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Abstract. To perform spatial snow cover simulations for nu-
merical avalanche forecasting, interpolation and downscal-
ing of meteorological data are required, which introduce un-
certainties. The repercussions of these uncertainties on mod-
eled snow stability remain mostly unknown. We therefore as-
sessed the contribution of meteorological input uncertainty
to modeled snow stability by performing a global sensitivity
analysis. We used the numerical snow cover model SNOW-
PACK to simulate two snow instability metrics, i.e., the skier
stability index and the critical crack length, for a field site
equipped with an automatic weather station providing the
necessary input for the model. Simulations were performed
for a winter season, which was marked by a prolonged dry
period at the beginning of the season. During this period,
the snow surface layers transformed into layers of faceted
and depth hoar crystals, which were subsequently buried by
snow. The early-season snow surface was likely the weak
layer of many avalanches later in the season. Three differ-
ent scenarios were investigated to better assess the influence
of meteorological forcing on snow stability during (a) the
weak layer formation period, (b) the slab formation period,
and (c) the weak layer and slab formation period. For each
scenario, 14 000 simulations were performed, by introduc-
ing quasi-random uncertainties to the meteorological input.
Uncertainty ranges for meteorological forcing covered typi-
cal differences observed within a distance of 2 km or an el-
evation change of 200 m. Results showed that a weak layer
formed in 99.7 % of the simulations, indicating that the weak
layer formation was very robust due to the prolonged dry pe-
riod. For scenario a, modeled grain size of the weak layer was
mainly sensitive to precipitation, while the shear strength of
the weak layer was sensitive to most input variables, espe-

cially air temperature. Once the weak layer existed (case b),
precipitation was the most prominent driver for snow stabil-
ity. The sensitivity analysis highlighted that for all scenarios,
the two stability metrics were mostly sensitive to precipita-
tion. Precipitation determined the load of the slab, which in
turn influenced weak layer properties. For cases b and c, the
two stability metrics showed contradicting behaviors. With
increasing precipitation, i.e., deep snowpacks, the skier sta-
bility index decreased (became less stable). In contrast, the
critical crack length increased with increasing precipitation
(became more stable). With regard to spatial simulations of
snow stability, the high sensitivity to precipitation suggests
that accurate precipitation patterns are necessary to obtain
realistic snow stability patterns.

1 Introduction

Snow avalanches are a natural hazard, which can endanger
roads, villages and human lives. A dry-snow slab avalanche
starts with failure within a weak layer (Schweizer et al.,
2003a). Such weak layers often form close to the snow sur-
face. If weak layers are subsequently covered by new snow,
they can persist for the entire season. Whether a failure in
a weak layer is prone to propagation depends on the com-
plex interaction between slab layers and the weak layer
(van Herwijnen and Jamieson, 2007). The two key processes
in avalanche release, failure initiation and crack propaga-
tion, can respectively be described with a stress-strength ap-
proach (expressed as stability index) and a fracture mechan-
ical approach (considering the critical crack length as ob-
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served in a propagation saw test) (Reuter and Schweizer,
2018; Schweizer et al., 2016).

When assessing the avalanche danger, avalanche forecast-
ers rely on snow instability data, combined with measured
and forecasted meteorological data (McClung and Schaerer,
2006). Data on snow instability include recent observations
of avalanches, or whumpfs and shooting cracks (Jamieson
et al., 2009). Such signs of instability are very rare, especially
on days with low avalanche activity (Reuter et al., 2015). In-
formation on snow stratigraphy and so-called stability tests
then becomes important. Unfortunately, these manual obser-
vations are relatively time-consuming point observations and
sometimes dangerous to obtain so that the temporal and spa-
tial resolution of snowpack data is limited. Detailed snow
cover models, which simulate the full snowpack stratigraphy,
can help fill this gap (e.g., Lafaysse et al., 2013; Morin et al.,
2020) provided they include information on snow instability
(e.g., Schweizer et al., 2006; Lehning et al., 2004; Vernay
et al., 2015).

The two most advanced snow cover models are Crocus
(Brun et al., 1992; Vionnet et al., 2012) and SNOWPACK
(Lehning et al., 2002; Wever et al., 2015). Crocus is part of
the French model chain SAFRAN–SURFEX/ISBA-Crocus–
MEPRA (S2M), which predicts the regional avalanche dan-
ger (Durand et al., 1999; Lafaysse et al., 2013). The meteoro-
logical model SAFRAN provides the input for Crocus, which
simulates the stratigraphy on virtual slopes for different el-
evations and aspects. MEPRA is an expert system, which
derives the avalanche danger by combining various stabil-
ity indices with a set of rules to evaluate the simulated snow
stratigraphy in terms of stability classes (Giraud and Navarre,
1995). The snow cover model SNOWPACK can be used for
point simulations or for distributed snow cover modeling,
when coupled with the three-dimensional model Alpine3D
(Lehning et al., 2006). SNOWPACK is forced with meteoro-
logical data from either automatic weather stations (Lehning
et al., 1999) or numerical weather prediction models (Bel-
laire et al., 2011), and snow instability metrics can be derived
from simulated stratigraphy (Lehning et al., 2004). The skier
stability index SK38 relates to failure initiation and compares
the shear strength of a weak layer with the shear stress act-
ing on the weak layer due to the load of the overlaying slab
and a skier (Föhn, 1987; Jamieson and Johnston, 1998; Monti
et al., 2016). The critical crack length rc relates to crack prop-
agation and was implemented into SNOWPACK by Gaume
et al. (2017) and refined by Richter et al. (2019). Low val-
ues of SK38 indicate that initiation is likely; low values of rc
indicate that propagation is likely.

When modeling spatially distributed snow stratigraphy
and snow instability, uncertainties may arise from numeri-
cal weather prediction models or due to spatial interpola-
tion of meteorological data. For numerical avalanche fore-
casting the sensitivity of these stability criteria to meteoro-
logical input uncertainty is of particular importance. How-
ever, only a few studies so far have addressed the sensitivity

of modeled snow instability estimates. Previous snow sensi-
tivity studies typically focused on snow depth or snow wa-
ter equivalent (SWE). Uncertainties in modeled snow depth
or SWE were estimated from meteorological input uncer-
tainty (e.g., Bellaire et al., 2011; Côté et al., 2017; Lapo
et al., 2015; Raleigh et al., 2015; Sauter and Obleitner,
2015), different model setups (Günther et al., 2019; Schlögl
et al., 2016) or different physical model assumptions (Gün-
ther et al., 2019; Lafaysse et al., 2017). Uncertainties from
meteorological input had the highest impact on SWE (Gün-
ther et al., 2019). For most applications, such as snow hy-
drology or glacier mass balance, these target variables and
timescales are sufficient. However, for snow instability as-
sessment and avalanche formation the relevant timescales are
shorter (days to weeks) and snow stratigraphy is a key vari-
able that has to be accounted for (Schweizer et al., 2003a).
Indeed, a necessary prerequisite for dry-snow slab avalanche
release is a weak layer within the snow cover below a co-
hesive slab. Slaughter (2010) therefore estimated the sensi-
tivity of weak layer formation to meteorological input using
a snow thermal model. Incoming long-wave radiation was
most important, but how input uncertainty impacts the evo-
lution of snow instability during the entire season was not
investigated. Vernay et al. (2015) forced S2M with an ensem-
ble of meteorological input data to estimate the uncertainty in
forecasted avalanche hazard from numerical weather predic-
tion models. While meteorological input was assumed to be
the main source of uncertainty, the ways in which these input
uncertainties influenced snow stability were not investigated
in more detail.

We therefore investigated how meteorological input un-
certainty influenced modeled snow stability by performing a
global sensitivity analysis. SNOWPACK was forced with the
meteorological input of an automatic weather station from
a field site above Davos, Switzerland, and biases were in-
troduced to the meteorological data. We performed simula-
tions for the winter season 2016–2017, when one weak layer
persisted for the entire season and affected snow stability in
the region of Davos. We analyzed modeled snow instability
metrics related to this weak layer in three steps: we inde-
pendently investigated the influence of meteorological input
uncertainty during three periods of (a) weak layer formation,
(b) slab formation, and (c) weak layer and slab formation.

The paper is organized as follows. Section 2 provides an
overview of the study site and the simulations with SNOW-
PACK. This is followed by the description of the uncertain-
ties introduced to the model and the global sensitivity anal-
ysis. In Sect. 3, we first shortly present the winter evolution.
Then, the sensitivity of modeled slab and weak layer prop-
erties to uncertainties in meteorological input is analyzed
for two different days: immediately after burial of the weak
layer (Sect. 3.2.1) and on a day with high avalanche activity
(Sect. 3.2.2). Eventually, the evolution of snow stability was
analyzed with respect to its sensitivity to input uncertainties
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during the three different periods (Sect. 3.3). Specific points
are finally discussed in Sect. 4.

