
Nat. Hazards Earth Syst. Sci., 20, 2091–2117, 2020
https://doi.org/10.5194/nhess-20-2091-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Evaluating the efficacy of bivariate extreme modelling approaches
for multi-hazard scenarios
Aloïs Tilloy1, Bruce D. Malamud1, Hugo Winter2, and Amélie Joly-Laugel2
1Department of Geography, King’s College London, London, WC2B 4BG, United Kingdom
2EDF Energy R&D UK Centre, Croydon, CR0 2AJ, United Kingdom

Correspondence: Aloïs Tilloy (alois.tilloy@kcl.ac.uk)

Received: 28 January 2020 – Discussion started: 28 February 2020
Accepted: 23 June 2020 – Published: 6 August 2020

Abstract. Modelling multiple hazard interrelations remains
a challenge for practitioners. This article primarily focuses
on the interrelations between pairs of hazards. The efficacy
of six distinct bivariate extreme models is evaluated through
their fitting capabilities to 60 synthetic datasets. The prop-
erties of the synthetic datasets (marginal distributions, tail
dependence structure) are chosen to match bivariate time se-
ries of environmental variables. The six models are copulas
(one non-parametric, one semi-parametric, four parametric).
We build 60 distinct synthetic datasets based on different pa-
rameters of log-normal margins and two different copulas.
The systematic framework developed contrasts the model
strengths (model flexibility) and weaknesses (poorer fits to
the data). We find that no one model fits our synthetic data
for all parameters but rather a range of models depending on
the characteristics of the data. To highlight the benefits of
the systematic modelling framework developed, we consider
the following environmental data: (i) daily precipitation and
maximum wind gusts for 1971 to 2018 in London, UK, and
(ii) daily mean temperature and wildfire numbers for 1980 to
2005 in Porto District, Portugal. In both cases there is good
agreement in the estimation of bivariate return periods be-
tween models selected from the systematic framework devel-
oped in this study. Within this framework, we have explored
a way to model multi-hazard events and identify the most ef-
ficient models for a given set of synthetic data and hazard
sets.

1 Introduction

A multi-hazard approach considers more than one hazard in
a given place and the interrelations between these hazards
(Gill and Malamud, 2014). Multi-hazard events have the po-
tential to cause damage to infrastructure and people that may
differ greatly from the associated risks posed by a single haz-
ard (Terzi et al., 2019). Here, natural hazards (which we will
also refer to as “hazards”) will be defined as a natural pro-
cess or phenomenon that may have negative impacts on so-
ciety (UNISDR, 2009). For modelling purposes, we consider
two main mechanisms in natural hazard interrelations (Tilloy
et al., 2019): (i) cascade interrelations (i.e. when there is a
temporal order and causality between natural hazards) and
(ii) compound interrelations (i.e. when several natural haz-
ards are statistically dependent without causality).

Meteorological phenomena such as extratropical cyclones
or convective storms often lead to the combination of mul-
tiple drivers and/or hazards and can therefore be related to
compound events as defined by Zscheischler et al. (2018).
This research concentrates on cascading and compound in-
terrelations between natural hazards (e.g. a storm can include
rain, lightning and hail, with rain and hail both potentially
triggering landslides). Case examples of meteorological phe-
nomena influencing natural hazard interrelations include the
following:

i. In 2010, storm Xynthia hit the west coast of France. The
storm itself was not particularly extreme for the season,
but the compound effect of extreme wind, high tides,
storm surges, extreme rainfall and the fact that the soils
were already saturated led to huge damage due to wind
and flooding (CCR, 2019).
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ii. In summer 2010, Russia experienced a heatwave. Low
precipitation in spring 2010 led to a summer drought
that contributed to the heatwave having a large mag-
nitude (Barriopedro et al., 2011; Hauser et al., 2015;
Zscheischler et al., 2018). The co-occurrence of ex-
tremely dry and hot conditions resulted in widespread
wildfires, which damaged crops and caused human mor-
tality (Barriopedro et al., 2011).

iii. Extreme thunderstorms occurred in the Paris region in
2001, involving lightning and extreme rainfall, with
the rainfall triggering flooding, mudslides and ground
collapse, with subsequent damage to railway networks
(CCR, 2019).

In this context, the quantification of interrelations between
natural hazards can play an important role in risk mitiga-
tion and disaster risk reduction. Some of the natural haz-
ards presented in the above examples are extreme occur-
rences of environmental variables (e.g. extreme temperature)
which have different characteristics and statistical distribu-
tions (e.g. wind and landslides). Natural hazards can be in-
terrelated with different mechanisms (i.e. compound, cas-
cade). For a given mechanism, interrelations also vary in
strength and intensity. Additionally, as highlighted in Tilloy
et al. (2019), different modelling approaches have been de-
veloped to quantify interrelations between variables. Here
we focus on stochastic models that include copulas (Nelsen,
2006; Genest and Favre, 2007; Salvadori et al., 2016) and
multivariate extreme models (Heffernan and Tawn, 2004),
limiting our analysis to the bivariate case. The potential for
misinterpretation of the dependence structure of two vari-
ables clearly presents a problem when end users try to ac-
count for hazard interrelations.

We choose six distinct bivariate models able to han-
dle different types of tail (extreme) dependence: one non-
parametric (JT-KDE), one semi-parametric (Cond-Ex) and
four different parametric copulas (Galambos, Gumbel, FGM,
normal; see Sect. 2 and Table 2). The fitting capacities of
each model are compared with the estimation of level curves.
Level curves are extensively described in Sect. 2.3. How-
ever, these curves correspond to probabilities that can be re-
lated to compound and cascading hazard interrelations. Com-
pound interrelations are represented with a joint probability,
while cascading (sequential) interrelations are represented
with conditional probabilities.

