Precipitation variability and extremes in the northern French Alps are governed by the atmospheric circulation over western Europe. In this work, we study the past evolution of western Europe large-scale circulation using atmospheric descriptors. We show some discrepancies in the trends obtained from different reanalyses before 1950. After 1950, we find trends in Mediterranean circulations that appear to be linked with trends in seasonal and extreme precipitation in the northern French Alps.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Revised manuscript has not been submitted
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Guillaume Evin, Samuel Somot, and Benoit Hingray
Earth Syst. Dynam., 12, 1543–1569, https://doi.org/10.5194/esd-12-1543-2021, https://doi.org/10.5194/esd-12-1543-2021, 2021
Short summary
Short summary
This research paper proposes an assessment of mean climate change responses and related uncertainties over Europe for mean seasonal temperature and total seasonal precipitation. An advanced statistical approach is applied to a large ensemble of 87 high-resolution EURO-CORDEX projections. For the first time, we provide a comprehensive estimation of the relative contribution of GCMs and RCMs, RCP scenarios, and internal variability to the total variance of a very large ensemble.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Hippolyte Kern, Nicolas Eckert, Vincent Jomelli, Delphine Grancher, Michael Deschatres, and Gilles Arnaud-Fassetta
The Cryosphere, 15, 4845–4852, https://doi.org/10.5194/tc-15-4845-2021, https://doi.org/10.5194/tc-15-4845-2021, 2021
Short summary
Short summary
Snow avalanches are a major component of the mountain cryosphere that often put people, settlements, and infrastructures at risk. This study investigated avalanche path morphological factors controlling snow deposit volumes, a critical aspect of snow avalanche dynamics that remains poorly known. Different statistical techniques show a slight but significant link between deposit volumes and avalanche path morphology.
Guillaume Evin, Matthieu Lafaysse, Maxime Taillardat, and Michaël Zamo
Nonlin. Processes Geophys., 28, 467–480, https://doi.org/10.5194/npg-28-467-2021, https://doi.org/10.5194/npg-28-467-2021, 2021
Short summary
Short summary
Forecasting the height of new snow is essential for avalanche hazard surveys, road and ski resort management, tourism attractiveness, etc. Météo-France operates a probabilistic forecasting system using a numerical weather prediction system and a snowpack model. It provides better forecasts than direct diagnostics but exhibits significant biases. Post-processing methods can be applied to provide automatic forecasting products from this system.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 15, 4335–4356, https://doi.org/10.5194/tc-15-4335-2021, https://doi.org/10.5194/tc-15-4335-2021, 2021
Short summary
Short summary
Extreme snowfall can cause major natural hazards (avalanches, winter storms) that can generate casualties and economic damage. In the French Alps, we show that between 1959 and 2019 extreme snowfall mainly decreased below 2000 m of elevation and increased above 2000 m. At 2500 m, we find a contrasting pattern: extreme snowfall decreased in the north, while it increased in the south. This pattern might be related to increasing trends in extreme snowfall observed near the Mediterranean Sea.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Damien Raynaud, Benoit Hingray, Guillaume Evin, Anne-Catherine Favre, and Jérémy Chardon
Hydrol. Earth Syst. Sci., 24, 4339–4352, https://doi.org/10.5194/hess-24-4339-2020, https://doi.org/10.5194/hess-24-4339-2020, 2020
Short summary
Short summary
This research paper proposes a weather generator combining two sampling approaches. A first generator recombines large-scale atmospheric situations. A second generator is applied to these atmospheric trajectories in order to simulate long time series of daily regional precipitation and temperature. The method is applied to daily time series in Switzerland. It reproduces adequately the observed climatology and improves the reproduction of extreme precipitation values.
Jari-Pekka Nousu, Matthieu Lafaysse, Matthieu Vernay, Joseph Bellier, Guillaume Evin, and Bruno Joly
Nonlin. Processes Geophys., 26, 339–357, https://doi.org/10.5194/npg-26-339-2019, https://doi.org/10.5194/npg-26-339-2019, 2019
Short summary
Short summary
Forecasting the height of new snow is crucial for avalanche hazard, road viability, ski resorts and tourism. The numerical models suffer from systematic and significant errors which are misleading for the final users. Here, we applied for the first time a state-of-the-art statistical method to correct ensemble numerical forecasts of the height of new snow from their statistical link with measurements in French Alps and Pyrenees. Thus the realism of automatic forecasts can be quickly improved.
Pierre Spandre, Hugues François, Deborah Verfaillie, Marc Pons, Matthieu Vernay, Matthieu Lafaysse, Emmanuelle George, and Samuel Morin
The Cryosphere, 13, 1325–1347, https://doi.org/10.5194/tc-13-1325-2019, https://doi.org/10.5194/tc-13-1325-2019, 2019
Short summary
Short summary
This study investigates the snow reliability of 175 ski resorts in the Pyrenees (France, Spain and Andorra) and the French Alps under past and future conditions (1950–2100) using state-of-the-art climate projections and snowpack modelling accounting for snow management, i.e. grooming and snowmaking. The snow reliability of ski resorts shows strong elevation and regional differences, and our study quantifies changes in snow reliability induced by snowmaking under various climate scenarios.
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019, https://doi.org/10.5194/tc-13-1147-2019, 2019
Short summary
Short summary
The snow albedo reduction due to dust from arid regions alters the melting dynamics of the snowpack, resulting in earlier snowmelt. We estimate up to 38 days of anticipated snow disappearance for a season that was characterized by a strong dust deposition event. This process has a series of further impacts. For example, earlier snowmelts may alter the hydrological cycle in the Alps, induce higher sensitivity to late summer drought, and finally impact vegetation and animal phenology.
Juliette Blanchet, Emmanuel Paquet, Pradeebane Vaittinada Ayar, and David Penot
Hydrol. Earth Syst. Sci., 23, 829–849, https://doi.org/10.5194/hess-23-829-2019, https://doi.org/10.5194/hess-23-829-2019, 2019
Short summary
Short summary
We propose an objective framework for estimating rainfall cumulative distribution functions in a region when data are only available at rain gauges. Our methodology allows us to assess goodness-of-fit of the full distribution, but with a particular focus on its tail. It is applied to daily rainfall in the Ardèche catchment in the south of France. Results show a preference for a mixture of Gamma distribution over seasons and weather patterns, with parameters interpolated with a thin plate spline.
Yves Lejeune, Marie Dumont, Jean-Michel Panel, Matthieu Lafaysse, Philippe Lapalus, Erwan Le Gac, Bernard Lesaffre, and Samuel Morin
Earth Syst. Sci. Data, 11, 71–88, https://doi.org/10.5194/essd-11-71-2019, https://doi.org/10.5194/essd-11-71-2019, 2019
Short summary
Short summary
This paper introduces and provides access to a daily (1960–2017) and an hourly (1993–2017) dataset of snow and meteorological data measured at the Col de Porte site, 1325 m a.s.l, Charteuse, France. The daily dataset can be used to quantify the effect of climate change at this site, with a reduction of the mean snow depth of 39 cm from 1960–1990 to 1990–2017. The daily and hourly datasets are useful and appropriate for driving and evaluating a snowpack model over such a long period.
Frank Techel, Christoph Mitterer, Elisabetta Ceaglio, Cécile Coléou, Samuel Morin, Francesca Rastelli, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 18, 2697–2716, https://doi.org/10.5194/nhess-18-2697-2018, https://doi.org/10.5194/nhess-18-2697-2018, 2018
Short summary
Short summary
In 1993, the European Avalanche Warning Services agreed upon a common danger scale to describe the regional avalanche hazard: the European Avalanche Danger Scale. Using published avalanche forecasts, we explored whether forecasters use the scale consistently. We noted differences in the use of the danger levels, some of which could be linked to the size of the regions a regional danger level is issued for. We recommend further harmonizing the avalanche forecast products in the Alps.
Guillaume Evin, Thomas Curt, and Nicolas Eckert
Nat. Hazards Earth Syst. Sci., 18, 2641–2651, https://doi.org/10.5194/nhess-18-2641-2018, https://doi.org/10.5194/nhess-18-2641-2018, 2018
Short summary
Short summary
Very large wildfires have high human, economic, and ecological impacts. Preventing such events is a major objective of the new fire policy set up in France in 1994, which is oriented towards fast and massive fire suppression. This study investigates the effect of this policy on the largest fires. We estimate the burned area corresponding to fires that occur every 5, 20, and 50 years on average (so-called return periods) in southern France.
Alexandra Touzeau, Amaëlle Landais, Samuel Morin, Laurent Arnaud, and Ghislain Picard
Geosci. Model Dev., 11, 2393–2418, https://doi.org/10.5194/gmd-11-2393-2018, https://doi.org/10.5194/gmd-11-2393-2018, 2018
Short summary
Short summary
We introduced a new module of water vapor diffusion into the snowpack model Crocus. Vapor transport locally modifies the density of snow layers, possibly influencing compaction. It also affects the original isotopic signature of snow layers. We also introduced water isotopes (𝛿18O) in the model. Over 10 years, the modeled attenuation of isotopic variations due to vapor diffusion is 7–18 % lower than the observations. Thus, other processes are required to explain the total attenuation.