2 Methods

2.1 Study site and data

We used data from the field site Weissfluhjoch (WFJ), lo-
cated in the eastern Swiss Alps above Davos, at an eleva-
tion of 2536 m a.s.l. The WFJ site is equipped with an au-
tomatic weather station (AWS), which provides the neces-
sary meteorological input to the snow cover model. In addi-
tion, traditional snow profiles were conducted on a weekly
basis according to Fierz et al. (2009) (Fig. 1a). The win-
ter season 2016–2017 was selected for this study, since the
snowpack was marked by a prominent weak layer at about
40 cm from the ground (dark blue colors in Fig. 1a) and pro-
nounced avalanche activity on 9 March 2017. The weak layer
formed between mid-November 2016 and the beginning of
January 2017 at the surface of the shallow snowpack. For
the analysis we will focus on the formation and evolution of
this particular layer and its effect on snow stability for the
period of high avalanche activity on 9 March 2017. We also
calculated the avalanche activity index (AAI) based on vi-
sual avalanche observations from the region of Davos (about
360 km2), which were compiled by the avalanche warning
service at the SLF. The AAI is the weighted sum of all ob-
served avalanches, where weights are assigned according to
avalanche size (Schweizer et al., 2003b).

2.2 SNOWPACK

We performed simulations with the snow cover model
SNOWPACK version v1473 (e.g., Lehning et al., 2002).
SNOWPACK was driven with meteorological data from
the AWS at WFJ, including precipitation (P ), air tempera-
ture (TA), relative humidity (RH), wind velocity (VW), and
incoming shortwave (ISWR) and longwave (ILWR) radia-
tion. For the reference run we used data from the quality-
controlled data set at WFJ (Wever, 2017). SNOWPACK cal-
culated the absorbed shortwave radiation from modeled sur-
face albedo, not from measured data. Furthermore, data on
measured snow depth and snow surface temperature were
explicitly excluded in the configuration. The snow surface
temperature was estimated from energy fluxes using Neu-
mann boundary conditions at the snow–atmosphere interface
(Bartelt and Lehning, 2002; Lehning et al., 2002). A con-
stant geothermal heat flux of 0.06 W m−2 was assumed at the
bottom of the snowpack (Davies and Davies, 2010; Pollack
et al., 1993). The time step for the simulation was 15 min and
output was written every 24 h.

The sensitivity analysis focused on weak and slab prop-
erties, as well as modeled snow stability. In particular, the
skier stability index SK38 and the critical crack length rc
were analyzed. We focused on the weak layer that formed

between 16 November 2016 and 2 January 2017 (see red area
in Fig. 1b). Since SNOWPACK produces considerably more
layers than observed, all simulated snow layers that were de-
posited between these two dates and consisted of depth hoar,
surface hoar, facets or rounding facets were considered as
weak layers, similar to Richter et al. (2019). Hence, weak
layer thicknessDwl was defined as the thickness of all layers
consisting of facets, depth hoar or surface hoar, which were
deposited between these two dates. The percentage of facets
(% facets), was defined asDwl, divided by the total thickness
of all layers which were deposited between these two dates
(see Sect. 3.2.1). Then, weak layer properties were obtained
by a thickness-weighted average y of the layer properties yi :

y =

∑
yidi∑
di
, (1)

where di is the thickness of the simulated layer i. In anal-
ogy, slab properties were calculated from all layers above
the weak layer, independent of grain type (see green area in
Fig. 1b). Slab thickness Dsl was defined as the thickness of
all slab layers.

The SK38 was calculated for each simulated snow layer
from layer properties of flat-field simulations, which were
extrapolated to a 38◦ slope according to Jamieson and John-
ston (1998):

SK38=
τp

τs+1τ
, (2)

with the shear strength of the weak layer τp, the shear stress
due to slab weight τs = ρslgDsl sin(38◦)cos(38◦), the av-
erage slab density ρsl, the slab thickness Dsl, the gravita-
tional acceleration g, and the additional shear stress acting
on the weak layer due to the weight of a skier 1τ . The addi-
tional shear stress is modeled as a line load (Föhn, 1987) and
for a 38◦ slope, it simplifies to 1τ = 155/Dsl m Pa (Monti
et al., 2016). Parameterizations for shear strength for dif-
ferent grain types were derived based on shear frame mea-
surements (see Table 8 in Jamieson and Johnston, 2001) and
implemented into SNOWPACK. For surface hoar, the shear
strength was calculated according to Lehning et al. (2004).
Details on shear strength parameterization in SNOWPACK
were described by Richter et al. (2019).

The critical crack length was calculated for each simulated
snow layer from modeled layer properties using the improved
parameterization suggested by Richter et al. (2019):

rc =
√
Fwl

√
E′Dsl

√
2τp

σn
, (3)

with the plane strain elastic modulus of the slab E′ = E

(1−ν2)
,

the Poisson’s ratio of the slab ν = 0.2, and the normal stress
σn = ρslgDsl acting on the weak layer due to the overly-
ing slab. The elastic modulus of the slab, E, was related to
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Figure 1. (a) Manually observed snow profiles at the Weissfluhjoch field site for the winter season 2016–2017. (b) Reference run simulated
with SNOWPACK for the winter season 2016–2017 at the WFJ field site above Davos, Switzerland. Shown is the temporal evolution
of simulated snow stratigraphy. Colors indicate grain type, i.e., precipitation particles (PP), decomposing and fragmented precipitation
particles (DF), rounded grains (RG), faceted crystals (FC), depth hoar (DH), surface hoar (SH), melt forms (MF) and ice formations (IF). The
red colored period refers to weak layer formation, the blue colored period to slab formation. Arrows indicate different scenarios for which
uncertainties were introduced into meteorological model input.

the slab density by a power law fit to the data collected by
Scapozza (2004):

E = 5.07× 109
(
ρsl

ρice

)5.13

Pa. (4)

Richter et al. (2019) introduced the correction factor Fwl
to replace two variables of the original parameterization
(Gaume et al., 2017), which were not well defined in SNOW-
PACK. The factor Fwl accounts for weak layer density and
grain size and considerably improved the rc parameteriza-
tion, and it yields lower values of rc for layers with larger
grains (Richter et al., 2019).

Fwl = 4.66× 10−9
(
ρwlgswl

ρicegs0

)−2.12

mPa−1, (5)

with the weak layer density ρwl, the weak layer grain
size gswl, the density of ice ρice = 917 kg m−3 and the ref-
erence grain size gs0 = 0.00125 m. SK38 and rc were cal-
culated for each of the weak layers as defined above and
thickness-weighted mean instability metrics SK38 and rc
were determined from all weak layers (Eq. 1).

2.3 Forcing uncertainties

Uncertainties in the measured meteorological data (Table 1)
should reflect uncertainties arising from interpolating mete-
orological data or weather forecast models. Therefore, un-
certainties were introduced based on the values suggested by
Raleigh et al. (2015). Uncertainties can be seen as a system-
atic bias with a given range and distribution. For a given time
series, a bias b was randomly chosen for each variable, and
then that single value was applied to the variable for the en-
tire period. The probability distributions of the biases were
described by mean (normal: 1, lognormal: 20) and standard
deviation (normal: 1, lognormal: 0.5) and then scaled within
the given ranges. The bias b was added to the forcing F as
F ′ = F+b for an additive bias and F ′ = F(1+b) for a multi-
plicative bias. Raleigh et al. (2015) proposed a multiplicative
bias for precipitation (P ) and an additive bias for air temper-
ature (TA), relative humidity (RH), wind velocity (VW) and
incoming longwave radiation (ILWR). For incoming short-
wave radiation (ISWR) we chose a multiplicative bias using
a range of 40 % according to the findings of Helbig and Löwe
(2012). Biases resulting in non-physical forcing values were
filtered to a physical range (e.g., RH was filtered within a
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Table 1. Input uncertainties introduced as bias (b) to meteorological
forcing.

Forcing Distribution Range Unit Perturbed
F forcing F ′

P Lognormal [−75, +300] % F ′ = F(1+ b)
TA Normal [−3.0, +3.0] ◦C F ′ = F + b

RH Normal [−25, +25] % F ′ = F + b

VW Normal [−3.0, +3.0] m s−1 F ′ = F + b

ISWR Normal [−40, +40] % F ′ = F(1+ b)
ILWR Normal [−25, +25] W m−2 F ′ = F + b

range of [0, 100] %). With the given ranges and distributions
(Table 1), biases can be interpreted as differences typically
observed within a distance of about 2 km and an elevation
range of about 200 m. For example, around 68 % of the sim-
ulations have a bias in air temperature of −1 to +1 K, which
cover temperature differences within an elevation band of
around 200 m. Uncertainties in P will yield rather shallow
or rather thick snowpacks, as is typically observed for wind-
exposed or wind-sheltered slopes.

In the reference run we used the data from the AWS at
WFJ to drive the simulations. Then biases were introduced
to the input data using three different scenarios. First, we in-
troduced biases during weak layer formation up to the date
when the weak layer was covered with new snow from 1 Oc-
tober 2016 to 2 January 2017. The subsequent slab formation
process from 3 January to 1 April 2017 occurred under the
same conditions as in the reference run. We refer to this first
scenario as case WL (Fig. 1b). Second, meteorological con-
ditions during the period of weak layer formation until 2 Jan-
uary 2017 were identical to those of the reference run, while
uncertainties were introduced during the period of slab for-
mation after 3 January 2017 (case SL). Third, we introduced
uncertainties to meteorological forcing during the entire sim-
ulation period (case ALL). For each scenario, a unique set of
quasi-random biases was introduced.