Examples of joint and conditional probabilities are given
in Fig. 1. A joint probability is the probability of two events
occurring together where both variables are extreme (also
called AND probability; Fig. 1a), and a conditional proba-
bility is the probability of an event given that another has
already occurred (Fig. 1b). Figure 1 illustrates the concepts
of joint probability and conditional probability, with daily
rainfall data from a high-resolution gridded dataset of daily
meteorological observations over Europe (termed “E-OBS”;
Cornes et al., 2018) and daily maximum wind gust data at

Figure 1. Illustration of joint and conditional extremes with daily
rainfall r (mm d−1) and daily maximum wind gust w (m s−1) data
at Heathrow Airport for the period 1971–2018: (a) joint extremes
(AND) of rainfall and wind gust (blue circles); (b) conditional ex-
tremes of rainfall given that wind gust is extreme (yellow circles).
Daily rainfall data from E-OBS (Cornes et al., 2018) and daily max-
imum wind gust (3 s period) data from the Met Office (2019).

Heathrow Airport provided by the Met Office (2019). A wind
gust here is defined as the maximum value, over the ob-
serving cycle, of the 3 s running-average wind speed (WMO,
2019). These datasets and the interrelation between extreme
rainfall and extreme wind are discussed in Sect. 4.1.

Joint and conditional probabilities are relevant metrics for
practitioners and have been studied and used in several stud-
ies in the environmental sciences (e.g. Hao et al., 2017;
Zscheischler and Seneviratne, 2017). However, as the most
widely used level curve is the joint probability curve, we ini-
tially focus on it. To analyse our results and compare the per-
formances of the models, we designed diagnostic tools that
are presented in Sect. 3.2.

This paper is organized as follows. We first (Sect. 2) pro-
vide a theoretical background on key concepts used in this
study and present the models and methodology used. We then
(Sect. 3) discuss the characteristics of our synthetic dataset
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and present the results of the simulation study. The diagnos-
tic tools used to compare models are also discussed (i.e. joint
return level curves and dependence measure). As a result, a
map exhibiting the strength and weaknesses of our six mod-
els is presented. It aims to provide objective criteria to justify
the use of one model rather than another for a given set of
hazards. Two applications to pairs of natural hazards that can
impact energy infrastructure are presented in Sect. 4.

The main purpose of these data applications is to illus-
trate our methodology, but the natural hazard interrelations
studied have the potential to negatively impact energy in-
frastructure. The first application looks at compound daily
rainfall and wind in the United Kingdom. The combination
of these two hazards can result in different and greater im-
pacts than the addition of impacts due to extreme wind and
extreme rainfall (e.g. wind destroys roof leading to greater
damage, power plants flooded and rescuers slowed down by
strong winds; Martius et al., 2016). The second application
studies extreme hot temperatures and wildfires in Portugal.
Extreme temperatures can lead to damage to infrastructure
(e.g. rail track deformation) and put pressure on the energy
infrastructure by increasing the demand (Hatvani-Kovacs et
al., 2016; Vogel et al., 2020); they also increase the probabil-
ity of wildfires (Witte et al., 2011; Perkins, 2015) which have
the potential to cause fatalities and destroy infrastructure (Te-
dim et al., 2018). We finish (Sect. 5) with a discussion and
conclusions.

2 Methods

We are interested in modelling interrelations between haz-
ards in the extreme domain. This implies the use of methods
and concepts coming from the broad area of extreme value
theory (EVT). Amongst the six models compared in this
study, four are directly linked to EVT (JT-KDE, Cond-Ex,
Galambos, Gumbel). Extreme value theory has its roots in
univariate studies (Coles, 2001) and has been extended to the
multivariate framework (Pickands, 1981; Davison and Huser,
2015). A theoretical background on extreme value theory is
given in Sect. S1.1 in the Supplement. In this study, we fo-
cus on modelling the dependence between two variables. Bi-
variate extreme value models developed within the statistical
community (Resnick, 1987; Heffernan and Tawn, 2004; Coo-
ley et al., 2019) have recently been used for environmental
applications and therefore natural hazard interrelations (De
Haan and De Ronde, 1998; Zheng et al., 2014; Sadegh et
al., 2017). In order to reproduce the complexity and variety
of natural hazard interrelations, we use 60 synthetic datasets
to compare the fitting performances of the models. In these
synthetics datasets we vary two main attributes of the bivari-
ate datasets: the dependence structure and the marginal (indi-
vidual) distributions. Of these 60 different synthetic datasets,
36 datasets have asymptotically dependent variables and 24

have asymptotically independent variables (see Sect. 2.1 for
a definition of these two concepts).

In this section, we first present the two types of asymp-
totic behaviour in bivariate extreme value statistics – asymp-
totic dependence and asymptotic independence – and discuss
different dependence measures for the estimation of the rela-
tionship between two variables (Sect. 2.1). The six bivari-
ate models are then described (Sect. 2.2). Finally, we dis-
cuss the concept of the return level in the bivariate framework
(Sect. 2.3).

2.1 Bivariate extreme dependence

2.1.1 Asymptotic dependence and asymptotic
independence

Let X1, . . . , Xn be n different variables, with each vari-
able a vector that can take on multiple values. Assume that
these vectors are random and independent and identically
distributed (i.i.d.). The asymptotic dependence implies that if
one variable Xk for k ε (1, n) has values Xk that are large, it
is possible for the other variables to take on values that are si-
multaneously extreme (Coles et al., 1999). One way to char-
acterize extremal dependence structures is to split them into
those with asymptotic dependence and those with asymptotic
independence. In the bivariate case, for the (X1, X2) random
pair with joint distribution G, the random variables X1 and
X2 are asymptotically dependent if the following conditional
probability (Heffernan, 2000)

P(X1 > x |X2 > x) → c > 0 as x→ x∗. (1)

Here X1>x are those values of variable X1 that are greater
than a threshold x, the probability of both X1>x and X2>x
is c ∈ (0,1], and x∗ is the upper end point (maximum) of the
common marginal distribution.

