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S1 Theoretical background on multivariate extreme values. Associated Section: Section 2.1: Bivariate extreme 

dependence and Section 2.2: Bivariate models 

S1.1 Univariate extreme value theory and regular variation 

Extreme value analysis is a statistical approach for analysing extreme data values for a variable of interest. One of the earliest 

recorded mentions is by Fisher and Tippet (1928). Extreme value analysis was formalized into a statistical method by Gumbel 

(1958). It has been used extensively in the environmental sciences to overcome the limitations of empirical approaches (based 

on observed data) (e.g., Tiago de Oliveira, 1986; Bingham, 2007). Here we present three main concepts linked to univariate 

extreme value theory that can be extended to the bivariate case. 

 

S1.1.1 Maximum domain of attraction and GEV 

The first principle from which arises extreme value distributions is the maximum domain of attraction: let the random variables 

x, …,xn be i.i.d. values, with distribution function F. Define Mn = max (x1, ... ,xn) and suppose there exist sequences of 

normalizing constants an>0, bn such that (as n → ∞) (Davison and Huser, 2015): 

 

P(
𝑀𝑛 − 𝑏𝑛

𝑎𝑛
≤ 𝑧) = 𝐹𝑛(𝑎𝑛𝑧 + 𝑏𝑛)

𝑑
→ 𝐺(𝑧) 

(S1) 

 

where 
𝑑
→ denotes convergence in the distribution and G is a non-degenerate distribution function. Then G is an extreme value 

distribution and it is said that F belongs to the maximum domain of attraction of G. The constants an and bn are called stabilizing 

constants. The possible G distributions are then summarized by the Generalized Extreme Value (GEV) distribution (Gümbel, 

1958; Coles, 2001; Davison and Huser, 2015): 

 

𝐺(𝑥) = 𝑃(𝑋 ≤ 𝑥) = exp(−(1 + 𝜉
𝑥− 𝜇
𝜎

)
−
1
𝜉) 

(S2) 

for1 + 𝜉
𝒙−𝝁

𝝈
> 0, with 

• 𝜇𝜖(−∞,∞) the location parameter 

• 𝜎𝜖[0,∞) the scale parameter 

• 𝜉𝜖(−∞,∞) the shape parameter 

 

The shape parameter 𝜉 controls the heaviness of the tail. It means that the value of this parameter directly affects the estimation 

of the extremes. The Extreme Type Theorem gives three different families of limiting distributions depending on the sign of 

the shape parameter (Coles, 2001):  

• ξ = 0, a Gumbel distribution with and exponential upper tail;  

• ξ > 0, a Fréchet distribution with a heavy upper tail; 

• ξ<0, a reverse Weibull distribution with a light upper tail.  

 

A threshold above which one value is considered as extreme can be set instead of selecting an extreme. In that case, the 

distribution G of the exceedances above a high threshold u is a Generalized Pareto Distribution (GPD) (Davison and Smith, 

1990) of the form: 
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𝐺(𝑥) = 𝑃(𝑋 ≤ 𝑥|𝑋 > 𝑢) = 1 −(1 + 𝜉
𝑥 − 𝑢

𝜎𝑢
)
−
1
𝜉  

(S3) 

for x > u, with  

• 𝜎𝑢𝜖[0,∞) the scale parameter 

• 𝜉𝜖(−∞,∞) the shape parameter 

 

The shape parameter 𝜉 of the GPD is equivalent to the shape parameter of the corresponding GEV distribution. This shape 

parameter changes with the threshold level, which makes the choice of the threshold important(Bernardara et al., 2014). The 

scale parameter for the GPD is also threshold-dependent. 