2.4 Global sensitivity analysis

Several studies have shown the advantages of considering co-
existing sources of uncertainty by using a global sensitivity
analysis rather than varying one input factor at a time while
keeping all others fixed (Raleigh et al., 2015; Sauter and
Obleitner, 2015). Following their approach, we employed a
global sensitivity analysis to analyze the influence of input
uncertainty to modeled snow instability. Sobol’ (1990) sug-
gested a robust method for nonlinear models based on vari-
ance decomposition. The total-order sensitivity index STi de-
scribes the variance in output variables Y, i.e., snow proper-
ties, due to uncertainties introduced to a specific meteorolog-
ical input Xi , while including interactions with other forcing
errors:

STi =
E [V (Y|X∼i)]

V (Y)
= 1−

V [E(Y|X∼i)]
V (Y)

, (6)

where E is the expectation operator, V is the variance oper-
ator, Y is the model output and X∼i denotes all input param-
eters except Xi . Values for STi range from 0 (no sensitivity)
to 1 (one-to-one sensitivity).

To efficiently compute STi, a quasi-random set of input un-
certainties was generated (Saltelli and Annoni, 2010; Saltelli
et al., 2010). For this, two independent matrices of input un-
certainties A and B were defined. The elements aji and bji of
the two independent matrices A and B thus consist of biases
for the input variables randomly picked from the ranges and
distributions shown in Table 1. The subscript i ranges from
one to the number of parameters k, in our case k = 6 is the
number of forcings F (see Table 1). The subscript j ranges
from one to the number of samplesN . The calculation of STi
required the perturbation of parameters, so a third matrix A(i)B
was introduced, where all columns were taken from A, ex-
cept for the ith column, which was taken from B, resulting
in a kN × k matrix. From Eq. (6), STi can be computed as
follows:

STi =

1
2N

N∑
j=1

[
f (A)j − f

(
A(i)B

)
j

]2

V (Y)
, (7)

where f (A) is the output variable evaluated on the A matrix
and f (A(i)B ) is the output variable evaluated on the A(i)B ma-
trix. For the calculation of STi , we generated N(2k+2) sam-
ples, with N = 1000 base samples, resulting in 14 000 simu-
lations for each of the three applied scenarios.

3 Results

3.1 Winter evolution

The winter started with a snow storm accumulating around
50 cm of snow at the beginning of November 2016 (Fig. 1).
A melt–freeze crust subsequently formed at the snow sur-
face due to high air temperatures between 16 and 19 Novem-
ber 2016 at around 25 cm from the ground (Fig. 1b). This
crust was also reported in manually observed snow profiles
(Fig. 1a). Until 2 January 2017, 20 cm of snow accumulated
above the crust (Fig. 1). As the weather was mostly clear,
the shallow snowpack was subject to strong temperature gra-
dients during that period. The snow above the crust trans-
formed into a weak layer of faceted crystals and depth hoar,
which persisted throughout the entire season 2016–2017.
This layer was visible in the simulated stratigraphy between
25 and 35 cm. After 2 January 2017, another 50 cm of snow
accumulated, such that the snow depth increased from 50 to
100 cm within two days. Several small snow storms followed
until a maximum snow depth of about 200 cm was reached
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Figure 2. (a) Evolution of modeled snow depth (full line) for the winter season 2016–2017 at the WFJ field site above Davos, Switzerland, and
avalanche activity index (AAI) observed in the region of Davos (blue bars). (b) Avalanches that occurred during the cycle of 9–10 March 2017,
in the valley of Dischma, Davos (picture taken on 15 March 2017). Often the ground or rocks are visible on the bed surface. This was a typical
phenomenon for the winter season 2016–2017 due to the old snow problem.

on 10 March 2017. Although the snow depth only increased
by around 50 cm between 4 and 10 March 2017, the peak
of avalanche activity was observed by the end of this pre-
cipitation period during 9 March (Fig. 2a). Many very large
avalanches occurred during this period. Many avalanches in
the region of Davos entrained the whole snowpack so that the
ground and rocks were visible on the bed surface (Fig. 2b).
As there were no fracture line profiles recorded, we can-
not know in which weak layer the primary failure occurred.
Since the weak layer that had formed in December 2016 was
the most prominent persistent weak layer within the snow-
pack (Fig. 1), this weak layer may have been the critical
weakness. However, it is also possible that the primary fail-
ure occurred between new snow and old snow surface and
then stepped down and entrained much of the old snowpack.

3.2 Properties of weak layer and slab

To quantify the influence of input uncertainty on slab and
weak layer properties for the three cases, we focused on two
specific points in time: 2 January 2017 when we investigated
weak layer properties before burial and 9 March 2017 when
avalanche activity peaked in the region of Davos (Heck et al.,
2019).

3.2.1 2 January 2017

We present weak layer and slab properties on 2 January 2017
with results from the reference run and case WL because up
to 2 January 2017 case SL was identical to the reference run
and the distributions of input uncertainties were the same for
case WL and case ALL.

On 2 January 2017, the percentage of faceted layers was
highly sensitive to air temperature, while the thickness of the
weak layer was sensitive to both TA and P (Fig. 3). Grain
size and density of the weak layer were most sensitive to
precipitation. Weak layer shear strength on 2 January 2017
was most sensitive to TA, P and VW (ST > 0.3).

In the reference run, 95 % of the layers that had formed
between 16 November and 2 January consisted of faceted

Figure 3. Total sensitivity index of weak layer variables on meteo-
rological input uncertainty on 2 January 2017. Weak layer variables
are the proportion of faceted layers (% facets), weak layer thick-
ness (Dwl), weak layer grain size (gswl), weak layer density (ρwl)
and weak layer shear strength (τp,wl).

grains with a mean grain size of 1.3 mm and a density of
188 kg m−3 on 2 January 2017 (triangles in Fig. 4). For
case WL, 36 % of the 14 000 simulations also predicted
that at least 95 % of the layers that had formed between
16 November and 2 January consisted of faceted grains
(Fig. 4a). In only 0.3 % of the simulations did the weak layer
not form at all; i.e., there were no layers of faceted crystals.
These simulations were characterized by a positive air tem-
perature bias (red ellipse in Fig. 4a). Warmer air temperatures
yielded less faceted layers within the weak layer, and above
a bias of +1◦ C the percentage of faceted crystals occasion-
ally reached 0 %. Increasing P led to denser weak layers and
smaller grains (Fig. 4b and c). Positive biases in P result in
thicker snowpacks, as would typically be observed in wind-
sheltered locations. In fact, in 76 % of the simulations, the
density of the weak layer was lower, and in 67 % of the sim-
ulations the grain size was larger than in the reference run.
Both properties, soft snow (low density) and larger grains,
are often associated with unstable weak layers (van Herwij-
nen and Jamieson, 2007).
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Figure 4. (a) Proportion of faceted layers within the weak layer with uncertainty in air temperature (TA) on 2 January 2017. (b) Density (ρwl)
and (c) grain size (gswl) of faceted layers with uncertainty in precipitation (P ). Colors indicate the binned number of simulations. Triangles
indicate the reference run. The red ellipse indicates simulations in which no weak layer formed.

Figure 5. Total sensitivity index of different weak layer and slab variables on meteorological input uncertainty on 9 March 2017 for
(a) case WL, (b) case SL and (c) case ALL. Variables are the proportion of facets (% facets), weak layer thickness (Dwl), weak layer
grain size (gswl), weak layer density (ρwl), weak layer shear strength (τp,wl), slab thickness (Dsl), slab density (ρsl), hand hardness index of
the slab (HHsl) and load due to the slab weight (Load).

3.2.2 9 March 2017

We present weak layer and slab properties on 9 March 2017
by comparing all three cases with results from the reference
run.

The total sensitivity indices for case WL on 9 March 2017
were similar to those on 2 January 2017 forDwl and gswl. For
density and shear strength, all input parameters except ISWR
increased to ST > 0.3 (Fig. 5a). In contrast, for case SL,
weak layer and slab properties were primarily sensitive to P
(Fig. 5b). Increasing P increased the load on the weak layer
and yielded smaller grains and higher weak layer density
(Fig. 6d and e). For case ALL, uncertainties in P domi-
nated weak and slab properties. Similarly, density and shear
strength of the weak layer on 9 March 2017 were mostly sen-
sitive to P , suggesting that the density evolution of the weak

layer was determined by the load rather than the original den-
sity after burial.

On 9 March 2017, mean weak layer density (325 kg m−3)
and mean grain size (1.6 mm) in the reference run had clearly
increased compared to 2 January 2017. On top of the weak
layer, the reference run simulated a 165 cm thick slab with
a mean density of 256 kg m−3 corresponding to a load of
4.15 kPa (triangles in Fig. 6).