The variables X1 and X2 are asymptotically independent
if (Heffernan, 2000)

P (X1 > x |X2 > x) → 0 as x→ x∗, (2)

where u is a high threshold. In practice, extremal dependence
is often observed to weaken at high levels (i.e. as x→ 1), and
it can happen that dependence between variables is observed
in the body of the joint distribution but that the multivari-
ate distribution is in fact in the max domain of attraction of
independence (Davison and Huser, 2015).

Using models that take the assumption of asymptotic de-
pendence (independence) in the case of asymptotically inde-
pendent (dependent) variables can lead to a large overesti-
mation (underestimation) of the probability of joint extreme
events (Ledford and Tawn, 1996; Mazas and Hamm, 2017;
Cooley et al., 2019). The multivariate extreme value and reg-
ular variation theories presented in Sect. S1.2 provide a rich
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theory for asymptotic dependence (De Haan and Resnick,
1977; Pickands, 1981) but are not able to distinguish between
asymptotic independence and full independence.

2.1.2 Tail dependence measures

A popular method to analyse hazard interrelationships is to
compute dependence measures (Zheng et al., 2013; Petro-
liagkis, 2018). Dependence measures aim to describe how
two (or more) variables are correlated.

When focusing on the dependence in the tails or extreme
part of distributions, linear or rank dependence measures
might not be accurate and other coefficients appear more rel-
evant (Hao and Singh, 2016). Dependence between variables
in the joint tail domain has been widely studied in the statis-
tics community (Coles and Tawn, 1991; Ledford and Tawn,
1997; Coles et al., 1999; Heffernan and Tawn, 2004; Zheng
et al., 2014). As explained in Sect. 2.1.1, in the tails, two vari-
ables can be either asymptotically independent or asymptoti-
cally dependent; different diagnostics and coefficients previ-
ously developed are summarized in Heffernan (2000).

In this study, we use the following tail dependence mea-
sures:

– the extremal dependence measures χ and χ introduced
by Coles et al. (1999);

– the coefficient of tail dependence η, introduced by Led-
ford and Tawn (1996).

These coefficients aim to measure the extremal dependence
for bivariate random variables (X1, X2) and assume initially
that (X1, X2) have a common marginal distribution. Coles et
al. (1999) defined the extremal dependence measure as fol-
lows:

χ (x)= P (X2 > x | X1 > x) with lim
x→x∗

χ (x)= χ, (3)

with x a sufficiently high threshold. A sufficiently high
threshold x is a value that can be considered as extreme
within a given distribution (corresponding to a high quantile);
the value of the threshold depends on the marginal distribu-
tion. The extremal dependence measure χ(x) is the probabil-
ity of one variable (X1 or X2) being extreme given the other
is extreme (X2 or X1). This measure χ varies in the range
[0, 1], where a value of χ = 0 means that the two variables
are asymptotically independent and χ = 1 means that they
are perfectly dependent. The extremal dependence measure
χ is only suitable for asymptotic dependence. In the case of
asymptotic independence (χ = 0), Coles et al. (1999) intro-
duced the measure χ which falls between the range [−1, 1],
1 being asymptotic independence. Ledford and Tawn (1996)
defined their coefficient of tail dependence to be able to
assess the strength of dependence between two asymptoti-
cally independent variables. They show that the joint survivor

Figure 2. The three coefficients used in this study to assess the
dependence between two variables at an extreme level. In the up-
per part of the plot (blue), the coefficient χ varies between perfect
asymptotic dependence (light blue; χ = 0) and asymptotic indepen-
dence (dark blue; χ = 1). In the lower part of the plot (orange),
which is in the asymptotic independence domain (in other words,
χ = 0) the coefficients χ and η both vary between negative associ-
ation (light orange; χ =−1; η = 0) and positive association (dark
orange; χ = η = 1).

function for random variables (Z1, Z2) with common stan-
dard Fréchet margins can be expressed as (see Sect. S1.2)

P (Z1 > z, Z2 > z) ∼ L(z)(P (Z1 > z))
1/η, (4)

with z a sufficiently high threshold in the standard Fréchet
space. L(z) is a slowly varying function while z→∞, and η
is the coefficient of tail dependence, lying in the range [0, 1].
Different values of each coefficient and their implications are
summarized in Fig. 2. For large z, the three tail dependence
measures presented above are related in the following way
(Ledford and Tawn, 2003):

χ = 2η− 1

χ =

{
0 if χ = 1 and L(z)→ c > 0 as z→ z∗

1 if χ < 1. (5)

2.2 Bivariate models

Dependence measures are empirical measures which esti-
mate the strength of the correlation or interdependence be-
tween two (or more) variables. Despite the fact that these
measures provide crucial information, they do not allow for
the modelling of joint (or conditional) exceedance probabil-
ities. To model joint exceedance probabilities which repre-
sent the joint occurrence of hazards (here represented by ex-
tremes of environmental variables) in time and space, the use
of stochastic models is required. In this section we present
the three stochastic approaches for multivariate modelling
that are used in the simulation study: parametric copulas,
the semi-parametric conditional extremes model, and a non-
parametric approach based on multivariate extreme value
theory (see Sect. S1.2) and kernel density estimation.
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2.2.1 Copulas

In the bivariate case, a copula is a joint distribution func-
tion which defines the dependence between two variables in-
dependently from the marginal distributions of these vari-
ables (Heffernan, 2000; Nelsen, 2006; Genest and Favre,
2007; Hao and Singh, 2016). Let the random variables (X1,
X2) be vectors of i.i.d. values with marginal distributions
F 1(x1) and F 2(x2) and a joint cumulative distribution func-
tion F 1, 2(x1, x2). Any bivariate distribution function with
marginal distribution functions FX1(x1) and FX2(x2) can
be expressed as a copula function as follows (Sklar, 1959;
Nelsen, 2006):

F 1 (x1, x2)= C{F 1 (x1) , F 2 (x2)}, (6)

where C is the copula function. Copulas are not limited to
two variables, and Eq. (6) can be extended to higher di-
mensions. Several classes of copula with different properties
are available, including Archimedean copulas and elliptical
and extreme-value copulas (e.g. Joe, 1997; Nelsen, 2006).
Extreme-value copulas have been used within various do-
mains such as finance, insurance and hydrology because of
their ability to model extremal dependence structures (Gen-
est and Nešlehová, 2013).