 

S1.1.2 Max-stability 

In the early years of extreme value statistics, Fréchet (1927) identified a functional equation, which he called the stability 

postulate that provides a mathematical basis for extrapolation and thus lies at the heart of the classical theory of extremes 

(Davison and Huser, 2015). His stability postulate is now referred to as max-stability (see Eq. A4). Max-stability is a property 

that is only satisfied by the three families of GEV: the Gumbel, Fréchet and Reverse Weibull families (Coles, 2001). A 

distribution G is the said to be max-stable if, for every n > 0, there exist constants an> 0 and bn such that: 

 

𝐺𝑛(𝑎𝑛𝑧 +𝑏𝑛) = 𝐺(𝑧) (S4) 

 

where Gn(z) is the distribution function of Mn = max (x1, ... ,xn), with the xi independent variables for a distribution G. This 

means that max-stability is satisfied by distributions for which the fact of taking sample maxima leads to the same distribution 

apart from changes of parameters (Coles, 2001). The maximum domain of attraction and the max-stability property allows one 

to model any sample maxima distribution with a GEV distribution. 

 

S1.1.3 Regular variation 

Another important concept linked to extreme value analysis is the theory of regularly varying functions. The link between this 

concept and extreme values has been mainly discussed by Resnick (1987). A regularly varying function is a function which 

behave asymptotically like a power function. A function F is regularly varying at ∞ with index ρ, if for x > 0 (Resnick, 1987): 

 

lim
𝑡→∞

𝑈(𝑡𝑥)

𝑈(𝑡)
= 𝑥𝜌 

(S5) 

 

If ρ = 0, we call U a slowly varying function. Slowly varying functions are usually denoted by ℒ(𝑥)The theory of regularly 

varying functions has links to many mathematical disciplines (Bingham et al., 1987). Moreover, it has been used to understand 

and investigates maximum domains of attraction in extreme value theory (Bingham et al., 1987; Resnick, 1987; De Haan and 

Resnick, 1996; Bingham, 2007).  
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S1.2 Multivariate extreme value statistics 

Multivariate extreme value theory is an extension of univariate extreme value theory (Tiago de Oliveira, 1986; Resnick, 1987; 

Coles, 2001) and various properties of extreme value distributions are analogous in the multivariate framework. Here, the 

statistics of extremes in a multivariate context are formally presented building on the concepts introduced above (Section A1) 

S1.2.1 Maximum domain of attraction and max stability  

The maximum domain of attraction can be extended in the multivariate framework. Let the random variables (Xj,1, …,Xj,d), 

where j=1,…,n, be a collection d-dimensional vectors of i.i.d. values with a joint distribution F. Define Mn = max (X1,k, . .. 

,Xn,k) for k = 1,…,d and suppose there exist sequences of normalizing constants an,k > 0, bn,k  for k= 1,…,d such that as n → ∞ 

(Dutfoy et al., 2014): 

 

P(
𝑀𝑛,1 − 𝑏𝑛,1

𝑎𝑛,1
≤ 𝑧1, … ,

𝑀𝑛,𝑑 − 𝑏𝑛,𝑑
𝑎𝑛,𝑑

≤ 𝑧𝑛) = 𝐹𝑛,𝑑(𝑎𝑛,𝑑𝑧𝑑 + 𝑏𝑛,𝑑)
𝑑
→ 𝐺(𝑧1, … , 𝑧𝑑) 

(S6) 

 

where 
𝑑
→ denotes convergence in the distribution and G is a distribution function with all non-degenerate marginals. Then the 

limiting distribution G is a Multivariate Extreme value distribution of dimension d, and F is said to be in the maximum domain 

of attraction of G. Each marginal  

 

𝑍𝑘 =  lim
𝑛→∞

(
𝑀𝑛,𝑘 − 𝑏𝑛,𝑘

𝑎𝑛,𝑘
) 𝑘 = 1,… , 𝑑 

(S7) 

 

follows a GEV distribution (Section A1.1) with parameters (𝜇𝑘, 𝜎𝑘, 𝜉𝑘). In can also be shown that G must satisfy the max 

stability relation (Resnick, 1987; Tawn, 1988, 1990; Coles, 2001).  