In all three cases, around 66 % of the simulations predicted
a weak layer with a lower mean density than in the reference
run. The range was smallest for case WL, with ρwl rang-
ing from 295 to 370 kg m−3, and highest for case ALL, with
ρwl ranging from 240 to 401 kg m−3 (Fig. 6a, d and g). This
means that the weak layer density on 9 March 2017 was
more influenced by the slab than the original density prior
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Figure 6. Modeled (a, d, g) weak layer density, (b, e, h) weak layer grain size and (c, f, i) load of the slab with uncertainty in precipitation (P )
on 9 March 2017 for (a–c) case WL, (d–f) case SL and (g–i) case ALL. Colors indicate the binned number of simulations. Triangles indicate
the reference run.

to burial. In contrast, the grain size of the weak layer rather
depended on the original grain size. Hence, the dispersion
for case ALL was similar to case WL, with gswl ranging
from 1.0 to 3.0 mm, whereas the gswl predicted by case SL
was similar to the reference run, ranging from 1.6 to 2.0 mm
(Fig. 6b, e and h). In all three cases, around 70 % of the simu-
lations predicted grain sizes larger than the reference run. As
expected, the range in slab properties for case WL was min-
imal on 9 March 2017; e.g., the load of the slab ranged from
4.13 to 4.18 kPa. In contrast, the load for case SL and case
ALL varied by a factor of 16, ranging from 1.03 to 16.7 kPa
(Fig. 6c, f and i). In all three cases, around one-third of the
simulations predicted a higher slab load than the reference
run. Other slab properties, e.g., slab density, did not vary
much for case WL, whereas they greatly varied for case SL
and case ALL. To sum up, different slab properties strongly
influenced the evolution of the weak layers, whereas differ-
ent weak layers, as expected, did not influence the evolution
of the slab.

3.3 Evolution of snow stability

After burial of the weak layer, snow stability of the reference
run, i.e., SK38 and rc, initially increased with time (black
lines in Fig. 7). During periods with precipitation (increases
in snow depth in Fig. 1), both indices decreased, whereas
during periods without precipitation, both indices increased.
However, this increase was very weak for SK38. On 30 Jan-
uary 2017, SK38 reached a maximum value of 1.24. Af-
ter that, decreases in SK38 during periods with precipita-
tion events were stronger than increases in SK38 during pe-
riods without precipitation. Therefore, an overall decrease
was observed for SK38 after 30 January 2017, such that
SK38 reached a minimum value of 0.81 during the period of
high avalanche activity (10 March 2017). In contrast, rc in-
creased more prominently during periods without precipita-
tion, such that rc reached a minimum value of 15 cm right
after burial and a maximum value of 124 cm by the end
of March. During periods with precipitation, rc decreased,
e.g., rc decreased just before the period 9 March 2017, such
that lower values for rc during the peak of avalanche activ-
ity were modeled (indicated by grey vertical bars in Fig. 7).
Therefore, days with high avalanche activity coincided with
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Figure 7. Temporal evolution (January to March 2017) of input uncertainties to modeled skier stability index SK38 for (a) case WL,
(c) case SL and (e) case ALL and critical crack length rc for (b) case WL, (d) case SL and (f) case ALL. Colors indicate the binned number
of simulations. Black lines show the reference run and grey vertical bars highlight the period of high avalanche activity.

days with small values for rc and small values for SK38
(Fig. 8). Similar to the reference run, SK38 and rc initially
increased for all three cases. After 30 January, an overall de-
crease in SK38 was observed, while the increase in rc was
more pronounced towards the end of the simulation period.
During periods with precipitation, decreases in snow stability
were observed (Fig. 7).

While rc was mostly sensitive to precipitation for case WL,
SK38 was highly sensitive to TA (Fig. 9a and b). In con-
trast, for case SL and case ALL, the total-order sensitivity
index clearly highlighted precipitation as the most dominant
input parameter for stability indices (Fig. 9c–f). Interestingly,
the instability metrics were affected in different ways by un-
certainties in precipitation. On 9 March 2017, for all cases,
increasing precipitation yielded larger critical crack lengths
(Fig. 10). The strongest increase for rc with P was observed
for case ALL (Fig. 10d). Whereas SK38 increased with in-
creasing TA for case WL (Fig. 10a), it clearly decreased with
increasing P for case SL and case ALL (Fig. 10c and e). The
decrease is a consequence of the more prominent increase in
slab load than in shear strength. In fact, the shear strength
increased with increasing precipitation by a factor of 2 while
slab load increased with increasing precipitation by a factor
of 6 (not shown).

Figure 8. SK38 with rc of the reference run for all days from 4 Jan-
uary 2017 to 31 March 2017. Red circles are days with AAI> 10,
and the size of the circles corresponds to the value of AAI.
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Figure 9. Evolution of the total sensitivity index ST for the model output SK38 and rc for case WL, case SL and case ALL (from top to
bottom). Grey vertical bars highlight a period of high avalanche activity.

The range of SK38 was larger in case SL compared to
case WL, suggesting that the load due to slab weight had
a stronger influence on SK38 than the shear strength of the
weak layer. On 9 March 2017 for instance, SK38 ranged
from 0.79 to 1.87 for case WL and 0.33 to 1.90 for case SL
(Fig. 10a and c). This suggests that different slabs influ-
enced SK38 more than different weak layers; i.e., the slab
was more important. Case ALL showed the largest range
from 0.32 to 3.05 (Fig. 10e). Around one-third of the simula-
tions for all cases predicted a SK38 smaller than that for the
reference run with a value of 0.86 (case WL: 44 %, case SL:
36 % and case ALL: 33 %). The spread of rc was similar in
case WL and case SL, ranging from around 30 to 100 cm on
9 March 2017 (Fig. 10b and d). For case ALL, the spread
of rc was larger, ranging from 18 to 146 cm on 9 March 2017
(Fig. 10f). This suggests that rc was equally impacted by
weak layer and slab properties. Around two-thirds of the sim-
ulations in all three cases predicted a value of rc smaller than
in the reference run with a value of 58 cm (case WL: 71 %,
case SL: 65 % and case ALL: 69 %). However, only 30 %
of the simulations of case WL predicted both a smaller SK38
and a smaller rc value on 9 March 2017. For case SL and case
ALL, only 6 % and 7 % of the simulations, respectively, pre-
dicted lower values for both stability indices. This means that
if a simulation yields a smaller SK38, rc was mostly larger.
Stability indices therefore did not respond to the biases in a
similar manner.

4 Discussion

We examined the sensitivity of modeled snow stability to me-
teorological input uncertainty using a global sensitivity anal-
ysis approach suggested by Sobol’ (1990). To do so, we in-
troduced biases to six meteorological inputs: air temperature,
relative humidity, precipitation, wind velocity, and incoming
short- and long-wave radiation, which are all required as in-
put variables by the snow cover model SNOWPACK (Lehn-
ing et al., 2002). Among these input parameters, precipitation
had the most prominent influence on modeled snow stabil-
ity. Precipitation influences weak layer and slab properties.
Although a positive bias in air temperature reduced the per-
centage of faceted crystals within the weak layer, in most
simulations a weak layer had formed, which may indicate a
widespread avalanche problem in the region.

We used biases instead of random uncertainties, as Raleigh
et al. (2015) investigated different sources of errors and
showed that biases had more influence on model output.
For the parameter biases, we used the ranges suggested
by Raleigh et al. (2015), who provided a comprehensive
overview of typical variations in these parameters in complex
topography. The only exception was for ISWR, for which
we chose a multiplicative bias rather than a cumulative bias,
since we expected bias in ISWR to depend on solar angle.
Introducing a lognormal distribution for the bias in precipita-
tion resulted in unequal proportions relative to the reference
run (e.g., Figs. 4 and 6). A coefficient of variation for the log-
normal distribution was chosen as this reflects typical snow
depth patterns observed in mountainous terrain (e.g., Lis-
ton, 2004). Hence, relatively more simulations had smaller P
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Figure 10. Modeled (a, c, e) SK38 and (b, d, f) rc with uncertainty in the most sensitive input parameters, i.e., air temperature (TA) and
precipitation (P ), on 9 March 2017 for (a, b) case WL, (c, d) case SL and (e, f) case ALL. Colors indicate the number of simulations in each
of the 50× 50 bins. Triangles indicate the reference run.

values than the reference run. While the snow cover model
SNOWPACK has traditionally been forced with measured
data from automatic weather stations (Lehning et al., 1999;
Monti et al., 2016; Wever et al., 2015), it is increasingly used
for spatially distributed model applications either by interpo-
lating measured meteorological data or using output from nu-
merical weather prediction models (Bellaire et al., 2011; Bel-
laire and Jamieson, 2012; Schlögl et al., 2016). As such, the
introduced biases can be seen as potential errors due to the
interpolation schemes, or biases in the NWP output. For in-
stance, for air temperature, the variation of ± 3 ◦ C (Table 1)
corresponds roughly to typical errors between NWP output
and TA measurements (Bellaire et al., 2017).