However, extreme-value copulas are by definition asymp-
totically dependent as they follow the rules of multivariate
extreme value theory (see Sect. S1.2). The two types of ex-
tremal dependence were presented in Sect. 2.1 and show that
it is important to also consider asymptotic independence.
Many copulas are asymptotically independent, including the
normal copula and the Farlie–Gumbel–Morgenstern (FGM)
copula (Heffernan, 2000). These two copulas will be used in
the simulation analysis as asymptotically independent mod-
els (Sect. 3).

In the present study, the application of a copula model can
be summarized in four main steps:

i. fitting marginal distributions to the two variables and
then an empirical cumulative distribution function be-
low a threshold and generalized Pareto distribution
(GPD) above this threshold,

ii. transforming the variables to uniform margins – the
transformed datasets no longer have information on the
marginal distributions but keep the information about
the dependence structure (Nelsen, 2006),

iii. fitting the copula function to the pseudo-observations
by estimating the copula parameter(s) with an estimator
(Genest and Favre, 2007),

iv. estimating the probability of joint events with the copula
function previously fitted.

2.2.2 Conditional extremes model

The conditional extremes model (Heffernan and Tawn, 2004;
Keef et al., 2013) is a semi-parametric model designed
to overcome several limitations of copulas and other ap-
proaches such as the joint tail methods in which all variables
must become large at the same rate. The aforementioned
methods can typically handle only one form of extremal de-
pendence, either asymptotic dependence or asymptotic inde-
pendence. The conditional extremes model has the ability to
be more flexible with asymptotic dependence classes; it can
account for asymptotic independence and asymptotic depen-
dence (Heffernan and Tawn, 2004; Keef et al., 2013). It can
also be used to analyse more than two i.i.d. variables more
easily than copula-based methods (Winter and Tawn, 2016);
we restrict the theory provided here to the bivariate case. The
conditional model has been used for different purposes: spa-
tial or temporal dependence between extremes (Winter and
Tawn, 2016; Winter et al., 2016), dependence between ex-
treme hazards (Zheng et al., 2014) and even financial pur-
poses (Hilal et al., 2011).

The conditional extremes model assesses the dependence
structure between several variables conditional on one being
extreme and aims to model the conditional distribution. As
in joint tail models, the first step is to transform the marginal
distributions; here the preferred marginal choice is Laplace
(or Gumbel) margins (Heffernan and Tawn, 2004; Keef et al.,
2013). Let the random variables (Y 1, Y 2) be vectors of i.i.d.
values with Laplace distributions. The conditional extremes
model aims to identify two normalizing functions a(yi) and
b(yi) such that a satisfies R+ → R and b satisfies R+ →
R+. Both are defined such that for y>0 (Winter, 2016)

P

(
Y 2− a

[
Y 1
]

b
[
Y 1
] ≤ z, Y 1− u > y|Y 1 > u

)
−→ exp(−y)G(z)

(7)

as u→∞, whereG(z) is a non-degenerate distribution func-
tion. In the case of Laplace margins the normalizing func-
tions a and b are given by (Winter, 2016)

a[y] = αy and b[y] = yβ , (8)

where α ∈ [−1, 1] and β ∈ (−∞, 1). The different values of
α and β characterize different forms of tail dependence. In
the case where α = 1 and β = 0, variables (Y 1, Y 2) exhibit
asymptotic positive dependence, and the case of asymptotic
negative dependence is given when α =−1 and β = 0 (Win-
ter, 2016).

Formally, the application of the conditional extremes
model can be summarized in four main steps:

i. fitting marginal distributions to the two variables, an
empirical cumulative distribution function below a
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threshold and generalized Pareto distribution (GPD)
above this threshold;

ii. transforming those distributions onto Laplace (or Gum-
bel) margins;

iii. estimating the dependence parameters using non-linear
regression;

iv. estimating the probability of joint events by simulating
new extreme data through the conditional model.

2.2.3 Joint tail KDE (kernel density estimation)
approach

The non-parametric approach used in this paper is an adap-
tation of the non-parametric approach presented by Cooley
et al. (2019). Moreover, the dependence measures η is esti-
mated to determine whether data are asymptotically depen-
dent or asymptotically independent. This approach is based
on the 2D kernel density estimator and the multivariate ex-
treme value framework (see Sect. S1.2).

The kernel density estimation (KDE) method has the ad-
vantage of being a non-parametric way to estimate the joint
distribution of n variables. With KDE, we make no assump-
tion about the underlying distribution of the margins or about
the dependence structure. The KDE centres a smooth ker-
nel at each observation. The choice of the bandwidth is cru-
cial when using this method (Duong, 2007; Hao and Singh,
2016). This selection was performed automatically in our
case within the kernel survival function estimate from the R
package “ks” (Duong, 2007, 2015).

The kernel density estimator is used here to estimate an
empirical density distribution f̂ (X) and a joint survival dis-
tribution F̂ (X) of the bivariate dataset, whereX = (X1, X2).
The joint survival distribution corresponds to the joint ex-
ceedance probability of the two variables (see Sect. 2.3).
From the joint survival distribution, it is possible to estimate
level curves which are isolines corresponding to given joint
probabilities of exceedance (see Sect. 2.3).