 

In practice, two steps are generally required to conduce a multivariate study:  

(i) marginal distributions are usually estimated using the univariate extreme value methodology (Section A1);  

(ii) the marginal distributions are then transformed to a common distribution, in order to handle the dependence 

structure using multivariate extreme value theory.  

For reason of mathematical elegance and simplicity, but without loss of generality, marginal distributions are usually 

transformed to standard Fréchet distributions in multivariate extreme value analysis where an,k=k-1 and bn,k = 0 in (A7). This 

allows one to focus on the dependence structure between variables (Winter, 2016). From now on, we consider random variables 

Z = (Z1,…,Zn) with common standard Fréchet margins. 

S1.2.2 The exponent measure 

The characterization of the dependence structure in the extremes is too complex to be summarized by a parametric family 

(Davison and Huser, 2015). However, the limiting distribution of Z with common Fréchet margins is a multivariate extreme 

value distribution G with z ϵ ℝD and can be written as (Huser, 2013): 

 

𝐺(𝑧) = exp{−𝑉(𝑧)}, z > 0, (S8) 
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where V(z) is a Radon measure called the exponent measure, which contains all the information about dependence among the 

variables Z= (Z1, …, Zn). The exponent measure can be interpreted as the approximate probability that at least one of the 

maxima Zn,k  exceeds its threshold (Davison and Huser, 2015): 

 

𝑉(𝑧) = 𝐷∫ max (
𝑤

𝑧
) 𝑑𝐻(𝑤)



𝑆𝐷

 
(S9) 

  

with H a measure on the (D−1)-dimensional simplex SD = w ∈ℝ. The measure dH is often called the spectral measure.  

 

From the max-stability property with Fréchet margins, the exponent measure is regularly varying and homogeneous of order 

–1, meaning that: 

 

𝑉(𝑡𝑧) =  𝑡−1𝑉(𝑧) (S10) 

 

Properties of the exponent measure, including its regular variation play a central role when it comes to extrapolation in the 

upper tail of multivariate variables (Davidson and Huser, 2015). If a bivariate distribution is asymptotically independent, then 

the exponent measure V(t) = 0. The theory of regular variation also provides a framework for extrapolation in the upper tail 

and has been related to multivariate extreme value theory (Resnick, 1987, Cooley. et al. 2019). 

S1.2.3 Multivariate and hidden regular variation 

Results presented in Eqs. A7, A8 and A10 can be related to the concept of multivariate regular variation developed and 

presented by Resnick (Resnick, 1987, 2002). Multivariate variation on the cone 𝐶 =  [0,∞]𝑑 − {0} can be defined as the 

following: suppose that Z is a d-dimensional random vector in [0,∞]𝑑, then the distribution of Z is regularly varying (with 

unequal components) if there exist functions b(t) →∞, as t →∞ that, for a Radon measure ν (i.e., finite on sets bounded away 

from zero) on C, we have the vague convergence which can be expressed as(Cooley et al., 2019): 

 

lim
𝑡→∞

[𝑡𝑃 (
𝑍

𝑏(𝑡)
∈ 𝐴)] → 𝑣(𝐴) 

(S11) 

 

for any set A ⊂ C and where b(t) is a regularly varying function of some index 𝛼>0 and v is a Radon measure on the cone 

𝐶 =  [0,∞]𝑑 − {0} which satisfies the homogeneous property  

 

𝑣(𝑡𝐴)= 𝑡−𝛼 𝑣(𝐴) (S12) 

 

for any scaler t and A ⊂ C. The limit measure v(A) has a homogeneity property of order –𝛼. The coefficient 𝛼 is the index of 

regular variation and 𝛼 = 1
𝜉⁄  with 𝜉 the shape parameter of the marginal distributions (see Section A1). With a standard 

Fréchet margins we have 𝜉 = 1 and therefore 𝛼 = 1.  