In complex terrain, wind-induced processes strongly influ-
ence snow distribution (Mott and Lehning, 2010). The bias
introduced for P agrees with the high variations in snow

depths, measured at very small scales (Bühler et al., 2015).
Precipitation had the most significant impact on modeled
sensitivity, which may partly be due to the high magnitude
of bias (Raleigh et al., 2015). These results have implica-
tions for spatial snow cover modeling, which is increasingly
applied in avalanche forecasting (Bellaire et al., 2017, 2011;
Morin et al., 2020; Lafaysse et al., 2017; Vernay et al., 2015).
Indeed, our results suggest that if we want to obtain realistic
spatial patterns, we need to adequately model snow distribu-
tion in mountainous regions. This is not an easy task, as snow
distribution is very complex (Grünewald et al., 2010; Hel-
big and van Herwijnen, 2017; Kirchner et al., 2014; Reuter
et al., 2016). Since the mountain snow cover is largely shaped
by snow transport by wind, adequate modeling can only be
achieved through computationally expensive snow drift mod-
eling (Gerber et al., 2018; Mott and Lehning, 2010; Vionnet
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et al., 2014). While from an operational point of view, high-
resolution modeling (resolution of several meters) on large
domains is presently out of reach, alternative approaches
were suggested (e.g., Helbig et al., 2017; Vögeli et al., 2016;
Winstral et al., 2002).

We investigated the formation and subsequent burial of a
weak layer consisting of faceted and depth hoar crystals near
the base of the snow cover, a so-called persistent weak layer
(Jamieson and Johnston, 1992; Schweizer et al., 2003a).
Such early-season weak layers are often widespread and as-
sociated with poor stability for most of the season. Results
from our sensitivity analysis thus showed that the formation
of the weak layer was mostly influenced by precipitation and
air temperature early in the season (Fig. 3). This comes as no
surprise since both the parameters directly affect the temper-
ature gradient across the snowpack, which is the most impor-
tant driver for the formation of facets and depth hoar (Birke-
land, 1998; Miller and Adams, 2009; Staron et al., 2012). Our
results also show that the formation of persistent weak layers
is rather robust. Indeed, in only 0.3 % of the simulations no
weak layer developed, suggesting that even within the range
of meteorological input we used, if a prolonged dry-weather
period occurs after the first snowfall, such weak layers will
generally form. Only warm weather can prevent the forma-
tion of a weak layer during a prolonged dry-weather period,
which is generally found at lower elevations. Our results sug-
gest that spatial snow cover modeling can be used to predict
the elevation range for weak layers. This result agrees with
Horton et al. (2015), who examined how variability in mete-
orological fields from numerical weather prediction models
across elevations resulted in reasonable predictions of sur-
face hoar formation. However, we only looked at one type
of weak layer. The formation and subsequent burial of sur-
face hoar might be more sensitive to other meteorological
parameters, such as wind speed (Stössel et al., 2010). In fact,
Slaughter (2010) investigated the sensitivity of near-surface
faceting and surface hoar formation at midday and midnight
to input parameters using a snow thermal model. He found
incoming long-wave radiation to be the most dominant input
parameter, although they did not investigate the sensitivity to
precipitation.

Grain size and hardness are important parameters to
identify persistent weak layers and evaluate snow stability
(e.g., Schweizer and Jamieson, 2007; van Herwijnen and
Jamieson, 2007). The low sensitivity of weak layer grain
size to air temperature and radiation (Fig. 4) during the weak
layer formation period was somewhat surprising, since both
these parameters are highly relevant for the energy input at
the snow surface and thus snow surface temperature and tem-
perature gradients across the snowpack. However, the weak
layer formed in December, when the energy balance at the
snow surface is generally negative (due to surface cooling),
as days are very short and incoming short-wave radiation
is very low. Even with positive air temperature, the snow
surface often stays well below zero, except on very steep

south-facing slopes (higher incoming short-wave radiation),
or when there is thick cloud cover (higher incoming long-
wave radiation). Since there was generally only limited cloud
cover in December 2016 (low incoming long-wave radia-
tion), and the simulations were performed for a flat-field site
(low incoming short-wave radiation), we believe our results
are plausible. Hence, weak layer grain size was mostly sensi-
tive to uncertainties in precipitation, as thinner snow covers
generally have a lower density (less settlement) and experi-
ence larger temperature gradients. Weak layer shear strength
was sensitive to uncertainties in wind velocity and air temper-
ature (Fig. 4). Shear strength in SNOWPACK is a function of
grain type and density. As new snow density in SNOWPACK
depends on VW and TA, we believe that weak layer shear
strength depended on these variables for case WL on 2 Jan-
uary 2017. In fact, weak layer shear strength increased with
increasing VW and increasing TA (not shown). As different
weak layers on 2 January do not necessarily react exactly
the same to the same slab, there were some changes in ST
between 2 January and 9 March. Indeed, harder and denser
weak layers will settle less than soft low-density weak layers.

We focused on two metrics of snow instability, namely
SK38 (Eq. 2) and rc (Eq. 3). These metrics relate to both fail-
ure initiation (SK38) and crack propagation (rc), two funda-
mental processes required for avalanche release (Reuter and
Schweizer, 2018; van Herwijnen and Jamieson, 2007). Given
our current understanding of snow stability, critical weak lay-
ers require both a low failure initiation propensity and a low
crack propagation propensity (Reuter and Schweizer, 2018).
While both these indices have been validated (Schweizer
et al., 2006; Richter et al., 2019), thus far no threshold val-
ues exist that separate stable from unstable snow conditions
adapted for use in SNOWPACK. As such, we compared these
stability indices to the reference run to determine if the in-
troduced biases resulted in a more stable or a less stable
snowpack, with a particular focus on 9 March 2017 when
avalanche activity in the region of Davos peaked (Fig. 2).

To better assess the role of slab and weak layer proper-
ties with respect to snow instability, we used three scenarios
where we varied meteorological input only during the weak
layer formation period, only during the slab formation period
and during the entire period. These three scenarios clearly
highlighted that weak layer and slab formation are sensi-
tive to different meteorological parameters and can influence
snow instability in very different ways (Figs. 5 and 9). With
higher precipitation during the slab formation period, rc gen-
erally increased, whereas SK38 decreased (Fig. 10c and d).
Precipitation determined slab load and the consolidation of
slab and weak layers. More precipitation resulted in thicker
slabs which typically have a higher density, hardness and
stiffness (van Herwijnen and Jamieson, 2007; van Herwijnen
et al., 2016). Furthermore, due to higher slab load, the weak
layer shear strength increased. Both stiffer slab and higher
weak layer shear strength resulted in higher values for rc.
This is in line with other parametric studies on snow insta-
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bility showing that slab properties substantially affect snow
instability (Gaume et al., 2017; Reuter and Schweizer, 2018;
Schweizer and Reuter, 2015).

In contrast, SK38 decreased during precipitation due to the
increase in slab load and slightly increased during periods
without precipitation (Fig. 7a, c and e) due to the lagged in-
crease in weak layer shear strength (Jamieson et al., 2007).
However, the increase in slab load was more prominent than
the increase in weak layer shear strength, resulting in an
overall decrease in SK38, and values for SK38 remained
low towards the end of March 2017 (Figs. 7 and 8). For the
same reason, SK38 was affected differently than rc, with un-
certainties in precipitation. Hence, SK38 decreased with in-
creasing P (Fig. 10c) during the slab formation period. In
fact, with increasing P , the slab load by 9 March had in-
creased 3 times as much as weak layer shear strength (not
shown). With increasing slab thickness the skier stress on
the weak layer decreases and skier triggering becomes un-
likely. SK38 can no longer be used to assess skier trigger-
ing (Schweizer et al., 2016). Instead, other stability indices
should be considered, e.g., the natural stability index. How-
ever, the denominator in Eq. (2) is dominated by the shear
stress due to the load of the slab for thicker slabs. Hence
SK38 approaches the natural stability index for slab thick-
nesses above approximately 1 m. During the precipitation
event of 9 March 2017, these strength-over-stress approaches
reach a small value, meaning that a failure is easy to initiate.
Even towards the end of March 2017, SK38 and the natural
stability index (not shown) remain very low, which is rather
counterintuitive regarding failure initiation.

In the context of climate change, Castebrunet et al. (2014)
suggested a decrease in avalanche activity for the Alps and
an increase in wet-snow avalanche activity during winter at
high elevations. Martin et al. (2001) assumed that avalanche
hazard (number of days with moderate or high avalanche
hazard) decreased with increasing TA. Our study also al-
lows the effect of increasing temperature on snow instabil-
ity to be assessed. With increasing TA during the formation
of the weak layer, the weak layer will get stronger, mean-
ing higher density and smaller grain size. This results in an
overall more stable snowpack. However, in our case study,
in only 0.3 % of the simulations no weak layer formed at
all. We therefore expect, that instabilities due to persistent
weak layers will continue to challenge avalanche forecasting.
This is of particular interest since about 70 % of 186 skier-
triggered avalanches were released in weak layers of persis-
tent grain types, i.e., surface hoar, faceted crystals, and depth
hoar (Schweizer and Jamieson, 2001). Furthermore, the pri-
mary driver of snow instability after weak layer formation
was precipitation. With climate change, extreme events may
become more frequent; e.g., prolonged dry periods – favor-
ing the formation of weak layers – may alternate with more
extreme precipitation events (CH2018, 2018), with partly op-
posing effects on our snow instability metrics.