After estimating the joint survival distribution of the two
variables with a kernel density estimator, the cumulative
distributions F̂i(x) of the two random variables Xi(i =

1, 2, . . . ) are estimated empirically below a threshold and
from a GPD above the threshold. The two marginal cumu-
lative distribution functions are then transformed to Fréchet
margins to allow the use of multivariate extreme value theory
(Cooley et al., 2019):

T̂i (x)=
−1

ln(F̂i (x))
. (9)

Therefore, Z = T (X)= (T1 (X1) , T2 (X2)) can be as-
sumed to be regularly varying with an index of regular vari-
ation 1 (see Sect. S1). An extrapolation from a base proba-
bility pbase (blue area in Fig. 3) estimated with a kernel den-
sity to an objective probability pobj (purple area in Fig. 3)

Figure 3. Extrapolation in a regularly varying tail for a distribution
in the max domain of attraction of some multivariate extreme value
distributions. Black circles represent an asymptotically dependent
bivariate dataset. In order to estimate the extreme joint probability
P(tA) (where tA is an extreme set represented by the purple area),
one can compute P(A)= P {Z ∈ A} (where A is a less extreme set
than tA, represented by the light blue area), with t<1. More data
points are available in A than tA. Then, from the regular variation
framework tP (tA)≈ tP (A). Adapted from Huser (2013).

is then performed in the transformed space. Thus, on the
transformed scale, it is possible to construct l̂Z(obj) = t l̂Z(base)
(Cooley et al., 2019). To produce level curves on the orig-
inal scale, the transformation in Eq. (9) is reversed: l̂obj =

T −1 l̂Z(obj). Figure 3 gives a graphical representation of the
extrapolation performed within the joint tail KDE approach.

The methodology presented above is only valid when
the two variables X1 and X2 are asymptotically dependent.
In the asymptotic independence case, one needs to adjust
the methodology. Two asymptotically independent variables
follow the properties of hidden regular variation (Resnick,
2002; Maulik and Resnick, 2005; see Sect. S1.2.3). Formally,
the coefficient of tail dependence η is introduced such that
(Cooley et al., 2019)

l̂Z(obj) = t
1
η l̂Z(base). (10)

The specificity of this approach (presented below) is that
it combines a non-parametric estimation of the joint density
and the framework of multivariate extreme values presented
in Sect. S1.2. It can deal with both asymptotic dependence
and independence. The coefficient of tail dependence esti-
mation has an influence on the extrapolation process in the
asymptotic independence case. Here we used the estimator
presented in Winter (2016) which is derived from the joint
tail model of Ledford and Tawn (1997).
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Formally, the application of the joint tail KDE model can
be summarized in five main steps:

i. estimating the joint cumulative distribution of the vari-
ables with a kernel density estimator,

ii. fitting marginal distributions to the two variables – em-
pirical distribution below a threshold and generalized
Pareto distribution (GPD) above this threshold,

iii. transforming those distributions into Fréchet margins,

iv. determining whether variables are asymptotically de-
pendent or asymptotically independent by estimating
the coefficients of tail dependence χ and η,

v. Estimating the probability of joint events and extrapo-
lating the base isoline to an objective isoline.

2.3 Return levels in the bivariate framework

Studying natural hazards as multivariate – and particularly
bivariate – events is a growing practice in multiple disci-
plines, including the following: coastal engineering (Hawkes
et al., 2002; Mazas and Hamm, 2017), climatology (Hao et
al., 2017, 2018; Zscheischler and Seneviratne, 2017) and hy-
drology (Zheng et al., 2014; Hao and Singh, 2016). There has
been debate among scientists trying to define a “multivari-
ate return period” (Serinaldi, 2015; Gouldby et al., 2017).
Serinaldi (2015) defined seven different types of probabili-
ties that can be considered as bivariate probabilities of ex-
ceedance. These can be expressed through copula notation.

Let the random variables (X1, X2) be vectors of i.i.d.
values with marginal distributions Fi(xi), with i = 1, 2,
C their copula function (Sect. 2.3.1) and F 1, 2 (x1, x2)=

C {F 1 (x1) , F 2 (x2)} = C(u, v), where F 1, 2 is the bivariate
distribution function of X1 and X2, and u= F 1 and v = F 2
are standard uniform random variables. The seven types of
probability and their equations are given in Table 1.

The function KC in Eq. (16) is the Kendall function and
represents the distribution function of the copula (Salvadori
and De Michele, 2010; Serinaldi, 2015). Equation (17) refers
to the “structure-based” return period introduced by Volpi
and Fiori (2012). Among these seven types of probabilities,
we selected the “AND” and the “COND1” probabilities (see
Fig. 4) as these are commonly used in the literature (Chebana
and Ouarda, 2011; Tencer et al., 2014; Sadegh et al., 2018)
and correspond to the two types of interrelations we are in-
terested in (i.e. compound and cascade).

In 2D space, probabilities of exceedance (or quantiles) are
not represented by a single value but by a curve with an
infinite number of points with the same probability of ex-
ceedance. However, as shown in Fig. 4, these probabilities
are defined by (i) the domain where these are computed and
(ii) the critical region corresponding to the probability type.
For the AND probability, the computation domain remains
similar when moving along the curve while the critical region

Figure 4. Graphical representation of two bivariate (X1, X2) prob-
abilities of exceedance: (a) PAND probability and (b) PCOND prob-
ability, with level curves (blue in a and orange in b) representing
p = 0.01 (1000 data points on a Gumbel copula with log-normal
marginal distributions). Colours represent the domain on which the
probabilities are computed while the areas with diagonal hatching
represent the critical regions which are the regions corresponding to
the given probabilities.

evolves constantly. For the COND1 probability, both compu-
tation domain and critical region evolve when moving along
the curve (see Fig. 4). Bivariate probabilities of exceedance
are curves. These curves have been given various names in
different research papers including the following:

– isolines (Salvadori, 2004; De Michele et al., 2007; Sal-
vadori et al., 2016; Sadegh et al., 2017, 2018)

– level curves (Coles, 2001; Salvadori, 2004; De Michele
et al., 2007; Volpi and Fiori, 2012; Serinaldi, 2015,
2016; Bevacqua et al., 2017).