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018, https://doi.org/10.5194/tc-12-1367-2018, 2018
Deborah Verfaillie, Matthieu Lafaysse, Michel Déqué, Nicolas Eckert, Yves Lejeune, and Samuel Morin
The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, https://doi.org/10.5194/tc-12-1249-2018, 2018
Short summary
Short summary
This article addresses local changes of seasonal snow and its meteorological drivers, at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps, for the period 1960–2100. We use an ensemble of adjusted RCM outputs consistent with IPCC AR5 GCM outputs (RCPs 2.6, 4.5 and 8.5) and the snowpack model Crocus. Beyond scenario-based approach, global temperature levels on the order of 1.5 °C and 2 °C above preindustrial levels correspond to 25 and 32% reduction of mean snow depth.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Guillaume Evin, Anne-Catherine Favre, and Benoit Hingray
Hydrol. Earth Syst. Sci., 22, 655–672, https://doi.org/10.5194/hess-22-655-2018, https://doi.org/10.5194/hess-22-655-2018, 2018
Short summary
Short summary
This research paper proposes a multi-site daily precipitation model, named GWEX, which aims to reproduce the statistical features of extremely rare events at different temporal and spatial scales. Recent advances and various statistical methods (regionalization, disaggregation) are considered in order to obtain a robust and appropriate representation of the most extreme precipitation fields. Performances are shown with an application to 105 stations, covering a large region in Switzerland.
Deborah Verfaillie, Michel Déqué, Samuel Morin, and Matthieu Lafaysse
Geosci. Model Dev., 10, 4257–4283, https://doi.org/10.5194/gmd-10-4257-2017, https://doi.org/10.5194/gmd-10-4257-2017, 2017
Francois Tuzet, Marie Dumont, Matthieu Lafaysse, Ghislain Picard, Laurent Arnaud, Didier Voisin, Yves Lejeune, Luc Charrois, Pierre Nabat, and Samuel Morin
The Cryosphere, 11, 2633–2653, https://doi.org/10.5194/tc-11-2633-2017, https://doi.org/10.5194/tc-11-2633-2017, 2017
Short summary
Short summary
Light-absorbing impurities deposited on snow, such as soot or dust, strongly modify its evolution. We implemented impurity deposition and evolution in a detailed snowpack model, thereby expanding the reach of such models into addressing the subtle interplays between snow physics and impurities' optical properties. Model results were evaluated based on innovative field observations at an Alpine site. This allows future investigations in the fields of climate, hydrology and avalanche prediction.
Jesús Revuelto, Grégoire Lecourt, Matthieu Lafaysse, Isabella Zin, Luc Charrois, Vincent Vionnet, Marie Dumont, Antoine Rabatel, Delphine Six, Thomas Condom, Samuel Morin, Alessandra Viani, and Pascal Sirguey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-184, https://doi.org/10.5194/tc-2017-184, 2017
Revised manuscript not accepted
Short summary
Short summary
We evaluated distributed and semi-distributed modeling approaches to simulating the spatial and temporal evolution of snow and ice over an extended mountain catchment, using the Crocus snowpack model. The distributed approach simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain shadowing effects. The semi-distributed approach simulated the snowpack dynamics for discrete topographic classes characterized by elevation range, aspect, and slope.
Christopher J. L. D'Amboise, Karsten Müller, Laurent Oxarango, Samuel Morin, and Thomas V. Schuler
Geosci. Model Dev., 10, 3547–3566, https://doi.org/10.5194/gmd-10-3547-2017, https://doi.org/10.5194/gmd-10-3547-2017, 2017
Short summary
Short summary
We present a new water percolation routine added to the Crocus model. The new routine is physically based, describing motion of water through a layered snowpack considering capillary-driven and gravity flow. We tested the routine on two data sets. Wet-snow layers were able to reach higher saturations than the empirical routine. Meaningful applicability is limited until new and better parameterizations of water retention are developed, and feedbacks are adjusted to handle higher saturations.
Mathieu Barrere, Florent Domine, Bertrand Decharme, Samuel Morin, Vincent Vionnet, and Matthieu Lafaysse
Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, https://doi.org/10.5194/gmd-10-3461-2017, 2017
Short summary
Short summary
Global warming projections still suffer from a limited representation of the permafrost–carbon feedback. This study assesses the capacity of snow-soil coupled models to simulate the permafrost thermal regime at Bylot Island, a high Arctic site. Significant flaws are found in the description of Arctic snow properties, resulting in erroneous heat transfers between the soil and the snow in simulations. Improved snow schemes are needed to accurately predict the future of permafrost.
Matthieu Lafaysse, Bertrand Cluzet, Marie Dumont, Yves Lejeune, Vincent Vionnet, and Samuel Morin
The Cryosphere, 11, 1173–1198, https://doi.org/10.5194/tc-11-1173-2017, https://doi.org/10.5194/tc-11-1173-2017, 2017
Short summary
Short summary
Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC by implementing new representations of different physical processes in a coupled multilayer ground/snowpack model. This system is a promising tool to integrate snow modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack modelling applications.
Marie Dumont, Laurent Arnaud, Ghislain Picard, Quentin Libois, Yves Lejeune, Pierre Nabat, Didier Voisin, and Samuel Morin
The Cryosphere, 11, 1091–1110, https://doi.org/10.5194/tc-11-1091-2017, https://doi.org/10.5194/tc-11-1091-2017, 2017
Short summary
Short summary
Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77°E; 1325 m a.s.l.). This study highlights that the variations of spectral albedo can be successfully explained by variations of the following snow surface variables: snow-specific surface area, effective light-absorbing impurities content, presence of liquid water and slope.
Pierre Spandre, Hugues François, Emmanuel Thibert, Samuel Morin, and Emmanuelle George-Marcelpoil
The Cryosphere, 11, 891–909, https://doi.org/10.5194/tc-11-891-2017, https://doi.org/10.5194/tc-11-891-2017, 2017
Short summary
Short summary
The production of machine-made snow is generalized in ski resorts and represents the most common adaptation method to mitigate effects of climate variability and its projected changes. However, the actual snow mass that can be recovered from a given water mass used for snowmaking remains poorly known. All results were consistent with 60 % (±10 %) of the water mass found as snow within the edge of the ski slope, with most of the lost fraction of water being due to site-dependent characteristics.
Florent Domine, Mathieu Barrere, and Samuel Morin
Biogeosciences, 13, 6471–6486, https://doi.org/10.5194/bg-13-6471-2016, https://doi.org/10.5194/bg-13-6471-2016, 2016
Short summary
Short summary
Warming-induced shrub growth in the Arctic traps snow and modifies snow properties, hence the permafrost thermal regime. In the Canadian high Arctic, we measured snow physical properties in the presence and absence of willow shrubs (Salix richardsonii). Shrubs dramatically reduce snow density and thermal conductivity, seriously limiting soil winter cooling. Simulations taking into account only winter changes show that shrub growth leads to a ground winter warming of up to 13 °C.
Deborah Verfaillie, Michel Déqué, Samuel Morin, and Matthieu Lafaysse
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-168, https://doi.org/10.5194/gmd-2016-168, 2016
Revised manuscript not accepted
Ghislain Picard, Laurent Arnaud, Jean-Michel Panel, and Samuel Morin
The Cryosphere, 10, 1495–1511, https://doi.org/10.5194/tc-10-1495-2016, https://doi.org/10.5194/tc-10-1495-2016, 2016
Short summary
Short summary
A cost-effective automatic laser scan has been built to measure snow depth spatio-temporal variations. Deployed in the Alps and in Dome C (Antarctica), two devices acquired daily scans covering a surface area of 100–150 m2. The precision and long-term stability of the measurements are about 1 cm and the accuracy is better than 5 cm. These high performances are particularly suited at Dome C, where it was possible to reveal that most of the accumulation in the year 2015 stems from a single event.
Luc Charrois, Emmanuel Cosme, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Quentin Libois, and Ghislain Picard
The Cryosphere, 10, 1021–1038, https://doi.org/10.5194/tc-10-1021-2016, https://doi.org/10.5194/tc-10-1021-2016, 2016
Short summary
Short summary
This study investigates the assimilation of optical reflectances, snowdepth data and both combined into a multilayer snowpack model. Data assimilation is performed with an ensemble-based method, the Sequential Importance Resampling Particle filter. Experiments assimilating only synthetic data are conducted at one point in the French Alps, the Col du Lautaret, over five hydrological years. Results of the assimilation experiments show improvements of the snowpack bulk variables estimates.