5 Conclusions

We investigated the sensitivity of two modeled snow insta-
bility metrics for a weak layer consisting of faceted and
depth hoar crystals on meteorological input uncertainty by
employing a global sensitivity analysis. We evaluated three
scenarios, in which uncertainties were introduced during the
weak layer formation period, the slab formation period and
the whole winter season. This approach allowed the effects
on weak layer and slab properties, which both contribute to
snow stability, to be independently investigated.

The process of weak layer formation was very robust as
in most simulations persistent grain types formed. However,
weak layer properties strongly depended on meteorological
conditions during the formation period. While we only in-
vestigated one winter with a rather thin snow cover, we ex-
pect this to also hold for a thicker snow cover, as the upper
layers will experience strong temperature gradients. Hence,
accurate meteorological input is important for forecasting the
spatial distribution of weak layers and how weak they really
are, since this helps the assessment of snow instability later
in the season.

Once a weak layer had formed, both slab and weak layer
properties were strongly sensitive to uncertainties in precip-
itation during the slab formation period. Precipitation deter-
mined the load and hence the settling of slab and weak layers.
These snow properties, however, influenced modeled snow
stability in different ways. A positive bias in precipitation,
which can be found in wind-shaded areas with above-average
accumulation, resulted in an overall lower skier stability in-
dex and higher critical crack length. In contrast, for areas
with below-average snow depth, a higher skier stability in-
dex and a lower critical crack length were simulated. Our
results suggest that even if a persistent weak layer forms at
the start of the season, the remainder of the winter season can
still have a profound effect on the overall evolution of snow
instability.

As snow deposition in complex terrain substantially varies
during storms and given the high sensitivity of stability
to precipitation, numerical forecasting of snow stability in
3D terrain will require spatially highly resolved precipitation
patterns.

Data availability. All relevant data, including SNOWPACK sim-
ulations and manually observed snow profiles, are available at
https://doi.org/10.16904/envidat.183 (Richter et al., 2020).

Author contributions. BR processed and analyzed the simulations.
AvH and JS initiated this study. BR prepared the paper with contri-
butions from all co-authors.

https://doi.org/10.5194/nhess-20-2873-2020 Nat. Hazards Earth Syst. Sci., 20, 2873–2888, 2020

https://doi.org/10.16904/envidat.183


2886 B. Richter et al.: Sensitivity of modeled snow stability data to meteorological input uncertainty

Competing interests. The authors declare that they have no conflict
of interests.

Acknowledgements. Thanks to Mathias Bavay for helping with
SNOWPACK issues, Thomas Kramer for IT support and Hen-
ning Löwe for discussions on programming style. Furthermore, we
thank Simon Horton, one anonymous referee and the editor Mar-
greth Keiler, who helped us to improve this paper. Bettina Richter
has been supported by a grant of the Swiss National Science Foun-
dation (200021_169641).

Financial support. This research has been supported by the Swiss
National Science Foundation (grant no. 200021_169641).

Review statement. This paper was edited by Margreth Keiler and
reviewed by Simon Horton and one anonymous referee.

References

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for
the Swiss avalanche warning Part I: Numerical model, Cold
Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-
232X(02)00074-5, 2002.

Bellaire, S. and Jamieson, B.: Nowcast with a forecast–snow cover
simulations on slopes, in: Proceedings of International Snow Sci-
ence Workshop, Anchorage, USA, 172–178, 2012.

Bellaire, S., Jamieson, B., and Fierz, C.: Forcing the snow-
cover model SNOWPACK with forecasted weather data, The
Cryosphere, 5, 1115–1125, https://doi.org/10.5194/tc-5-1115-
2011, 2011.

Bellaire, S., van Herwijnen, A., Mitterer, C., and Schweizer,
J.: On forecasting wet-snow avalanche activity using simu-
lated snow cover data, Cold Reg. Sci. Technol., 144, 28–38,
https://doi.org/10.1016/j.coldregions.2017.09.013, 2017.

Birkeland, K. W.: Terminology and Predominant Processes Associ-
ated with the Formation of Weak Layers of Near-Surface Faceted
Crystals in the Mountain Snowpack, Arct. Alp. Res., 30, 193–
199, https://doi.org/10.2307/1552134, 1998.

Brun, E., David, P., and Sudul, M.: A numerical-model to simulate
snow-cover stratigraphy for operational avalanche forecasting, J.
Glaciol., 38, 13–22, 1992.

Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P.,
and Ginzler, C.: Snow depth mapping in high-alpine catch-
ments using digital photogrammetry, The Cryosphere, 9, 229–
243, https://doi.org/10.5194/tc-9-229-2015, 2015.

Castebrunet, H., Eckert, N., Giraud, G., Durand, Y., and Morin,
S.: Projected changes of snow conditions and avalanche ac-
tivity in a warming climate: the French Alps over the 2020–
2050 and 2070–2100 periods, The Cryosphere, 8, 1673–1697,
https://doi.org/10.5194/tc-8-1673-2014, 2014.

CH2018: CH2018 – Climate Scenarios for Switzerland, Technical
Report, National Centre for Climate Services, Zurich, ISBN 978-
3-9525031-4-0, 2018.

Côté, K., Madore, J.-B., and Langlois, A.: Uncertainties in the
SNOWPACK multilayer snow model for a Canadian avalanche

context: sensitivity to climatic forcing data, Phys. Geogr.,
38, 124–142, https://doi.org/10.1080/02723646.2016.1277935,
2017.

Davies, J. H. and Davies, D. R.: Earth’s surface heat flux, Solid
Earth, 1, 5–24, https://doi.org/10.5194/se-1-5-2010, 2010.

Durand, Y., Giraud, G., Brun, E., Merindol, L., and Martin, E.:
A computer-based system simulating snowpack structures as a
tool for regional avalanche forecasting, J. Glaciol., 45, 469–484,
1999.

Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., Mc-
Clung, D., Nishimura, K., Satyawali, P., and Sokratov, S.: The
international classification for seasonal snow on the ground, HP-
VII Technical Document in Hydrology, in: 83. UNESCO-IHP,
Paris, France, p. 90, 2009.

Föhn, P.: The “Rutschblock” as a pratical tool for slope stability
evaluation, IAHS-AISH Publ., 162, 223–228, 1987.

Gaume, J., van Herwijnen, A., Chambon, G., Wever, N., and
Schweizer, J.: Snow fracture in relation to slab avalanche release:
critical state for the onset of crack propagation, The Cryosphere,
11, 217–228, https://doi.org/10.5194/tc-11-217-2017, 2017.

Gerber, F., Besic, N., Sharma, V., Mott, R., Daniels, M., Gabella,
M., Berne, A., Germann, U., and Lehning, M.: Spatial variabil-
ity in snow precipitation and accumulation in COSMO–WRF
simulations and radar estimations over complex terrain, The
Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-
2018, 2018.

Giraud, G. and Navarre, J.: MEPRA et le risque de déclenchement
accidentel d’avalanches, in: Les apports de la recherche scien-
tifique à la sécurité neige, glace et avalanche, in: Actes de Col-
loque, 30 May–3 June 1995, Chamonix, 145–150, 1995.

Grünewald, T., Schirmer, M., Mott, R., and Lehning, M.: Spa-
tial and temporal variability of snow depth and ablation rates
in a small mountain catchment, The Cryosphere, 4, 215–225,
https://doi.org/10.5194/tc-4-215-2010, 2010.

Günther, D., Marke, T., Essery, R., and Strasser, U.: Uncertainties in
Snowpack Simulations – Assessing the Impact of Model Struc-
ture, Parameter Choice, and Forcing Data Error on Point-Scale
Energy Balance Snow Model Performance, Water Resour. Res.,
55, 2779–2800, https://doi.org/10.1029/2018WR023403, 2019.

Heck, M., van Herwijnen, A., Hammer, C., Hobiger, M., Schweizer,
J., and Fäh, D.: Automatic detection of avalanches combining
array classification and localization, Earth Surf. Dynam., 7, 491–
503, https://doi.org/10.5194/esurf-7-491-2019, 2019.

Helbig, N. and Löwe, H.: Shortwave radiation parameterization
scheme for subgrid topography, J. Geophys. Res.-Atmos., 117,
D03112, https://doi.org/10.1029/2011JD016465, 2012.

Helbig, N. and van Herwijnen, A.: Subgrid parameteriza-
tion for snow depth over mountainous terrain from flat
field snow depth, Water Resour. Res., 53, 1444–1456,
https://doi.org/10.1002/2016WR019872, 2017.

Helbig, N., Mott, R., van Herwijnen, A., Winstral, A., and
Jonas, T.: Parameterizing surface wind speed over com-
plex topography, J. Geophys. Res.-Atmos., 122, 651–667,
https://doi.org/10.1002/2016JD025593, 2017.

Horton, S., Schirmer, M., and Jamieson, B.: Meteorological, el-
evation, and slope effects on surface hoar formation, The
Cryosphere, 9, 1523–1533, https://doi.org/10.5194/tc-9-1523-
2015, 2015.