For the specific case of the AND probability, the following
names have been used:

– joint exceedance curves (Hawkes et al., 2002; Hawkes,
2008; Mazas and Hamm, 2017)

– quantile curves (De Haan and De Ronde, 1998;
Chebana and Ouarda, 2011).
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Table 1. Types of probabilities for bivariate (X, Y ) return period estimation. u and v are extreme thresholds. From Serinaldi (2015).

Type of Equation Eq. no.

probability

PAND P (X > u∩Y > v)= 1− u− v+C(u, v) (11)

POR P (X > u ∪ Y > v)= 1−C(u, v) (12)

PCOND1 P (X > u |Y > v)= (1− u− v+C (u, v))/(1− u) (13)

PCOND2 P (X > u |Y ≤ v)= 1− C(u, v)
u (14)

PCOND3 P (X > u |Y = v)= 1− ∂C(u, v)
∂u

(15)

PK P (C (u,v) > t)= 1−KC(t) (16)

PS P (g(U, V ))= 1−FZ(z) (17)

3 Simulation study

Here we are interested in comparing the abilities of six dif-
ferent models presented in Sect. 2.3 to reproduce a given de-
pendence structure. We create 60 different synthetic dataset
types with varying marginal distributions and dependence
structures. By doing this, we aim to produce bivariate syn-
thetic datasets comparable to the ones studied in bivariate
hazard analysis (Zheng et al., 2014; Hendry et al., 2019).
This will allow us to confront the six models against the syn-
thetic datasets, as a reference for bivariate hazard interrela-
tion analysis (see Sect. 4). The six models compared in this
simulation study are

i. the conditional extremes model (Cond-Ex; Sect. 2.3.2),

ii. the non-parametric joint tail model (JT-KDE; Sect.
2.3.3),

iii. the Gumbel copula (Gumcop; Sect. 2.3.1),

iv. the normal copula (Normalcop; Sect. 2.3.1),

v. the Farlie–Gumbel–Morgenstern (FGMcop) copula
(Sect. 2.3.1),

vi. the Galambos copula (Galamboscop; Sect. 2.3.1).

Among the four copulas used here, two are asymptotically
dependent (Gumbel and Galambos) and two are asymptoti-
cally independent (normal and FGM). A description of the
six models is given in Table 2. Table 2 synthesizes a range of
information about all the six models used in this simulation
study including their type (non-parametric, semi-parametric,
parametric), equation, parameter range (if there is a param-
eter) and asymptotic modelling domain. This latter informa-
tion is important to interpret the result of the simulation study
in Sect. 3.3.

In this section, we first describe and display the synthetic
data that have been generated to conduct this study. We shall
then present the measures used in this study to compare the

level curves and the dependence measures estimated from
the six models presented in Table 2. Finally, results of the
simulation will be displayed and analysed.

3.1 Synthetic data

Synthetic datasets are often used to compare different statis-
tical models (Chebana and Ouarda, 2011; Zheng et al., 2014;
Cooley et al., 2019). Here we generated 60 bivariate synthetic
datasets representative of environmental data such as daily
rainfall, daily wind gust and daily wildfire occurrences (see
Sect. 4). The number of synthetic data points we use here
has been fixed to 5000 for each dataset. For the asymptotic
dependence case, 36 distinct datasets are generated from a
Gumbel copula (see Sect. S1.3.1); for the asymptotic inde-
pendence case, 24 datasets are generated from a normal cop-
ula (see Sect. S1.3.2). Each synthetic dataset set of param-
eters has been used to generate 100 realizations to produce
confidence intervals.

The synthetic datasets are generated from two marginal
distributions and a dependence model (i.e. copula). Both
marginal distributions are log-normal; the log-normal distri-
bution has been used (among others) for the modelling of
a wide range of natural hazards, including wind, flood and
rainfall (Malamud and Turcotte, 2006; Clare et al., 2016;
Loukatou et al., 2018; Nguyen Sinh et al., 2019).

Random variables X with a log-normal distribution are
governed by two parameters: the location parameter µ and
the shape parameter σ , which correspond respectively to the
mean and the standard deviation of Y , the variable’s natural
logarithm, i.e. Y = ln(X) (Aitchison, 1957). The parameter
σ influences the shape of the distribution and the heaviness
of the tail, and the dispersion of a log-normal distribution
mostly depends on the shape parameter (Koopmans et al.,
1964)

We can characterize log-normal distributions with the co-
efficient of variation cv which is the ratio of the standard
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Table 2. Description of the six statistical models compared in this article. The description includes the model name and abbreviation (used
throughout the article), type of model (parametric, semi-parametric, non-parametric), the mathematical description, the parameter range
(where relevant) and the asymptotic modelling domain (AI for asymptotic independence and AD for asymptotic dependence).

Model name
(Model
abbreviation)

Model type Mathematical description Parameter
range

Asymptotic
modelling
domain

Joint tail KDE Non-parametric P
(
Z ∈ sA∗

)
≈ s−1P

(
Z ∈ A∗

)
AD

(JT-KDE) Semi-parametric P
(
Z ∈ sA∗

)
≈ s−1/ηP

(
Z ∈ A∗

)
η ∈ [0, 1] AI

Conditional
extremes
model
(Cond-Ex)

Semi-parametric P
(
Y2−a[Y1]
b[Y1] ≤ z, Y1− u > y|Y1 > u

)
−→ exp(−y)G(z)

for y>0, as u→∞, where G(z) is a non-degenerate
distribution function.