Bertrand Decharme, Eric Brun, Aaron Boone, Christine Delire, Patrick Le Moigne, and Samuel Morin
The Cryosphere, 10, 853–877, https://doi.org/10.5194/tc-10-853-2016, https://doi.org/10.5194/tc-10-853-2016, 2016
Short summary
Short summary
We analyze how snowpack processes and soil properties impact the soil temperature profiles over northern Eurasian regions using a land surface model. A correct representation of snow compaction is critical in winter while snow albedo is dominant in spring. In summer, soil temperature is more affected by soil organic carbon content, which strongly influences the maximum thaw depth in permafrost regions. This work was done to improve the representation of boreal region processes in climate models.
Q. Libois, G. Picard, L. Arnaud, M. Dumont, M. Lafaysse, S. Morin, and E. Lefebvre
The Cryosphere, 9, 2383–2398, https://doi.org/10.5194/tc-9-2383-2015, https://doi.org/10.5194/tc-9-2383-2015, 2015
Short summary
Short summary
The albedo and surface energy budget of the Antarctic Plateau are largely determined by snow specific surface area. The latter experiences substantial daily-to-seasonal variations in response to meteorological conditions. In particular, it decreases by a factor three in summer, causing a drop in albedo. These variations are monitored from in situ and remote sensing observations at Dome C. For the first time, they are also simulated with a snowpack evolution model adapted to Antarctic conditions.
J. Blanchet, J. Touati, D. Lawrence, F. Garavaglia, and E. Paquet
Nat. Hazards Earth Syst. Sci., 15, 2653–2667, https://doi.org/10.5194/nhess-15-2653-2015, https://doi.org/10.5194/nhess-15-2653-2015, 2015
Short summary
Short summary
Simulation methods for design flood analyses require estimates of extreme precipitation for simulating maximum discharges. This article evaluates the MEWP model for extreme precipitation, a compound model based on weather-pattern classification, seasonal splitting and exponential distributions, for its suitability for use in Norway. It shows the clear benefit obtained from seasonal and weather-pattern-based subsampling for extreme value estimation.
J. Erbland, J. Savarino, S. Morin, J. L. France, M. M. Frey, and M. D. King
Atmos. Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015, https://doi.org/10.5194/acp-15-12079-2015, 2015
Short summary
Short summary
In this paper, we describe the development of a numerical model which aims at representing nitrate recycling at the air-snow interface on the East Antarctic Plateau. Stable isotopes are used as diagnostic and evaluation tools by comparing the model's results to recent field measurements of nitrate and key atmospheric species at Dome C, Antarctica. From sensitivity tests conducted with the model, we propose a framework for the interpretation of the nitrate isotope record in deep ice cores.
F. Domine, M. Barrere, D. Sarrazin, S. Morin, and L. Arnaud
The Cryosphere, 9, 1265–1276, https://doi.org/10.5194/tc-9-1265-2015, https://doi.org/10.5194/tc-9-1265-2015, 2015
Short summary
Short summary
The thermal conductivity of Arctic snow strongly impacts ground temperature, nutrient recycling and vegetation growth. We have monitored the thermal conductivity of snow in low-Arctic shrub tundra for two consecutive winters using heated needle probes. We observe very different thermal conductivity evolutions in both winters studied, with more extensive melting in the second winter. Results illustrate the effect of vegetation on snow properties and the need to include it in snow physics models.
R. A. Olinda, J. Blanchet, C. A. C. dos Santos, V. A. Ozaki, and P. J. Ribeiro Jr.
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-12731-2014, https://doi.org/10.5194/hessd-11-12731-2014, 2014
Revised manuscript has not been submitted
X. V. Phan, L. Ferro-Famil, M. Gay, Y. Durand, M. Dumont, S. Morin, S. Allain, G. D'Urso, and A. Girard
The Cryosphere, 8, 1975–1987, https://doi.org/10.5194/tc-8-1975-2014, https://doi.org/10.5194/tc-8-1975-2014, 2014
H. Castebrunet, N. Eckert, G. Giraud, Y. Durand, and S. Morin
The Cryosphere, 8, 1673–1697, https://doi.org/10.5194/tc-8-1673-2014, https://doi.org/10.5194/tc-8-1673-2014, 2014
M. Dietzel, A. Leis, R. Abdalla, J. Savarino, S. Morin, M. E. Böttcher, and S. Köhler
Biogeosciences, 11, 3149–3161, https://doi.org/10.5194/bg-11-3149-2014, https://doi.org/10.5194/bg-11-3149-2014, 2014
C. M. Carmagnola, S. Morin, M. Lafaysse, F. Domine, B. Lesaffre, Y. Lejeune, G. Picard, and L. Arnaud
The Cryosphere, 8, 417–437, https://doi.org/10.5194/tc-8-417-2014, https://doi.org/10.5194/tc-8-417-2014, 2014
J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins
Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, https://doi.org/10.5194/acp-13-6403-2013, 2013
Related subject area
Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
A data-driven model for Fennoscandian wildfire danger
Equivalent hazard magnitude scale
Statistical modelling of air quality impacts from individual forest fires in New South Wales, Australia
Drivers of extreme burnt area in Portugal: fire weather and vegetation
Coupling wildfire spread simulations and connectivity analysis for hazard assessment: a case study in Serra da Cabreira, Portugal
Glacial lake outburst flood hazard under current and future conditions: worst-case scenarios in a transboundary Himalayan basin
What weather variables are important for wet and slab avalanches under a changing climate in a low-altitude mountain range in Czechia?
Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia
Automated snow avalanche release area delineation in data-sparse, remote, and forested regions
The 2017 Split wildfire in Croatia: evolution and the role of meteorological conditions
Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective
Global assessment and mapping of ecological vulnerability to wildfires
The impact of terrain model source and resolution on snow avalanche modeling
Travel and terrain advice statements in public avalanche bulletins: a quantitative analysis of who uses this information, what makes it useful, and how it can be improved for users
Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland
On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger
Automated avalanche hazard indication mapping on a statewide scale
Forecasting the regional fire radiative power for regularly ignited vegetation fires
Environmental factors affecting wildfire-burned areas in southeastern France, 1970–2019
Detrainment and braking of snow avalanches interacting with forests
Past and future trends in fire weather for the UK
Methodological and conceptual challenges in rare and severe event forecast verification
Multi-method monitoring of rockfall activity along the classic route up Mont Blanc (4809 m a.s.l.) to encourage adaptation by mountaineers
Wildfire–atmosphere interaction index for extreme-fire behaviour
How is avalanche danger described in textual descriptions in avalanche forecasts in Switzerland? Consistency between forecasters and avalanche danger
Data-based wildfire risk model for Mediterranean ecosystems – case study of the Concepción metropolitan area in central Chile
The mud volcanoes at Santa Barbara and Aragona (Sicily, Italy): a contribution to risk assessment
Impact of information presentation on interpretability of spatial hazard information: lessons from a study in avalanche safety
ABWiSE v1.0: toward an agent-based approach to simulating wildfire spread
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Spatial and temporal subsidence characteristics in Wuhan (China), during 2015–2019, inferred from Sentinel-1 synthetic aperture radar (SAR) interferometry
Formation, evolution, and drainage of short-lived glacial lakes in permafrost environments of the northern Teskey Range, Central Asia
Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards
Assessing the effect of lithological setting, block characteristics and slope topography on the runout length of rockfalls in the Alps and on the island of La Réunion
Evolution of surface deformation related to salt-extraction-caused sinkholes in Solotvyno (Ukraine) revealed by Sentinel-1 radar interferometry
Attribution of the Australian bushfire risk to anthropogenic climate change
Synoptic atmospheric circulation patterns associated with deep persistent slab avalanches in the western United States
A regional spatiotemporal analysis of large magnitude snow avalanches using tree rings
Examining the operational use of avalanche problems with decision trees and model-generated weather and snowpack variables
A classification scheme to determine wildfires from the satellite record in the cool grasslands of southern Canada: considerations for fire occurrence modelling and warning criteria
Assessments of land subsidence along the Rizhao–Lankao high-speed railway at Heze, China, between 2015 and 2019 with Sentinel-1 data
Tailings-flow runout analysis: examining the applicability of a semi-physical area–volume relationship using a novel database
Experimental assessment of the relationship between rainfall intensity and sinkholes caused by damaged sewer pipes
Sensitivity of modeled snow stability data to meteorological input uncertainty
Fire Weather Index: the skill provided by the European Centre for Medium-Range Weather Forecasts ensemble prediction system
The 1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D
On snow stability interpretation of extended column test results
Adrián Cardíl, Victor M. Tapia, Santiago Monedero, Tomás Quiñones, Kerryn Little, Cathelijne R. Stoof, Joaquín Ramirez, and Sergio de-Miguel
Nat. Hazards Earth Syst. Sci., 23, 361–373, https://doi.org/10.5194/nhess-23-361-2023, https://doi.org/10.5194/nhess-23-361-2023, 2023
Short summary
Short summary
This study aims to unravel large-fire behavior in northwest Europe, a temperate region with a projected increase in wildfire risk. We propose a new method to identify wildfire rate of spread from satellites because it is important to know periods of elevated fire risk for suppression methods and land management. Results indicate that there is a peak in the area burned and rate of spread in the months of March and April, and there are significant differences for forest-type land covers.
