Articles | Volume 20, issue 11
https://doi.org/10.5194/nhess-20-2873-2020
https://doi.org/10.5194/nhess-20-2873-2020
Research article
 | 
02 Nov 2020
Research article |  | 02 Nov 2020

Sensitivity of modeled snow stability data to meteorological input uncertainty

Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (15 Jul 2020) by Margreth Keiler
AR by Bettina Richter on behalf of the Authors (24 Jul 2020)  Author's response   Manuscript 
ED: Publish as is (03 Aug 2020) by Margreth Keiler
AR by Bettina Richter on behalf of the Authors (12 Aug 2020)
Download
Short summary
We investigated the sensitivity of modeled snow instability to uncertainties in meteorological input, typically found in complex terrain. The formation of the weak layer was very robust due to the long dry period, indicated by a widespread avalanche problem. Once a weak layer has formed, precipitation mostly determined slab and weak layer properties and hence snow instability. When spatially assessing snow instability for avalanche forecasting, accurate precipitation patterns have to be known.
Altmetrics
Final-revised paper
Preprint