AI and AD

Gumbel copula
(Gumcop)

Parametric C(u, v)= exp

{
−

[(
− ln(u))θ +−(ln(v)

)θ]1/θ
}

θ ∈ [1,∞) AD

Normal copula
(Normalcop)

Parametric C (u, v)=
∫8−1(u)
−∞

∫8−1(v)
−∞

1
2π
√

1−θ2
exp

(
2θxy−x2

−y2

2(1−θ2)

)
dxdy,

with 8(.) the standard Gaussian distribution function

θ ∈ [−1, 1] AI

FGM copula
(FGMcop)

Parametric C (u, v)= uv [1+ θ(1− u)(1− v)] θ ∈ [−1, 1] AI

Galambos
copula
(Galamboscop)

Parametric C (u, v)= uvexp
{
−

[
(− ln(u))−θ +−(ln(v))−θ

]−1/θ
}

θ ∈ [0,∞) AD

deviation s of the log-normally distributed variable x to its
non-zero mean x (Malamud and Turcotte, 1999):

cv =
s

x
. (18)

The standard deviation s and the non-zero mean x are both
related to the two parameters µ and σ of the log-normal dis-
tribution (see Table 3). The use of the coefficient of varia-
tion characterizes the log-normal distribution with one single
parameter instead of two. The distribution used in the sim-
ulation study, the parameters, and the relationship between
these parameters and the different tail dependence measures
are summarized in Table 3.

We use three different coefficients of variations cv = 0.25
(labelled as A for the rest of this paper), 0.53 (labelled B)
and 2.91 (labelled C; see Table 3). The log-normal distribu-
tion A (cv = 0.25) produces a distribution close to the normal
distribution. The distribution C (cv = 2.91) is a highly right-
skewed distribution. The distribution B (cv = 0.53) has in-
termediate skewness between A and B. In the bivariate con-
text, there are six possible combinations of these distribu-
tions: AA, AB, AC, BB, BC and CC.

The dependence structure is represented by a Gumbel cop-
ula in the case of asymptotic dependence (AD) and a normal
copula in the case of asymptotic independence (AI) as no

copula can be both asymptotically independent and asymp-
totically dependent (Heffernan, 2000; Coles, 2001). The
Gumbel copula is an extreme-value copula that is asymptot-
ically dependent (see Eq. S19). The Gumbel copula function
only has one parameter θ which can be related to the extremal
dependence measure χ . Here, we vary χ between 0.05 (very
weak asymptotic dependence) and 0.9 (strong asymptotic de-
pendence; see Fig. 5). The normal (or Gaussian) copula is
asymptotically independent. Its unique parameter is related
to the coefficient of tail dependence η (Heffernan, 2000). We
vary η from η = 0.25 (negative subasymptotic dependence)
to η = 0.9 (positive subasymptotic dependence; see Fig. 5).
In total, 10 different dependence structures were simulated
for each of the six combinations of marginal distributions.
The 60 bivariate synthetic datasets used in this study are dis-
played in Fig. 5.

To compare the fitting capabilities of the different models
presented in Sect. 2.3, we vary several characteristics of the
synthetic dataset:

i. The shape of the marginal distributions. Natural hazards
can exhibit very diverse statistical properties depending
not only on their type but also on the location where
they occur (Sachs et al., 2012).

ii. The strength of the dependence represented by the pa-
rameter of the copula function. The type and strength of
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Table 3. Marginal distributions and copula used for the synthetic datasets.

Distribution Cumulative density function Parameters Parameter
values

Log-normal
distribution

F (x)=8
(

ln(x)−µ
σ

)
µ, σ of y, where y = ln(x)
x = exp(µ+ σ 2/2)
s =

√
exp(σ 2− 1)exp(2µ+ σ 2)

cv = s/x

A:
cv = 0.25
B:
cv = 0.53
C: cv = 2.91

Gumbel copula C (u, v)= exp
{
−

[
(− ln(u))θ +−(ln(v))θ

]1/θ
}

θ = log2(2−χ) χ = 0.05,
0.10, 0.30,
0.50, 0.70,
0.90

Normal copula C (u, v)=∫8−1(u)
−∞

∫8−1(v)
−∞

1
2π
√

1−θ2
exp

(
2θxy−x2

−y2

2(1−θ2)

)
dxdy

θ = 2η− 1 η = 0.25,
0.50, 0.75,
0.90

where 8 is the cumulative distribution function of the standard normal distribution.

the relationship between natural hazards can vary within
a broad range depending on the natural hazard studied
or the location (Gill and Malamud, 2014; Martius et al.,
2016). In order to take into consideration both the AD
and AI cases, the two parameters χ and η (Sect. 2.2) are
used.

3.2 Diagnostic tools

There are many diagnostic tools to assess the goodness of fit
of parametric bivariate models (Arnold and Emerson, 2011;
Couasnon et al., 2018; Genest et al., 2009, 2011; Genest and
Nešlehová, 2013; Sadegh et al., 2017). Amongst these, some
of the most popular are the following:

– Cramér–von Mises statistic (Arnold and Emerson,
2011)

– Kolmogorov–Smirnov test (Arnold and Emerson, 2011)

– Akaike information criterion (AIC; Akaike, 1974)

– Bayesian information criterion (BIC; Schwarz, 1978).

These measures have been developed in a univariate frame-
work and then extended to the bivariate framework. Gen-
est et al. (2009) proposed several approaches for Cramér–
von Mises and Kolmogorov–Smirnov goodness-of-fit tests
for copulas. There are two issues we faced using these mea-
sures for our study:

– These criteria are designed to fit on the dependence
structure of the whole dataset and not on the extreme
dependence structure which can be different.