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023, https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Short summary
Hazards from glaciers are becoming more likely as the climate warms, which poses a threat to communities living beneath them. We have developed a new camera system which can capture regular, high-quality 3D models to monitor small changes in glaciers which could be indicative of a future hazard. This system is far cheaper than more typical camera sensors yet produces very similar quality data. We suggest that deploying these cameras near glaciers could assist in warning communities of hazards.
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023, https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
Short summary
For a slab avalanche to release, the snowpack must facilitate crack propagation over large distances. Field measurements on crack propagation at this scale are very scarce. We performed a series of experiments, up to 10 m long, over a period of 10 weeks. Beside the temporal evolution of the mechanical properties of the snowpack, we found that crack speeds were highest for tests resulting in full propagation. Based on these findings, an index for self-sustained crack propagation is proposed.
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023, https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
Yi Victor Wang and Antonia Sebastian
Nat. Hazards Earth Syst. Sci., 22, 4103–4118, https://doi.org/10.5194/nhess-22-4103-2022, https://doi.org/10.5194/nhess-22-4103-2022, 2022
Short summary
Short summary
In this article, we propose an equivalent hazard magnitude scale and a method to evaluate and compare the strengths of natural hazard events across different hazard types, including earthquakes, tsunamis, floods, droughts, forest fires, tornadoes, cold waves, heat waves, and tropical cyclones. With our method, we determine that both the February 2021 North American cold wave event and Hurricane Harvey in 2017 were equivalent to a magnitude 7.5 earthquake in hazard strength.
Michael A. Storey and Owen F. Price
Nat. Hazards Earth Syst. Sci., 22, 4039–4062, https://doi.org/10.5194/nhess-22-4039-2022, https://doi.org/10.5194/nhess-22-4039-2022, 2022
Short summary
Short summary
Models are needed to understand and predict pollutant output from forest fires so fire agencies can reduce smoke-related risks to human health. We modelled air quality (PM2.5) based on fire area and weather variables. We found fire area and boundary layer height were influential on predictions, with distance, temperature, wind speed and relative humidity also important. The models predicted reasonably accurately in comparison to other existing methods but would benefit from further development.
Tomás Calheiros, Akli Benali, Mário Pereira, João Silva, and João Nunes
Nat. Hazards Earth Syst. Sci., 22, 4019–4037, https://doi.org/10.5194/nhess-22-4019-2022, https://doi.org/10.5194/nhess-22-4019-2022, 2022
Short summary
Short summary
Fire weather indices are used to assess the effect of weather on wildfires. Fire weather risk was computed and combined with large wildfires in Portugal. Results revealed the influence of vegetation cover: municipalities with a prevalence of shrublands, located in eastern parts, burnt under less extreme conditions than those with higher forested areas, situated in coastal regions. These findings are a novelty for fire science in Portugal and should be considered for fire management.
Ana C. L. Sá, Bruno Aparicio, Akli Benali, Chiara Bruni, Michele Salis, Fábio Silva, Martinho Marta-Almeida, Susana Pereira, Alfredo Rocha, and José Pereira
Nat. Hazards Earth Syst. Sci., 22, 3917–3938, https://doi.org/10.5194/nhess-22-3917-2022, https://doi.org/10.5194/nhess-22-3917-2022, 2022
Short summary
Short summary
Assessing landscape wildfire connectivity supported by wildfire spread simulations can improve fire hazard assessment and fuel management plans. Weather severity determines the degree of fuel patch connectivity and thus the potential to spread large and intense wildfires. Mapping highly connected patches in the landscape highlights patch candidates for prior fuel treatments, which ultimately will contribute to creating fire-resilient Mediterranean landscapes.
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
Markéta Součková, Roman Juras, Kryštof Dytrt, Vojtěch Moravec, Johanna Ruth Blöcher, and Martin Hanel
Nat. Hazards Earth Syst. Sci., 22, 3501–3525, https://doi.org/10.5194/nhess-22-3501-2022, https://doi.org/10.5194/nhess-22-3501-2022, 2022
Short summary
Short summary
Avalanches are natural hazards that threaten people and infrastructure. With climate change, avalanche activity is changing. We analysed the change in frequency and size of avalanches in the Krkonoše Mountains, Czechia, and detected important variables with machine learning tools from 1979–2020. Wet avalanches in February and March have increased, and slab avalanches have decreased and become smaller. The identified variables and their threshold levels may help in avalanche decision-making.
Annalie Dorph, Erica Marshall, Kate A. Parkins, and Trent D. Penman
Nat. Hazards Earth Syst. Sci., 22, 3487–3499, https://doi.org/10.5194/nhess-22-3487-2022, https://doi.org/10.5194/nhess-22-3487-2022, 2022
Short summary
Short summary
Wildfire spatial patterns are determined by fire ignition sources and vegetation fuel moisture. Fire ignitions can be mediated by humans (owing to proximity to human infrastructure) or caused by lightning (owing to fuel moisture, average annual rainfall and local weather). When moisture in dead vegetation is below 20 % the probability of a wildfire increases. The results of this research enable accurate spatial mapping of ignition probability to aid fire suppression efforts and future research.
John Sykes, Pascal Haegeli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 3247–3270, https://doi.org/10.5194/nhess-22-3247-2022, https://doi.org/10.5194/nhess-22-3247-2022, 2022
Short summary
Short summary
Automated snow avalanche terrain mapping provides an efficient method for large-scale assessment of avalanche hazards, which informs risk management decisions for transportation and recreation. This research reduces the cost of developing avalanche terrain maps by using satellite imagery and open-source software as well as improving performance in forested terrain. The research relies on local expertise to evaluate accuracy, so the methods are broadly applicable in mountainous regions worldwide.
Ivana Čavlina Tomašević, Kevin K. W. Cheung, Višnjica Vučetić, Paul Fox-Hughes, Kristian Horvath, Maja Telišman Prtenjak, Paul J. Beggs, Barbara Malečić, and Velimir Milić
Nat. Hazards Earth Syst. Sci., 22, 3143–3165, https://doi.org/10.5194/nhess-22-3143-2022, https://doi.org/10.5194/nhess-22-3143-2022, 2022
Short summary
Short summary
One of the most severe and impactful urban wildfire events in Croatian history has been reconstructed and analyzed. The study identified some important meteorological influences related to the event: the synoptic conditions of the Azores anticyclone, cold front, and upper-level shortwave trough all led to the highest fire weather index in 2017. A low-level jet, locally known as bura wind that can be explained by hydraulic jump theory, was the dynamic trigger of the event.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Fátima Arrogante-Funes, Inmaculada Aguado, and Emilio Chuvieco
Nat. Hazards Earth Syst. Sci., 22, 2981–3003, https://doi.org/10.5194/nhess-22-2981-2022, https://doi.org/10.5194/nhess-22-2981-2022, 2022
Short summary
Short summary
We show that ecological value might be reduced by 50 % due to fire perturbation in ecosystems that have not developed in the presence of fire and/or that present changes in the fire regime. The biomes most affected are tropical and subtropical forests, tundra, and mangroves. Integration of biotic and abiotic fire regime and regeneration factors resulted in a powerful way to map ecological vulnerability to fire and develop assessments to generate adaptation plans of management in forest masses.
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022, https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Short summary
Natural hazard modelers simulate mass movements to better anticipate the risk to people and infrastructure. These simulations require accurate digital elevation models. We test the sensitivity of a well-established snow avalanche model (RAMMS) to the source and spatial resolution of the elevation model. We find key differences in the digital representation of terrain greatly affect the simulated avalanche results, with implications for hazard planning.
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 22, 1973–2000, https://doi.org/10.5194/nhess-22-1973-2022, https://doi.org/10.5194/nhess-22-1973-2022, 2022
Short summary
Short summary
Avalanche bulletins include travel and terrain statements to provide recreationists with tangible guidance about how to apply the hazard information. We examined which bulletin users pay attention to these statements, what determines their usefulness, and how they could be improved. Our study shows that reducing jargon and adding simple explanations can significantly improve the usefulness of the statements for users with lower levels of avalanche awareness education who depend on this advice.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Short summary
Can the resolution of forecasts of avalanche danger be increased by using a combination of absolute and comparative judgments? Using 5 years of Swiss avalanche forecasts, we show that, on average, sub-levels assigned to a danger level reflect the expected increase in the number of locations with poor snow stability and in the number and size of avalanches with increasing forecast sub-level.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
Tero M. Partanen and Mikhail Sofiev
Nat. Hazards Earth Syst. Sci., 22, 1335–1346, https://doi.org/10.5194/nhess-22-1335-2022, https://doi.org/10.5194/nhess-22-1335-2022, 2022
Short summary
Short summary
The presented method aims to forecast regional wildfire-emitted radiative power in a time-dependent manner several days in advance. The temporal fire radiative power can be converted to an emission production rate, which can be implemented in air quality forecasting simulations. It is shown that in areas with a high incidence of wildfires, the fire radiative power is quite predictable, but otherwise it is not.