Nat. Hazards Earth Syst. Sci., 20, 2873–2888, 2020 https://doi.org/10.5194/nhess-20-2873-2020

https://doi.org/10.1016/S0165-232X(02)00074-5
https://doi.org/10.1016/S0165-232X(02)00074-5
https://doi.org/10.5194/tc-5-1115-2011
https://doi.org/10.5194/tc-5-1115-2011
https://doi.org/10.1016/j.coldregions.2017.09.013
https://doi.org/10.2307/1552134
https://doi.org/10.5194/tc-9-229-2015
https://doi.org/10.5194/tc-8-1673-2014
https://doi.org/10.1080/02723646.2016.1277935
https://doi.org/10.5194/se-1-5-2010
https://doi.org/10.5194/tc-11-217-2017
https://doi.org/10.5194/tc-12-3137-2018
https://doi.org/10.5194/tc-12-3137-2018
https://doi.org/10.5194/tc-4-215-2010
https://doi.org/10.1029/2018WR023403
https://doi.org/10.5194/esurf-7-491-2019
https://doi.org/10.1029/2011JD016465
https://doi.org/10.1002/2016WR019872
https://doi.org/10.1002/2016JD025593
https://doi.org/10.5194/tc-9-1523-2015
https://doi.org/10.5194/tc-9-1523-2015


B. Richter et al.: Sensitivity of modeled snow stability data to meteorological input uncertainty 2887

Jamieson, B., Zeidler, A., and Brown, C.: Explanation and limita-
tions of study plot stability indices for forecasting dry snow slab
avalanches in surrounding terrain, Cold Reg. Sci. Technol., 50,
23–34, https://doi.org/10.1016/j.coldregions.2007.02.010, 2007.

Jamieson, B., Haegeli, P., and Schweizer, J.: Field observations
for estimating the local avalanche danger in the Columbia
Mountains of Canada, Cold Reg. Sci. Technol., 58, 84–91,
https://doi.org/10.1016/j.coldregions.2009.03.005, 2009.

Jamieson, J. and Johnston, C.: Snowpack characteristics associated
with avalanche accidents, Can. Geotechn. J., 29, 862–866, 1992.

Jamieson, J. and Johnston, C.: Refinements to the stability index for
skier-triggered dry-slab avalanches, Ann. Glaciol., 26, 296–302,
https://doi.org/10.3189/1998AoG26-1-296-302, 1998.

Jamieson, J. and Johnston, C.: Evaluation of the shear frame test for
weak snowpack layers, Ann. Glaciol., 32, 59–69, 2001.

Kirchner, P. B., Bales, R. C., Molotch, N. P., Flanagan, J.,
and Guo, Q.: LiDAR measurement of seasonal snow accu-
mulation along an elevation gradient in the southern Sierra
Nevada, California, Hydrol. Earth Syst. Sci., 18, 4261–4275,
https://doi.org/10.5194/hess-18-4261-2014, 2014.

Lafaysse, M., Morin, S., Coléou, C., Vernay, M., Serça, D., Besson,
F., Willemet, J.-M., Giraud, G., and Durand, Y.: Towards a
new chain of models for avalanche hazard forecasting in French
mountain ranges, including low altitude mountains, in: Proceed-
ings of the International Snow Science Workshop Grenoble, Cha-
monix Mont-Blanc, France, 162–166, 2013.

Lafaysse, M., Cluzet, B., Dumont, M., Lejeune, Y., Vionnet,
V., and Morin, S.: A multiphysical ensemble system of nu-
merical snow modelling, The Cryosphere, 11, 1173–1198,
https://doi.org/10.5194/tc-11-1173-2017, 2017.

Lapo, K. E., Hinkelman, L. M., Raleigh, M. S., and Lundquist, J.
D.: Impact of errors in the downwelling irradiances on simula-
tions of snow water equivalent, snow surface temperature, and
the snow energy balance, Water Resour. Res., 51, 1649–1670,
https://doi.org/10.1002/2014WR016259, 2015.

Lehning, M., Bartelt, P., and Brown, B.: SNOWPACK model cal-
culations for avalanche warning based upon a new network of
weather and snow stations, Cold Reg. Sci. Technol., 30, 145–
157, https://doi.org/10.1016/S0165-232X(99)00022-1, 1999.

Lehning, M., Bartelt, P., Brown, B., and Fierz, C.: A physical
SNOWPACK model for the Swiss avalanche warning: Part III:
meteorological forcing, thin layer formation and evaluation, Cold
Reg. Sci. Technol., 35, 169–184, https://doi.org/10.1016/S0165-
232X(02)00072-1, 2002.

Lehning, M., Fierz, C., Brown, B., and Jamieson,
B.: Modeling snow instability with the snow-cover
model SNOWPACK, Ann. Glaciol., 38, 331–338,
https://doi.org/10.3189/172756404781815220, 2004.

Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T., Stähli, M.,
and Zappa, M.: ALPINE3D: A detailed model of mountain
surface processes and its application to snow hydrology, Hy-
drol. Process., 20, 2111–2128, https://doi.org/10.1002/hyp.6204,
2006.

Liston, G. E.: Representing Subgrid Snow Cover Het-
erogeneities in Regional and Global Models, J. Cli-
mate, 17, 1381–1397, https://doi.org/10.1175/1520-
0442(2004)017<1381:RSSCHI>2.0.CO;2, 2004.

Martin, E., Giraud, G., Lejeune, Y., and Boudart, G.: Impact of a
climate change on avalanche hazard, Ann. Glaciol., 32, 163–167,
https://doi.org/10.3189/172756401781819292, 2001.

McClung, D. M. and Schaerer, P.: The Avalanche Handbook, The
Mountaineers, Seattle, Washington, USA, 2006.

Miller, D. A. and Adams, E. E.: A microstructural dry-snow meta-
morphism model for kinetic crystal growth, J. Glaciol., 55, 1003–
1011, https://doi.org/10.3189/002214309790794832, 2009.

Monti, F., Gaume, J., van Herwijnen, A., and Schweizer, J.: Snow
instability evaluation: calculating the skier-induced stress in a
multi-layered snowpack, Nat. Hazards Earth Syst. Sci., 16, 775–
788, https://doi.org/10.5194/nhess-16-775-2016, 2016.

Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz,
C., Gobiet, A., Hagenmuller, P., Lafaysse, M., Ližar, M., Mit-
terer, C., Monti, F., Müller, K., Olefs, M., Snook, J. S.,
van Herwijnen, A., and Vionnet, V.: Application of physical
snowpack models in support of operational avalanche hazard
forecasting: A status report on current implementations and
prospects for the future, Cold Reg. Sci. Technol., 170, 102910,
https://doi.org/10.1016/j.coldregions.2019.102910, 2020.

Mott, R. and Lehning, M.: Meteorological Modeling of
Very High-Resolution Wind Fields and Snow Deposi-
tion for Mountains, J. Hydrometeorol., 11, 934–949,
https://doi.org/10.1175/2010JHM1216.1, 2010.

Pollack, H. ., Hurter, S. J., and Johnson, J. R.: Heat flow from the
Earth’s interior: Analysis of the global data set, Rev. Geophysics,
31, 267–280, https://doi.org/10.1029/93RG01249, 1993.

Raleigh, M. S., Lundquist, J. D., and Clark, M. P.: Explor-
ing the impact of forcing error characteristics on physi-
cally based snow simulations within a global sensitivity anal-
ysis framework, Hydrol. Earth Syst. Sci., 19, 3153–3179,
https://doi.org/10.5194/hess-19-3153-2015, 2015.

Reuter, B. and Schweizer, J.: Describing snow instabil-
ity by failure initiation, crack propagation, and slab
tensile support, Geophys. Res. Lett., 45, 7019–7027,
https://doi.org/10.1029/2018GL078069, 2018.

Reuter, B., Schweizer, J., and van Herwijnen, A.: A process-based
approach to estimate point snow instability, The Cryosphere, 9,
837–847, https://doi.org/10.5194/tc-9-837-2015, 2015.

Reuter, B., Richter, B., and Schweizer, J.: Snow instability patterns
at the scale of a small basin, J. Geophys. Res.-Earth, 121, 257–
282, https://doi.org/10.1002/2015JF003700, 2016.

Richter, B., Schweizer, J., Rotach, M. W., and van Herwijnen, A.:
Validating modeled critical crack length for crack propagation in
the snow cover model SNOWPACK, The Cryosphere, 13, 3353–
3366, https://doi.org/10.5194/tc-13-3353-2019, 2019.

Richter, B., van Herwijnen, A., Rotach, M. W., and Schweizer,
J.: Sensitivity of modeled snow instability (dataset), EnviDat,
https://doi.org/10.16904/envidat.183, 2020.

Saltelli, A. and Annoni, P.: How to avoid a perfunctory sensitivity
analysis, Environ. Model. Softw., 25, 1508–1517, 2010.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto,
M., and Tarantola, S.: Variance based sensitivity analy-
sis of model output. Design and estimator for the total
sensitivity index, Comput. Phys. Commun., 181, 259–270,
https://doi.org/10.1016/j.cpc.2009.09.018, 2010.