 

Multivariate extreme value and regular variation theory previously presented provide a rich theory for extremal dependence 

in the case of asymptotic dependence (Pickands, 1981; Das, 2009) but it is not able to distinguish between asymptotic 
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independent and actual independence. Ledford and Tawn (1996; 1997) developed a dependence measure that can detect tail 

dependence in the asymptotic independence setting. The coefficient of tail dependence η measures the speed of decay toward 

independence at high level (Davison and Huser, 2015). The coefficient η provides a better understanding of asymptotically 

independent behaviours and helped develop the concept of hidden regular variation.  

 

Hidden regular variation is a property of the subfamily of distributions having both multivariate regular variation and 

asymptotic independence.(Resnick, 2002; Maulik and Resnick, 2005) Resnick (2002) Asymptotic independence is a 

degenerative case for multivariate extreme value theory (Cooley, 2019) The renormalizing sequence b(t) in Eq. A11 grows too 

rapidly. The latter is replaced by a lighter tailed normalizing sequence b0. Hidden regular variation can therefore be expressed 

on the cone 𝐶 =  (0,∞]𝑑 as: 

 

lim
𝑡→∞

[𝑡𝑃 (
𝑍

𝑏0(𝑡)
∈ 𝐴)] → 𝑣0(𝐴) 

(S13) 

 

for any set A bounded away from the axes, A ⊂ C, where b0 is a regularly varying function and v is a Radon measure (i.e., 

finite on sets bounded away from zero) on the cone 𝐶(0,∞]𝑑 which satisfies  

 

𝑣0(𝑡𝐴)= 𝑡−1/𝜂 𝑣0(𝐴) (S14) 

 

for any scaler t and A ⊂ C. Here, η is the coefficient of tail dependence 𝜂𝜖(0,1]. A decreasing value of η correspond to weaker 

dependence. 

S1.3 Bivariate case 

In the bivariate case, when d = 2, the exponent measure (Section A2.2) is expressed as: 

 

𝑉(𝑧1, 𝑧2) = ∫ max (
𝑤

𝑧1
,
1 − 𝑤

𝑧2
) 2𝑑𝐻(𝑤)

1

0

 
(S15) 

with H an arbitrary distribution function on [0,1] satisfying the moment constraint 

 

∫ w𝑑𝐻(𝑤) = 1/2
1

0

 
(S16) 

An alternative representation of equation incorporates the Pickands dependence function (Pickands, 1975), denoted by A(w) 

 

𝑉(𝑧1, 𝑧2) = (𝑧1
−1 +𝑧2

−1)𝐴(
𝑧1

𝑧1 + 𝑧2
) (S17) 

where A(w) satisfies  

𝐴(𝑤) = 2∫ max((1 − 𝑤)𝑞, 𝑤(1 − 𝑞)) 𝑑𝐻(𝑞)
1

0

 
(S18) 

The Pickands dependence function A(w) is a defined on the interval [0,1] and has the following properties: (i) A(0) = A(1) = 1, 

(ii) A(w) is convex and (iii) A(w) is contained in a triangular region A(w) is usually used as a measure of the strength of 
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dependence between two variables z1 and z2. The Pickands dependence function can be estimated parametrically through 

copula functions or with nonparametric estimators (Pickands, 1981; Capéraà et al., 1997). 

S1.3.1 Gumbel copula 

The Gumbel copula (which is also an Archimedean copula) is one of the oldest extreme value copulas (Eschenburg, 2013). It 

is also referred to as the bivariate logistic model (with Gumbel margins) in the literature and was first introduced by Gumbel 

(1961):  

𝐶(𝑢, 𝑣) = exp {−[(− ln(𝑢))𝜃 +−(ln(𝑣))𝜃]
1/𝜃

} (S19) 

with θ ∈ [1, ∞] the dependence parameter, u and v uniform marginal distributions, and ln the natural log and exp the 

exponential. 

The Gumbel copula has been used widely in hydrology (Zhang and Singh, 2007; Salvadori and De Michele, 2010; Zheng et 

al., 2013; Dung et al., 2015) and coastal engineering (Yang and Zhang, 2013; Masina et al., 2015; Mazas and Hamm, 2017). 