Christos Bountzouklis, Dennis M. Fox, and Elena Di Bernardino
Nat. Hazards Earth Syst. Sci., 22, 1181–1200, https://doi.org/10.5194/nhess-22-1181-2022, https://doi.org/10.5194/nhess-22-1181-2022, 2022
Short summary
Short summary
The study addresses the evolution of burned areas in southeastern France from 1970 to 2019 through the scope of a firefighting policy shift in 1994 that resulted in a significant decrease in the burned area. Regions with large fires were particularly impacted, whereas, in other areas, the fires remained frequent and occurred closer to built-up zones. Environmental characteristics such as south-facing slopes and low vegetation (bushes) are increasingly associated with burned areas.
Louis Védrine, Xingyue Li, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 22, 1015–1028, https://doi.org/10.5194/nhess-22-1015-2022, https://doi.org/10.5194/nhess-22-1015-2022, 2022
Short summary
Short summary
This study investigates how forests affect the behaviour of snow avalanches through the evaluation of the amount of snow stopped by the trees and the analysis of energy dissipation mechanisms. Different avalanche features and tree configurations have been examined, leading to the proposal of a unified law for the detrained snow mass. Outcomes from this study can be directly implemented in operational models for avalanche risk assessment and contribute to improved forest management strategy.
Matthew C. Perry, Emilie Vanvyve, Richard A. Betts, and Erika J. Palin
Nat. Hazards Earth Syst. Sci., 22, 559–575, https://doi.org/10.5194/nhess-22-559-2022, https://doi.org/10.5194/nhess-22-559-2022, 2022
Short summary
Short summary
In the past, wildfires in the UK have occurred mainly in spring, with occasional events during hot, dry summers. Climate models predict a large future increase in hazardous fire weather conditions in summer. Wildfire can be considered an
emergent riskfor the UK, as past events have not had widespread major impacts, but this could change. The large increase in risk between the 2 °C and 4 °C levels of global warming highlights the importance of global efforts to keep warming below 2 °C.
Philip A. Ebert and Peter Milne
Nat. Hazards Earth Syst. Sci., 22, 539–557, https://doi.org/10.5194/nhess-22-539-2022, https://doi.org/10.5194/nhess-22-539-2022, 2022
Short summary
Short summary
There is no consensus about how to assess the quality of binary (yes or no) rare and severe event forecasts, i.e. forecasts involving natural hazards like tornadoes or avalanches. We offer a comprehensive overview of the challenges we face when making such an assessment and provide a critical review of existing solutions. We argue against all but one existing solution to assess the quality of such forecasts and present practical consequences to improve forecasting services.
Jacques Mourey, Pascal Lacroix, Pierre-Allain Duvillard, Guilhem Marsy, Marco Marcer, Emmanuel Malet, and Ludovic Ravanel
Nat. Hazards Earth Syst. Sci., 22, 445–460, https://doi.org/10.5194/nhess-22-445-2022, https://doi.org/10.5194/nhess-22-445-2022, 2022
Short summary
Short summary
More frequent rockfalls in high alpine environments due to climate change are a growing threat to mountaineers. This hazard is particularly important on the classic route up Mont Blanc. Our results show that rockfalls are most frequent during snowmelt periods and the warmest hours of the day, and that mountaineers do not adapt to the local rockfall hazard when planning their ascent. Disseminating the knowledge acquired from our study caused management measures to be implemented for the route.
Tomàs Artés, Marc Castellnou, Tracy Houston Durrant, and Jesús San-Miguel
Nat. Hazards Earth Syst. Sci., 22, 509–522, https://doi.org/10.5194/nhess-22-509-2022, https://doi.org/10.5194/nhess-22-509-2022, 2022
Short summary
Short summary
During the last 20 years extreme wildfires have challenged firefighting capabilities. Several fire danger indices are routinely used by firefighting services but are not suited to forecast convective extreme wildfire behaviour at the global scale. This article proposes a new fire danger index for deep moist convection, the extreme-fire behaviour index (EFBI), based on the analysis of the vertical profiles of the atmosphere above wildfires to use along with traditional fire danger indices.
Veronika Hutter, Frank Techel, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 21, 3879–3897, https://doi.org/10.5194/nhess-21-3879-2021, https://doi.org/10.5194/nhess-21-3879-2021, 2021
Short summary
Short summary
How is avalanche danger described in public avalanche forecasts? We analyzed 6000 textual descriptions of avalanche danger in Switzerland, taking the perspective of the forecaster. Avalanche danger was described rather consistently, although the results highlight the difficulty of communicating conditions that are neither rare nor frequent, neither small nor large. The study may help to refine the ways in which avalanche danger could be communicated to the public.
Edilia Jaque Castillo, Alfonso Fernández, Rodrigo Fuentes Robles, and Carolina G. Ojeda
Nat. Hazards Earth Syst. Sci., 21, 3663–3678, https://doi.org/10.5194/nhess-21-3663-2021, https://doi.org/10.5194/nhess-21-3663-2021, 2021
Short summary
Short summary
Wildfires pose risks to lives and livelihoods in many regions of the world. Particularly in Chile's central-south region, climate change, widespread land use change, and urban growth tend to increase the likelihood of fire occurrence. Our work focused on the Concepción metropolitan area, where we developed a model using machine learning in order to map wildfire risks. We found that the interface between urban areas and forestry plantations presents the highest risks.
Alessandro Gattuso, Francesco Italiano, Giorgio Capasso, Antonino D'Alessandro, Fausto Grassa, Antonino Fabio Pisciotta, and Davide Romano
Nat. Hazards Earth Syst. Sci., 21, 3407–3419, https://doi.org/10.5194/nhess-21-3407-2021, https://doi.org/10.5194/nhess-21-3407-2021, 2021
Short summary
Short summary
Santa Barbara and Aragona are affected by mud volcanism with episodic hazardous paroxysm events. Two potentially hazardous paroxysm exposed surfaces of 0.12 and 0.20 km2 were elaborated with DSMs and with historical information on the paroxysms that occurred in the past. This paper, in the end, could be a useful tool for civil protection authorities in order to take appropriate risk mitigation measurements for exposed people and for monitoring activities.
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 21, 3219–3242, https://doi.org/10.5194/nhess-21-3219-2021, https://doi.org/10.5194/nhess-21-3219-2021, 2021
Short summary
Short summary
Avalanche warning services publish condition reports to help backcountry recreationists make informed decisions about when and where to travel in avalanche terrain. We tested how different graphic representations of terrain information can affect users’ ability to interpret and apply the provided information. Our study shows that a combined presentation of aspect and elevation information is the most effective. These results can be used to improve avalanche risk communication products.
Jeffrey Katan and Liliana Perez
Nat. Hazards Earth Syst. Sci., 21, 3141–3160, https://doi.org/10.5194/nhess-21-3141-2021, https://doi.org/10.5194/nhess-21-3141-2021, 2021
Short summary
Short summary
Wildfires are an integral part of ecosystems worldwide, but they also pose a serious risk to human life and property. To further our understanding of wildfires and allow experimentation without recourse to live fires, this study presents an agent-based modelling approach to combine the complexity possible with physical models with the ease of computation of empirical models. Model calibration and validation show bottom-up simulation tracks the core elements of complexity of fire across scales.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Xuguo Shi, Shaocheng Zhang, Mi Jiang, Yuanyuan Pei, Tengteng Qu, Jinhu Xu, and Chen Yang
Nat. Hazards Earth Syst. Sci., 21, 2285–2297, https://doi.org/10.5194/nhess-21-2285-2021, https://doi.org/10.5194/nhess-21-2285-2021, 2021
Short summary
Short summary
We mapped the subsidence of Wuhan using Sentinel-1 synthetic aperture radar (SAR) images acquired during 2015–2019. Overall subsidence coincides with the distribution of engineered geological regions with soft soils, while the subsidence centers shifted with urban construction activities. Correlation between karst subsidence and concentrated rainfall was identified in Qingling–Jiangdi. Results indicate that interferometric SAR can be employed to routinely monitor and identify geohazards.
Mirlan Daiyrov and Chiyuki Narama
Nat. Hazards Earth Syst. Sci., 21, 2245–2256, https://doi.org/10.5194/nhess-21-2245-2021, https://doi.org/10.5194/nhess-21-2245-2021, 2021
Short summary
Short summary
In the Teskey Range of the Tien Shan (Kyrgyz Republic), four outburst flood disasters from short-lived glacial lakes in 2006, 2008, 2013, and 2014 caused severe damages in the downstream part. Short-lived glacial lakes grow rapidly and drain within a few months, due to closure and opening of an outlet ice tunnel in an ice-cored moraine complex at the glacier front. We investigated how short-lived glacial lakes store and drain water over short periods based on field survey and satellite data.