Sauter, T. and Obleitner, F.: Assessing the uncertainty of glacier
mass-balance simulations in the European Arctic based on

https://doi.org/10.5194/nhess-20-2873-2020 Nat. Hazards Earth Syst. Sci., 20, 2873–2888, 2020

https://doi.org/10.1016/j.coldregions.2007.02.010
https://doi.org/10.1016/j.coldregions.2009.03.005
https://doi.org/10.3189/1998AoG26-1-296-302
https://doi.org/10.5194/hess-18-4261-2014
https://doi.org/10.5194/tc-11-1173-2017
https://doi.org/10.1002/2014WR016259
https://doi.org/10.1016/S0165-232X(99)00022-1
https://doi.org/10.1016/S0165-232X(02)00072-1
https://doi.org/10.1016/S0165-232X(02)00072-1
https://doi.org/10.3189/172756404781815220
https://doi.org/10.1002/hyp.6204
https://doi.org/10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2
https://doi.org/10.3189/172756401781819292
https://doi.org/10.3189/002214309790794832
https://doi.org/10.5194/nhess-16-775-2016
https://doi.org/10.1016/j.coldregions.2019.102910
https://doi.org/10.1175/2010JHM1216.1
https://doi.org/10.1029/93RG01249
https://doi.org/10.5194/hess-19-3153-2015
https://doi.org/10.1029/2018GL078069
https://doi.org/10.5194/tc-9-837-2015
https://doi.org/10.1002/2015JF003700
https://doi.org/10.5194/tc-13-3353-2019
https://doi.org/10.16904/envidat.183
https://doi.org/10.1016/j.cpc.2009.09.018


2888 B. Richter et al.: Sensitivity of modeled snow stability data to meteorological input uncertainty

variance decomposition, Geosci. Model Dev., 8, 3911–3928,
https://doi.org/10.5194/gmd-8-3911-2015, 2015.

Scapozza, C.: Entwicklung eines dichte- und temperaturabhängigen
Stoffgesetzes zur Beschreibung des visko-elastischen Verhaltens
von Schnee, PhD thesis, ETH Zürich, Zurich, 2004.

Schlögl, S., Marty, C., Bavay, M., and Lehning, M.: Sen-
sitivity of Alpine3D modeled snow cover to modifica-
tions in DEM resolution, station coverage and meteorolog-
ical input quantities, Environ. Model. Softw., 83, 387–396,
https://doi.org/10.1016/j.envsoft.2016.02.017, 2016.

Schweizer, J. and Jamieson, J.: Snow cover properties for skier
triggering of avalanches, Cold Reg. Sci. Technol., 33, 207–221,
https://doi.org/10.1016/S0165-232X(01)00039-8, 2001.

Schweizer, J. and Jamieson, J.: A threshold sum approach to stabil-
ity evaluation of manual snow profiles, Cold Reg. Sci. Technol.,
47, 50–59, https://doi.org/10.1016/j.coldregions.2006.08.011,
2007.

Schweizer, J. and Reuter, B.: A new index combining weak layer
and slab properties for snow instability prediction, Nat. Hazards
Earth Syst. Sci., 15, 109–118, https://doi.org/10.5194/nhess-15-
109-2015, 2015.

Schweizer, J., Jamieson, J., and Schneebeli, M.: Snow
avalanche formation, Rev. Geophys., 41, 1016,
https://doi.org/10.1029/2002RG000123, 2003a.

Schweizer, J., Kronholm, K., and Wiesinger, T.: Verification of re-
gional snowpack stability and avalanche danger, Cold Reg. Sci.
Technol., 37, 277–288, 2003b.

Schweizer, J., Bellaire, S., Fierz, C., Lehning, M., and Pielmeier, C.:
Evaluating and improving the stability predictions of the snow
cover model SNOWPACK, Cold Reg. Sci. Technol., 46, 52–59,
https://doi.org/10.1016/j.coldregions.2006.05.007, 2006.

Schweizer, J., Reuter, B., van Herwijnen, A., Richter, B., and
Gaume, J.: Temporal evolution of crack propagation propen-
sity in snow in relation to slab and weak layer properties, The
Cryosphere, 10, 2637–2653, https://doi.org/10.5194/tc-10-2637-
2016, 2016.

Slaughter, A. E.: Numerical analysis of conditions necessary for
near-surface snow metamorphism, PhD thesis, Department of
Civil Engineering, Montana State University, Bozeman, MT,
USA, 562 pp., 2010.

Sobol’, I. M.: On sensitivity estimation for nonlinear mathematical
models, Matematicheskoe modelirovanie, 2, 112–118, 1990.

Staron, P. J., Adams, E. E., and Miller, D. A.: Formation of Depth
Hoar Resulting from Thermal Optimization of Snow Microstruc-
ture, in: Proceedings of International Snow Science Workshop,
Anchorage, USA, 186–193, 2012.

Stössel, F., Guala, M., Fierz, C., Manes, C., and Lehning, M.:
Micrometeorological and morphological observations of surface
hoar dynamics on a mountain snow cover, Water Resour. Res.,
46, W04511, https://doi.org/10.1029/2009WR008198, 2010.

van Herwijnen, A. and Jamieson, B.: Snowpack properties associ-
ated with fracture initiation and propagation resulting in skier-
triggered dry snow slab avalanches, Cold Reg. Sci. Technol., 50,
13–22, https://doi.org/10.1016/j.coldregions.2007.02.004, 2007.

van Herwijnen, A., Gaume, J., Bair, E. H., Reuter, B., Birke-
land, K. W., and Schweizer, J.: Estimating the effective
elastic modulus and specific fracture energy of snowpack
layers from field experiments, J. Glaciol., 62, 997–1007,
https://doi.org/10.1017/jog.2016.90, 2016.

Vernay, M., Lafaysse, M., Mérindol, L., Giraud, G., and
Morin, S.: Ensemble forecasting of snowpack conditions and
avalanche hazard, Cold Reg. Sci. Technol., 120, 251–262,
https://doi.org/10.1016/j.coldregions.2015.04.010, 2015.

Vionnet, V., Brun, E., Morin, S., Boone, A., Martin, E., Faroux,
S., Moigne, P. L., and Willemet, J.-M.: The detailed snow-
pack scheme Crocus and its implementation in SURFEX v7.2,
Geosci. Model. Dev., 5, 773–791, https://doi.org/10.5194/gmd-
5-773-2012, 2012.

Vionnet, V., Martin, E., Masson, V., Guyomarc’H, G., Naaim Bou-
vet, F., Prokop, A., Durand, Y., and Lac, C.: Simulation of wind-
induced snow transport and sublimation in alpine terrain using a
fully coupled snowpack/atmosphere model, The Cryosphere, 8,
395–415, https://doi.org/10.5194/tc-8-395-2014, 2014.

Vögeli, C., Lehning, M., Wever, N., and Bavay, M.: Scaling
Precipitation Input to Spatially Distributed Hydrological Mod-
els by Measured Snow Distribution, Front. Earth Sci., 4, 108,
https://doi.org/10.3389/feart.2016.00108, 2016.

Wever, N.: WFJ_MOD: Meteorological and snowpack measure-
ments from Weissfluhjoch, Davos, Switzerland (dataset), WSL
Institute for Snow and Avalanche Research SLF, Davos, Switzer-
land, https://doi.org/10.16904/1, 2017.

Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., and Lehning,
M.: Verification of the multi-layer SNOWPACK model with dif-
ferent water transport schemes, The Cryosphere, 9, 2271–2293,
https://doi.org/10.5194/tc-9-2271-2015, 2015.

Winstral, A., Elder, K., and Davis, R. E.: Spatial Snow Modeling
of Wind-Redistributed Snow Using Terrain-Based Parameters,
J. Hydrometeorol., 3, 524–538, https://doi.org/10.1175/1525-
7541(2002)003<0524:SSMOWR>2.0.CO;2, 2002.

Nat. Hazards Earth Syst. Sci., 20, 2873–2888, 2020 https://doi.org/10.5194/nhess-20-2873-2020

https://doi.org/10.5194/gmd-8-3911-2015
https://doi.org/10.1016/j.envsoft.2016.02.017
https://doi.org/10.1016/S0165-232X(01)00039-8
https://doi.org/10.1016/j.coldregions.2006.08.011
https://doi.org/10.5194/nhess-15-109-2015
https://doi.org/10.5194/nhess-15-109-2015
https://doi.org/10.1029/2002RG000123
https://doi.org/10.1016/j.coldregions.2006.05.007
https://doi.org/10.5194/tc-10-2637-2016
https://doi.org/10.5194/tc-10-2637-2016
https://doi.org/10.1029/2009WR008198
https://doi.org/10.1016/j.coldregions.2007.02.004
https://doi.org/10.1017/jog.2016.90
https://doi.org/10.1016/j.coldregions.2015.04.010
https://doi.org/10.5194/gmd-5-773-2012
https://doi.org/10.5194/gmd-5-773-2012
https://doi.org/10.5194/tc-8-395-2014
https://doi.org/10.3389/feart.2016.00108
https://doi.org/10.16904/1
https://doi.org/10.5194/tc-9-2271-2015
https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2
https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2

	Abstract
	Introduction
	Methods
	Study site and data
	SNOWPACK
	Forcing uncertainties
	Global sensitivity analysis

	Results
	Winter evolution
	Properties of weak layer and slab
	2 January 2017
	9 March 2017

	Evolution of snow stability

	Discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