We will also use this copula in our simulation study as a reference for the asymptotic dependence case. Other important extreme 

value copulas include the Galambos copula which will be used alongside the Gumbel copula as asymptotically dependent 

models in our simulations (Sect. 3). 

S1.3.2 Normal copula 

The normal copula has been used in several hazard interrelation studies because of its flexibility (Rueda et al., 2016; Serinaldi, 

2016; Sadegh et al., 2017). The normal copula is a single parameter copula with its parameter directly linked to the tail 

dependence coefficient η presented in Sect. 2.2. As showed by Ledford and Tawn (1997), the normal copula is suitable for the 

whole range of behaviour within the class of asymptotic independence (i.e. from sub-asymptotic positive to negative 

association). We use the normal copula as a reference for the asymptotic independence case; the normal copula is expressed 

as (Sadegh et al., 2017): 

𝐶(𝑢, 𝑣) = ∫ ∫
1

2𝜋√1 − 𝜌2
𝑒𝑥𝑝 (

2𝜌𝑥𝑦 − 𝑥2 − 𝑦2

2(1 − 𝜌2)
)𝑑𝑥𝑑𝑦

𝛷−1(𝑣)

−∞

𝛷−1(𝑢)

−∞

 
(S20) 

with Φ(.) the standard Gaussian distribution function and  ∈ [-1, 1] the dependence parameter. The FGM copula exhibits near 

independent joint tail dependence behaviour, meaning that the coefficient of tail dependence is η = 0.5 (Ledford and Tawn, 

1997).  
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S2 Level curve density. Associated Section: Section 2.3: Return Period in the bivariate framework and Section 3.2: 

Diagnostic tools 

As mentioned in main text, Section 2.3 level curves are composed of an infinite set of bivariate values all corresponding to 

the same probability of exceedance. In the context of multi-hazards, events with very different properties (e.g., a storm with 

heavy rain and moderate wind vs. another storm with moderate rain and heavy wind) can have the same return period (Chebana 

and Ouarda, 2011; Volpi and Fiori, 2012; Sadegh et al., 2018). One approach that has been implemented when using copula 

models is to use the density of the associated copula to weight (X1,X2) pairs on the curves (Volpi and Fiori, 2012). The joint 

density function of a copula is defined as (Volpi and Fiori, 2012): 

  

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) = 
𝜕2𝐹𝑋1,𝑋2(𝑥1, 𝑥2)

𝜕𝑥1𝜕𝑥2
. 

(S22) 

 

It is then possible to identify a most-likely scenario (Gr̈aler et al., 2013; Sadegh et al., 2018) which is the coordinate of the 

level curve with the highest joint density (Fig. S1). Chebana and Ouarda (2011) proposed the decomposition of level curves 

into a naïve part (tail) and a proper part (central). Volpi and Fiori (2012) defined a level of probability to determine lower and 

upper limits of the proper part of the level curve. The most likely scenario and proper part of the level curve are shown in Fig. 

S1, respectively by the purple dot and the curve domain between blue diamonds along the level curve. The joint density 

probability function of copulas has also been used to estimate joint confidence intervals for level curves (Dung et al., 2015; 

Zhang et al., 2015; Serinaldi, 2016). 

 

 

Figure S1: Level curve density from low (green) to high (red) for a probability of joint (X1, X2) exceedance p = 0.001 with its density 

(5000 realisations on a normal copula with log-normal distributions). The purple dot represents the most likely scenario while the 

two blue diamonds represent upper and lower bound of the proper part of the curve with a 95% confidence level. 

The level curve density can be estimated from parametric models (i.e., copula). However, it is also possible to estimate density 

with a kernel density estimator when enough data are available (main text, Section 2.3.3). For extreme low probability level 
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curves as the ones we are interested in this study, there are few or no data. The simulation of extreme bivariate data with the 

conditional extremes model (main text, Section 2.3.2) overcomes this limitation, it is then possible to estimate the level curve 

density via a kernel density estimator. 
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