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021, https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
Short summary
Climate hazards may be caused by events which have multiple drivers. Here we present a method to break down climate model biases in hazard indicators down to the bias caused by each driving variable. Using simplified fire and heat stress indicators driven by temperature and relative humidity as examples, we show how multivariate indicators may have complex biases and that the relationship between driving variables is a source of bias that must be considered in climate model bias corrections.
Kerstin Wegner, Florian Haas, Tobias Heckmann, Anne Mangeney, Virginie Durand, Nicolas Villeneuve, Philippe Kowalski, Aline Peltier, and Michael Becht
Nat. Hazards Earth Syst. Sci., 21, 1159–1177, https://doi.org/10.5194/nhess-21-1159-2021, https://doi.org/10.5194/nhess-21-1159-2021, 2021
Short summary
Short summary
In mountainous regions rockfall is a common geomorphic process. We selected four study sites that feature different rock types. High-resolution terrestrial laser scanning data were acquired to measure the block size and block shape (axial ratio) of rockfall particles on the scree deposits. Laser scanning data were also used to characterize the morphology of these landforms. Our results show that hill slope and rock particle properties govern rock particle runout in a complex manner.
Eszter Szűcs, Sándor Gönczy, István Bozsó, László Bányai, Alexandru Szakacs, Csilla Szárnya, and Viktor Wesztergom
Nat. Hazards Earth Syst. Sci., 21, 977–993, https://doi.org/10.5194/nhess-21-977-2021, https://doi.org/10.5194/nhess-21-977-2021, 2021
Short summary
Short summary
Sinkhole formation and post-collapse deformation in the Solotvyno salt mining area was studied where the salt dissolution due to water intrusion poses a significant risk. Based on a Sentinel-1 data set, remarkable surface deformation with a maximum rate of 5 cm/yr was revealed, and it was demonstrated that the deformation process has a linear characteristic although the mining activity was ended more than 10 years ago.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Andrew R. Schauer, Jordy Hendrikx, Karl W. Birkeland, and Cary J. Mock
Nat. Hazards Earth Syst. Sci., 21, 757–774, https://doi.org/10.5194/nhess-21-757-2021, https://doi.org/10.5194/nhess-21-757-2021, 2021
Short summary
Short summary
Our research links upper atmospheric circulation patterns to a destructive and difficult-to-predict type of snow avalanche in the western United States. At each of our study sites, we find unique circulation patterns that tend to occur at the beginning of the winter season during years with major avalanche activity. We also find specific patterns that occur frequently in the days leading to major avalanche events. This work will enable practitioners to better anticipate these challenging events.
Erich Peitzsch, Jordy Hendrikx, Daniel Stahle, Gregory Pederson, Karl Birkeland, and Daniel Fagre
Nat. Hazards Earth Syst. Sci., 21, 533–557, https://doi.org/10.5194/nhess-21-533-2021, https://doi.org/10.5194/nhess-21-533-2021, 2021
Short summary
Short summary
We sampled 647 trees from 12 avalanche paths to investigate large snow avalanches over the past 400 years in the northern Rocky Mountains, USA. Sizable avalanches occur approximately every 3 years across the region. Our results emphasize the importance of sample size, scale, and spatial extent when reconstructing avalanche occurrence across a region. This work can be used for infrastructure planning and avalanche forecasting operations.
Simon Horton, Moses Towell, and Pascal Haegeli
Nat. Hazards Earth Syst. Sci., 20, 3551–3576, https://doi.org/10.5194/nhess-20-3551-2020, https://doi.org/10.5194/nhess-20-3551-2020, 2020
Short summary
Short summary
We investigate patterns in how avalanche forecasters characterize snow avalanche hazard with avalanche problem types. Decision tree analysis was used to investigate both physical influences based on weather and on snowpack variables and operational practices. The results highlight challenges with developing decision aids based on previous hazard assessments.
Dan K. Thompson and Kimberly Morrison
Nat. Hazards Earth Syst. Sci., 20, 3439–3454, https://doi.org/10.5194/nhess-20-3439-2020, https://doi.org/10.5194/nhess-20-3439-2020, 2020
Short summary
Short summary
We describe critically low relative humidity and high wind speeds above which only documented wildfires were seen to occur and where no agricultural fires were documented in southern Canada. We then applied these thresholds to the much larger satellite record from 2002–2018 to quantify regional differences in both the rate of observed burning and the number of days with critical weather conditions to sustain a wildfire in this grassland and agricultural region.
Chuanguang Zhu, Wenhao Wu, Mahdi Motagh, Liya Zhang, Zongli Jiang, and Sichun Long
Nat. Hazards Earth Syst. Sci., 20, 3399–3411, https://doi.org/10.5194/nhess-20-3399-2020, https://doi.org/10.5194/nhess-20-3399-2020, 2020
Short summary
Short summary
We investigate the contemporary ground deformation along the RLHR-HZ using Sentinel-1 data and find that the RLHR-HZ runs through two main subsidence areas. A total length of 35 km of the RLSR-HZ is affected by the two subsidence basins. Considering the previous investigation coupled with information on human activities, we conclude that the subsidence is mainly caused by extraction of groundwater and underground mining.
Negar Ghahramani, Andrew Mitchell, Nahyan M. Rana, Scott McDougall, Stephen G. Evans, and W. Andy Take
Nat. Hazards Earth Syst. Sci., 20, 3425–3438, https://doi.org/10.5194/nhess-20-3425-2020, https://doi.org/10.5194/nhess-20-3425-2020, 2020
Short summary
Short summary
Tailings flows result from the breach of tailings dams. These flows contain waste products of the mineral processing operations and can travel substantial distances, causing significant loss of life, environmental damage, and economic costs. This paper establishes a new tailings-flow runout classification system, describes a new database of events that have been mapped in detail using the new system, and examines the applicability of a semi-physical area–volume relationship using the new data.
Tae-Young Kwak, Sang-Inn Woo, Choong-Ki Chung, and Joonyoung Kim
Nat. Hazards Earth Syst. Sci., 20, 3343–3359, https://doi.org/10.5194/nhess-20-3343-2020, https://doi.org/10.5194/nhess-20-3343-2020, 2020
Short summary
Short summary
In this study, model tests were used to analyze the effects of rainfall intensity on the formation of the eroded zone and the occurrence of sinkholes due to groundwater infiltration through pipe defects. The model tests were conducted to simulate the actual site conditions considering the soil used around sewer pipe networks and the sewer pipe landfill standards. The groundwater level was applied to the model tests by setting three hydraulic heads based on heavy-rainfall characteristics.
Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 2873–2888, https://doi.org/10.5194/nhess-20-2873-2020, https://doi.org/10.5194/nhess-20-2873-2020, 2020
Short summary
Short summary
We investigated the sensitivity of modeled snow instability to uncertainties in meteorological input, typically found in complex terrain. The formation of the weak layer was very robust due to the long dry period, indicated by a widespread avalanche problem. Once a weak layer has formed, precipitation mostly determined slab and weak layer properties and hence snow instability. When spatially assessing snow instability for avalanche forecasting, accurate precipitation patterns have to be known.
Francesca Di Giuseppe, Claudia Vitolo, Blazej Krzeminski, Christopher Barnard, Pedro Maciel, and Jesús San-Miguel
Nat. Hazards Earth Syst. Sci., 20, 2365–2378, https://doi.org/10.5194/nhess-20-2365-2020, https://doi.org/10.5194/nhess-20-2365-2020, 2020
Short summary
Short summary
Forecasting of daily fire weather indices driven by the ECMWF ensemble prediction system is shown to have a good skill up to 10 d ahead in predicting flammable conditions in most regions of the world. The availability of these forecasts through the Copernicus Emergency Management Service can extend early warnings by up to 1–2 weeks, allowing for greater proactive coordination of resource-sharing and mobilization within and across countries.
Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Michael Strasser, and Bernhard Gems
Nat. Hazards Earth Syst. Sci., 20, 2255–2279, https://doi.org/10.5194/nhess-20-2255-2020, https://doi.org/10.5194/nhess-20-2255-2020, 2020
Short summary
Short summary
This study highlights the use of the software Flow-3D in reproducing landslide-generated impulse waves. Due to the available data and the possibility of comparing the results with other previous works, a numerical modelling investigation on the 1958 Lituya Bay tsunami event is proposed. It is noted that the rockslide impact into the waterbody has a key role in the wave initiation and thus its propagation. The concept used in this work can be applied to prevent such phenomena in future.
Frank Techel, Kurt Winkler, Matthias Walcher, Alec van Herwijnen, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 1941–1953, https://doi.org/10.5194/nhess-20-1941-2020, https://doi.org/10.5194/nhess-20-1941-2020, 2020
Short summary
Short summary
Snow instability tests, like the extended column test (ECT), provide valuable information regarding point snow instability. A large data set of ECT – together with information on slope instability – was explored. The findings clearly show that combining information regarding propagation propensity and fracture initiation provided the best correlation with slope instability. A new four-class stability interpretation scheme is proposed for ECT results.
