Articles | Volume 20, issue 8
https://doi.org/10.5194/nhess-20-2091-2020
https://doi.org/10.5194/nhess-20-2091-2020
Research article
 | 
06 Aug 2020
Research article |  | 06 Aug 2020

Evaluating the efficacy of bivariate extreme modelling approaches for multi-hazard scenarios

Aloïs Tilloy, Bruce D. Malamud, Hugo Winter, and Amélie Joly-Laugel

Related authors

Transformed-Stationary EVA 2.0: A Generalized Framework for Non-Stationary Joint Extremes Analysis
Mohammad Hadi Bahmanpour, Alois Tilloy, Michalis Vousdoukas, Ivan Federico, Giovanni Coppini, Luc Feyen, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-843,https://doi.org/10.5194/egusphere-2025-843, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
HERA: a high-resolution pan-European hydrological reanalysis (1951–2020)
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, Cinzia Mazzetti, and Luc Feyen
Earth Syst. Sci. Data, 17, 293–316, https://doi.org/10.5194/essd-17-293-2025,https://doi.org/10.5194/essd-17-293-2025, 2025
Short summary
Spatial identification of regions exposed to multi-hazards at the pan-European level
Tiberiu-Eugen Antofie, Stefano Luoni, Aloïs Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci., 25, 287–304, https://doi.org/10.5194/nhess-25-287-2025,https://doi.org/10.5194/nhess-25-287-2025, 2025
Short summary
A methodology for the spatiotemporal identification of compound hazards: wind and precipitation extremes in Great Britain (1979–2019)
Aloïs Tilloy, Bruce D. Malamud, and Amélie Joly-Laugel
Earth Syst. Dynam., 13, 993–1020, https://doi.org/10.5194/esd-13-993-2022,https://doi.org/10.5194/esd-13-993-2022, 2022
Short summary

Related subject area

Hydrological Hazards
The 2018–2023 drought in Berlin: impacts and analysis of the perspective of water resources management
Ina Pohle, Sarah Zeilfelder, Johannes Birner, and Benjamin Creutzfeldt
Nat. Hazards Earth Syst. Sci., 25, 1293–1313, https://doi.org/10.5194/nhess-25-1293-2025,https://doi.org/10.5194/nhess-25-1293-2025, 2025
Short summary
Recent large-inland-lake outbursts on the Tibetan Plateau: processes, causes, and mechanisms
Fenglin Xu, Yong Liu, Guoqing Zhang, Ping Zhao, R. Iestyn Woolway, Yani Zhu, Jianting Ju, Tao Zhou, Xue Wang, and Wenfeng Chen
Nat. Hazards Earth Syst. Sci., 25, 1187–1206, https://doi.org/10.5194/nhess-25-1187-2025,https://doi.org/10.5194/nhess-25-1187-2025, 2025
Short summary
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Laurent Pascal Malang Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Nat. Hazards Earth Syst. Sci., 25, 1095–1112, https://doi.org/10.5194/nhess-25-1095-2025,https://doi.org/10.5194/nhess-25-1095-2025, 2025
Short summary
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Nazir Ahmed Bazai, Mehtab Alam, Peng Cui, Wang Hao, Adil Poshad Khan, Muhammad Waseem, Yao Shunyu, Muhammad Ramzan, Li Wanhong, and Tashfain Ahmed
Nat. Hazards Earth Syst. Sci., 25, 1071–1093, https://doi.org/10.5194/nhess-25-1071-2025,https://doi.org/10.5194/nhess-25-1071-2025, 2025
Short summary
Monte Carlo-based sensitivity analysis of the RIM2D hydrodynamic model for the 2021 flood event in western Germany
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci., 25, 975–990, https://doi.org/10.5194/nhess-25-975-2025,https://doi.org/10.5194/nhess-25-975-2025, 2025
Short summary

Cited articles

AghaKouchak, A., Huning, L. S., Chiang, F., Sadegh, M., Vahedifard, F., Mazdiyasni, O., Moftakhari, H., and Mallakpour, I.: How do natural hazards cascade to cause disasters?, Nature, 561, 458–460, 2018. 
Aitchison, J.: Lognormal Distribution, Cambridge University Press., Cambridge, UK, 1957. 
Akaike, H.: A new look at the statistical model identification, IEEE Trans. Automat. Contr., 19, 716–723, 1974. 
Anderson, G. and Klugmann, D.: A European lightning density analysis using 5 years of ATDnet data, Nat. Hazards Earth Syst. Sci., 14, 815–829, https://doi.org/10.5194/nhess-14-815-2014, 2014. 
Arnold, T. B. and Emerson, J. W.: Nonparametric goodness-of-fit tests for discrete null distributions, R J., 3, 34–39, 2011. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Estimating risks induced by interacting natural hazards remains a challenge for practitioners. An approach to tackle this challenge is to use multivariate statistical models. Here we evaluate the efficacy of six models. The models are compared against synthetic data which are comparable to time series of environmental variables. We find which models are more appropriate to estimate relations between hazards in a range of cases. We highlight the benefits of this approach with two examples.
Share
Altmetrics
Final-revised paper
Preprint