Cited articles
Akaike, H.: A New Look at the Statistical Model Identification, IEEE
T. Automat. Contr., 215–222,
https://doi.org/10.1007/978-1-4612-1694-0_16, 1974. a
BBC News: Arrests over Poland roof collapse, available at:
http://news.bbc.co.uk/2/hi/europe/5119424.stm (last access: 2 November 2020), 2006. a
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018. a
Blanchet, J. and Lehning, M.: Mapping snow depth return levels: smooth spatial modeling versus station interpolation, Hydrol. Earth Syst. Sci., 14, 2527–2544, https://doi.org/10.5194/hess-14-2527-2010, 2010. a
Blanchet, J., Marty, C., and Lehning, M.: Extreme value statistics of snowfall
in the Swiss Alpine region, Water Resour. Res., 45, W05424,
https://doi.org/10.1029/2009WR007916, 2009. a
Bocchiola, D. and Diolaiuti, G.: Evidence of climate change within the
Adamello Glacier of Italy, Theor. Appl. Climatol., 100,
351–369, https://doi.org/10.1007/s00704-009-0186-x, 2010. a
Cheng, L., AghaKouchak, A., Gilleland, E., and Katz, R. W.: Non-stationary
extreme value analysis in a changing climate, Climatic Change, 127,
353–369, https://doi.org/10.1007/s10584-014-1254-5, 2014. a
Cooley, D.: Return Periods and Return Levels Under Climate Change, in:
Extremes in a Changing Climate – Detection, Analysis & Uncertainty,
Springer Science & Business Media, New York, 97–114,
https://doi.org/10.1007/978-94-007-4479-0, 2012. a, b
Croce, P., Formichi, P., Landi, F., Mercogliano, P., Bucchignani, E., Dosio,
A., and Dimova, S.: The snow load in Europe and the climate change, Climate
Risk Management, 20, 138–154, https://doi.org/10.1016/j.crm.2018.03.001, 2018. a, b
Durand, Y., Laternser, M., Giraud, G., Etchevers, P., Lesaffre, B., and
Mérindol, L.: Reanalysis of 44 yr of climate in the French Alps
(1958–2002): Methodology, model validation, climatology, and trends for air
temperature and precipitation, J. Appl. Meteorol.
Climatol., 48, 429–449, https://doi.org/10.1175/2008JAMC1808.1, 2009a. a, b, c, d, e
Durand, Y., Rald Giraud, G., Laternser, M., Etchevers, P., Mé Rindol, L.,
and Lesaffre, B.: Reanalysis of 47 Years of Climate in the French Alps
(1958–2005): Climatology and Trends for Snow Cover, J. Appl.
Meteorol. Climatol., 48, 2487–2512, https://doi.org/10.1175/2009JAMC1810.1,
2009b. a
Faranda, D.: An attempt to explain recent changes in European snowfall extremes, Weather Clim. Dynam., 1, 445–458, https://doi.org/10.5194/wcd-1-445-2020, 2020. a
Fisher, R. A. and Tippett, L. H. C.: Limiting forms of the frequency
distribution of the largest or smallest member of a sample, Math.
Proc. Cambridge, 24, 180–190,
https://doi.org/10.1017/S0305004100015681, 1928. a
Fowler, H. J., Cooley, D., Sain, S. R., and Thurston, M.: Detecting change in
UK extreme precipitation using results from the climateprediction.net BBC
climate change experiment, Extremes, 13, 241–267,
https://doi.org/10.1007/s10687-010-0101-y, 2010. a
Garavaglia, F., Gailhard, J., Paquet, E., Lang, M., Garçon, R., and Bernardara, P.: Introducing a rainfall compound distribution model based on weather patterns sub-sampling, Hydrol. Earth Syst. Sci., 14, 951–964, https://doi.org/10.5194/hess-14-951-2010, 2010. a
Gaume, J., Chambon, G., Eckert, N., and Naaim, M.: Relative influence of
mechanical and meteorological factors on avalanche release depth
distributions: An application to French Alps, Geophys. Res. Lett.,
39, 1–5, https://doi.org/10.1029/2012GL051917, 2012. a
Gaume, J., Eckert, N., Chambon, G., Naaim, M., and Bel, L.: Mapping extreme
snowfalls in the French Alps using max-stable processes, Water Resour.
Res., 49, 1079–1098,
https://doi.org/10.1002/wrcr.20083, 2013. a
Gilleland, E. and Katz, R. W.: extRemes 2.0: An Extreme Value Analysis Package
in R, J. Stat. Softw., 72, 1–39,
https://doi.org/10.18637/jss.v072.i08, 2016. a
Gnedenko, B.: Sur la distribution limite du terme maximum d'une série
aléatoire, Ann. Math., 44, 423–453, https://doi.org/10.2307/1968974,
1943. a
Gottardi, F., Obled, C., Gailhard, J., and Paquet, E.: Statistical reanalysis
of precipitation fields based on ground network data and weather patterns:
Application over French mountains, J. Hydrol., 432, 154–167, https://doi.org/10.1016/j.jhydrol.2012.02.014,
2012. a
Haberkorn, A., Helmert, J., Leppänen, L., López-Moreno, J. I., and
Pirazzini, R.: European Snow Booklet, available at:
https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:20198 (last access: 2 November 2020),
2019. a
Il Jeong, D. and Sushama, L.: Projected changes to extreme wind and snow
environmental loads for buildings and infrastructure across Canada,
Sustain. Cities Soc., 36, 225–236,
https://doi.org/10.1016/J.SCS.2017.10.004, 2018. a
IPCC: Managing the risks of extreme events and disasters to advance climate
change adaptation, Cambridge University Press, New York,
https://doi.org/10.1596/978-0-8213-8845-7, 2012. a, b
Katz, R. W.: Statistical methods for nonstationary extremes, in: Extremes in
a Changing Climate – Detection, Analysis & Uncertainty,
Springer Science & Business Media, New York, 15–38,
https://doi.org/10.1007/978-94-007-4479-0, 2012. a, b
Katz, R. W., Parlange, M. B., and Naveau, P.: Statistics of extremes in
hydrology, Adv. Water Resour., 25, 1287–1304,
https://doi.org/10.1016/S0309-1708(02)00056-8, 2002. a, b, c
Kharin, V. V. and Zwiers, F. W.: Estimating extremes in transient climate
change simulations, J. Climate, 18, 1156–1173,
https://doi.org/10.1175/JCLI3320.1, 2004. a
Kim, H., Kim, S., Shin, H., and Heo, J. H.: Appropriate model selection
methods for nonstationary generalized extreme value models, J.
Hydrol., 547, 557–574,
https://doi.org/10.1016/j.jhydrol.2017.02.005, 2017. a
Klein Tank, A. M. G. and Können, G. P.: Trends in Indices of Daily
Temperature and Precipitation Extremes in Europe, 1946–99, J.
Climate, 16, 3665–3680,
2003. a
Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V., Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., Zhou, W., and Zhu, D.: ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks, Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, 2018. a
Lafaysse, M., Morin, S., Coléou, C., Vernay, M., Serça, D., Besson,
F., Willemet, J.-M., Giraud, G., and Durand, Y.: Toward a new chain of
models for avalanche hazard forecasting in French mountain ranges, including
low altitude mountains, International Snow Science Workshop, Grenoble–Chamonix Mont-Blanc, 162–166,
2013. a
Laternser, M. and Schneebeli, M.: Long-term snow climate trends of the Swiss
Alps (1931–99), Int. J. Climatol., 23, 733–750,
https://doi.org/10.1002/joc.912, 2003. a
Lüthi, S., Ban, N., Kotlarski, S., Steger, C. R., Jonas, T., and
Schär, C.: Projections of Alpine snow-cover in a high-resolution
climate simulation, Atmosphere, 10, 1–18, https://doi.org/10.3390/atmos10080463,
2019. a
Martins, E. S. and Stedinger, J. R.: Generalized maximum-likelihood
generalized extreme-value quantile estimators for hydrologic data, Water
Resour. Res., 36, 737–744, https://doi.org/10.1029/1999WR900330, 2000. a
Marty, C. and Blanchet, J.: Long-term changes in annual maximum snow depth and
snowfall in Switzerland based on extreme value statistics, Climatic Change,
111, 705–721, https://doi.org/10.1007/s10584-011-0159-9, 2012. a, b, c
Marty, C., Tilg, A.-M., Jonas, T., Marty, C., Tilg, A.-M., and Jonas, T.:
Recent Evidence of Large-Scale Receding Snow Water Equivalents in the
European Alps, J. Hydrometeorol., 18, 1021–1031,
https://doi.org/10.1175/JHM-D-16-0188.1, 2017. a
Milly, P. C. D., Bentacourt, J., Falkenmark, M., Robert, M., Hirsch, R. M.,
Kundzewicz, Z. W., Letternmaier, D. P., and Stouffer, R. J.: Stationarity is
dead: Whither water management?, Science, 319, 573–574,
https://doi.org/10.1126/science.1151915, 2008. a
Montanari, A. and Koutsoyiannis, D.: Modeling and mitigating natural hazards:
Stationarity is immortal!, Water Resour. Res., 50, 9748–9756,
https://doi.org/10.1002/2014WR016092, 2014. a
Naaim-Bouvet, F., Prat, M., Jacob, J., Calgaro, J. A., and Raoul, J.: La
neige : recherche et réglementation, Presses de l'École
nationale des ponts et chaussées, Paris, 2000. a
Nicolet, G., Eckert, N., Morin, S., and Blanchet, J.: Inferring
Spatio-temporal Patterns in Extreme Snowfall in the French Alps Using
Max-stable Processes, Procedia Environ. Sci., 27, 75–82,
https://doi.org/10.1016/j.proenv.2015.07.102, 2015. a
Nicolet, G., Eckert, N., Morin, S., and Blanchet, J.: Decreasing spatial
dependence in extreme snowfall in the French Alps since 1958 under climate
change, J. Geophys. Res., 121, 8297–8310,
https://doi.org/10.1002/2016JD025427, 2016. a
Nicolet, G., Eckert, N., Morin, S., and Blanchet, J.: A multi-criteria
leave-two-out cross-validation procedure for max-stable process selection,
Spat. Stat., 22, 107–128, https://doi.org/10.1016/j.spasta.2017.09.004,
2017. a
Nicolet, G., Eckert, N., Morin, S., and Blanchet, J.: Assessing Climate Change
Impact on the Spatial Dependence of Extreme Snow Depth Maxima in the French
Alps, Water Resour. Res., 54, 7820–7840, https://doi.org/10.1029/2018WR022763,
2018. a
O'Rourke, M. and Auren, M.: Snow loads on gable roofs, J. Struct.
Eng., 123, 1645–1651,
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:12(1645), 1997. a
Quéno, L., Vionnet, V., Dombrowski-Etchevers, I., Lafaysse, M., Dumont, M., and Karbou, F.: Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts, The Cryosphere, 10, 1571–1589, https://doi.org/10.5194/tc-10-1571-2016, 2016. a
Rajczak, J. and Schär, C.: Projections of Future Precipitation Extremes
Over Europe: A Multimodel Assessment of Climate Simulations, J.
Geophys. Res.-Atmos., 122, 773–10, https://doi.org/10.1002/2017JD027176,
2017. a
Revuelto, J., Lecourt, G., Lafaysse, M., Zin, I., Charrois, L., Vionnet, V.,
Dumont, M., Rabatel, A., Six, D., Condom, T., Morin, S., Viani, A., and
Sirguey, P.: Multi-criteria evaluation of snowpack simulations in complex
alpine terrain using satellite and in situ observations, Remote Sensing, 10,
1–32, https://doi.org/10.3390/rs10081171, 2018. a
Rootzén, H. and Katz, R. W.: Design Life Level: Quantifying risk in a
changing climate, Water Resour. Res., 49, 5964–5972,
https://doi.org/10.1002/wrcr.20425, 2013. a
Rózsás, A., Sýkora, M., and Vigh, L. G.: Long-Term Trends in
Annual Ground Snow Maxima for the Carpathian Region, Appl. Mech.
Mater., 821, 753–760, https://doi.org/10.4028/www.scientific.net/amm.821.753, 2016. a
Sanpaolesi, L., Currie, D., Sims, P., Sacre, C., Stiefel, U.,
Lozza, S., Eiselt, B., Peckham, R., Solomos, G., Holand, I.,
Sandvik, R., Granzer, M., Konig, G., Sukhov, D., Del Corso, R., and Formichi, P.: Scientific support
activity in the field of structural stability of civil engineering works:
snow loads, Final Report Phase I, Brussels: Commission of the European
Communities, DGIII-D3, available at: http://www2.ing.unipi.it/dic/snowloads/Final Report I.pdf (last access: 2 November 2020), 1998. a, b, c, d, e, f, g
Schellander, H. and Hell, T.: Modeling snow depth extremes in Austria,
Nat. Hazards, 94, 1367–1389,
https://doi.org/10.1007/s11069-018-3481-y, 2018. a
Schöner, W., Koch, R., Matulla, C., Marty, C., and Tilg, A. M.:
Spatiotemporal patterns of snow depth within the Swiss-Austrian Alps for the
past half century (1961 to 2012) and linkages to climate change,
Int. J. Climatol., 39, 1589–1603, https://doi.org/10.1002/joc.5902,
2019. a
Serinaldi, F.: Dismissing return periods!, Stoch. Env. Res. Risk A., 29, 1179–1189, https://doi.org/10.1007/s00477-014-0916-1, 2015. a, b
Serinaldi, F. and Kilsby, C. G.: Stationarity is undead: Uncertainty dominates
the distribution of extremes, Adv. Water Resour., 77, 17–36,
https://doi.org/10.1016/J.ADVWATRES.2014.12.013, 2015. a
Soci, C., Bazile, E., Besson, F. O., and Landelius, T.: High-resolution
precipitation re-analysis system for climatological purposes, Tellus
A, 68, 29879, https://doi.org/10.3402/tellusa.v68.29879,
2016. a
Strasser, U.: Snow loads in a changing climate: new risks?, Nat. Hazards Earth Syst. Sci., 8, 1–8, https://doi.org/10.5194/nhess-8-1-2008, 2008.
a
Terzago, S., Fratianni, S., and Cremonini, R.: Winter precipitation in Western
Italian Alps (1926–2010), Meteorol. Atmos. Phys., 119,
125–136, https://doi.org/10.1007/s00703-012-0231-7, 2013. a
Tramblay, Y. and Somot, S.: Future evolution of extreme precipitation in the
Mediterranean, Climatic Change, 151, 289–302, https://doi.org/10.1007/s10584-018-2300-5, 2018. a
Vernay, M., Lafaysse, M., Hagenmuller, P., Nheili, R., Verfaillie, D., and
Morin, S.: The S2M meteorological and snow cover reanalysis in the French
mountainous areas (1958–present), Data set, AERIS,
https://doi.org/10.25326/37, 2019. a, b, c
Vidal, J. P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux,
J. M.: A 50-year high-resolution atmospheric reanalysis over France with the
Safran system, Int. J. Climatol., 30, 1627–1644,
https://doi.org/10.1002/joc.2003, 2010. a
Vigneau, J.-P.: 1986 dans les Pyrénées orientales : deux
perturbations méditerranéennes aux effets remarquables, Revue
géographique des Pyrénées et du Sud-Ouest, Persée, 58, 23–54,
https://doi.org/10.3406/rgpso.1987.4969, 1987. a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a, b, c
Vionnet, V., Dombrowski-Etchevers, I., Lafaysse, M., Quéno, L., Seity,
Y., and Bazile, E.: Numerical weather forecasts at kilometer scale in the
French Alps: Evaluation and application for snowpack modeling, J.
Hydrometeorol., 17, 2591–2614, https://doi.org/10.1175/JHM-D-15-0241.1, 2016. a, b
Vionnet, V., Six, D., Auger, L., Dumont, M., Lafaysse, M., Quéno, L.,
Réveillet, M., Dombrowski-Etchevers, I., Thibert, E., and Vincent, C.:
Sub-kilometer Precipitation Datasets for Snowpack and Glacier Modeling in
Alpine Terrain, Front. Earth Sci., 7, 1–21,
https://doi.org/10.3389/feart.2019.00182, 2019. a
Wilcox, C., Vischel, T., Panthou, G., Bodian, A., Blanchet, J., Descroix, L.,
Quantin, G., Cassé, C., Tanimoun, B., and Kone, S.: Trends in
hydrological extremes in the Senegal and Niger Rivers, J. Hydrol.,
566, 531–545, https://doi.org/10.1016/J.JHYDROL.2018.07.063, 2018. a
Zhang, X., Zwiers, F. W., Li, G., Zhang, X., Zwiers, F. W., and Li, G.: Monte
Carlo Experiments on the Detection of Trends in Extreme Values, J.
Climate, 17, 1945–1952,
https://doi.org/10.1175/1520-0442(2004)017<1945:MCEOTD>2.0.CO;2, 2004. a
Short summary
To minimize the risk of structure collapse due to extreme snow loads, structure standards rely on 50-year return levels of ground snow load (GSL), i.e. levels exceeded once every 50 years on average, that do not account for climate change. We study GSL data in the French Alps massifs from 1959 and 2019 and find that these 50-year return levels are decreasing with time between 900 and 4800 m of altitude, but they still exceed return levels of structure standards for half of the massifs at 1800 m.
To minimize the risk of structure collapse due to extreme snow loads, structure standards rely...
Altmetrics
Final-revised paper
Preprint