– In our study we aim to compare parametric and non-
parametric models.

To tackle the first issue, goodness-of-fit tests have been de-
veloped for extreme-value copulas (Genest et al., 2011). The
latter issue is more complicated; each modelling approach
has its own fitting methodologies, and although it is now
possible to compare copulas against each other (Sadegh et
al., 2017; Couasnon et al., 2018), it is more difficult to
compare copulas against semi-parametric or non-parametric
models. The measures mentioned above are not suitable for
the present study as they require models to be parametric to
be compared against observations (Stephens, 1970; Arnold
and Emerson, 2011). It is then not possible to compare the
goodness of fit of the six models used in this study all to-
gether.

However, we are interested in fitting capabilities in the ex-
tremes. The models will then be compared on the estimation
of two attributes of the synthetic data detailed below:

i. the PAND probability of exceedance (Sect. 2.3) repre-
sented by the level curve at p = 0.001,

ii. the tail dependence measures χ and η (Sect. 2.2.2).

We present here the diagnostic tools related to the level
curve. The tools used to compare tail dependence measures
can be found in Appendix A. Here we chose to compare our
six models with respect to their ability to reproduce a ref-
erence level curve from the underlying bivariate (X1, X2)
distribution of the data lobj (“obj” is again used to indicate
objective) which corresponds to an extreme joint probabil-
ity p = 0.001. For each model i a level curve lobj, i is com-
puted. Several methods and criteria have been used in the
literature to compare level curves to a reference including
comparing the curves with vertical pointwise distances be-
tween the underlying curves (Chebana and Ouarda, 2011).
This approach finds its limitation when level curves do not
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Figure 5. The 60 different synthetic bivariate datasets used in our
simulation study. On the y axis: the dependence strengths (a) χ (for
asymptotic dependence) and (b) η (for asymptotic independence)
vary from slightly negative association to heavily dependent (see
also Fig. 2). On the x axis AA to CC represent the marginal distri-
butions that are part of the bivariate distributions (see Table 3) with
A, B and C representing log-normal distributions with different co-
efficient of variations cv (A: cv = 0.25; B: cv = 0.47; C: cv = 0.95).

share the same x-axis coordinate (X1 axis). In Fig. 6 is pre-
sented our procedure for computation of the goodness-of-fit
indicators (described in further detail below). In Fig. 6 the ex-
ample modelled and reference curves do not reach the same
coordinate on the X1 axis, making it impossible to compare
these two level curves between X2 = 0.0 and X2 = 0.3. Coo-
ley et al. (2019) divided level curves into two parts, compar-
ing six x-axis coordinates on one part and six y-axis coordi-
nates on the other part, to overcome the aforementioned lim-
itation. Here we chose to use a consistent criterion all along
the curves to evaluate the distance between each modelled
curve and the reference curve. The four steps we use are the
following:

i. Each modelled and reference level curve is normalized
by dividing its coordinates by their maximum values.
With that process, the curves are bounded in the [0, 1] by
[0, 1] space. The different indicators are then computed
in this normalized space.

Figure 6. Procedure for computation of the goodness-of-fit indi-
cators. Two variables are given, X2 as a function of X1. The red
triangles and red curve represent the modelled level curve from a
given model. The blue circles and blue curve are the reference level
curve from the underlying bivariate (X1, X2) distribution of the
data. Distance between the curves is calculated along the radius at
80 (X1, X2) coordinates (e.g. between the blue circles and the red
triangles).

ii. Cartesian coordinates (x, y) of the modelled and refer-
ence level curves are transformed to polar coordinates
(θ , r).

iii. Each modelled and reference level curve is discretized
via linear interpolation into points. Each point corre-
sponds to an angle value (triangles and dots on the
curves in Fig. 6).

iv. Points from both the modelled and reference level
curves with the same angle are coupled. Indicators are
computed at each of the 80 couples of points (see
Fig. 6).

The indicators designed in this study are derived from the
distance between the two curves and are listed in Table 4.

We used a weighted Euclidean distance (wd) as a com-
parison criterion. The density of level curves (described in
Sect. S2) allows one to weight the Euclidean distance of each
of the 80 points by the local density of the curve. By weight-
ing the Euclidean distance according to the reference bivari-
ate distribution probability density function, we give more
importance to the proper part of curve, where a bivariate
event is more likely to occur, than to the naïve part (here the
naïve part is defined as where the bivariate event is less likely
to occur; Chebana and Ouarda, 2011; Volpi and Fiori, 2012).

N∑
i=1

wi

(√
(xmod, i − xref, i)2+ (ymod, i − yref, i)2

)
(19)
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3.3 Results

Two analyses are conducted in parallel, one for asymptotic
dependence (AD) and one for asymptotic independence (AI).
In the case of asymptotic dependence, the Gumbel copula is
used with 5000 data points. The χ value is the one of in-
terest under AD; values taken by χ have been presented in
Sect. 3.1. For each χ value, we generated 100 realizations
of the dataset from the same underlying bivariate distribu-
tion. The 100 realizations generated have two purposes: (i)
increase the robustness of the results and (ii) create a confi-
dence interval around the median which was set at the 95 %
confidence level by taking the quantiles Q2.5 and Q97.5 of
the 100 realizations. To confront this approach, we generated
two sets of 100 realizations which showed very small varia-
tions in the values of Q2.5, Q50 and Q97.5 without impact-
ing our interpretation of the results. In the case of asymptotic
independence, the normal copula is used.

The marginal distributions do not have any impact on
the dependence structure (Nelsen, 2006; Genest and Favre,
2007). We show in Appendix A that marginal distributions
also have a very small impact on the estimation of depen-
dence measures. All the methods used in this study include
a transformation of marginal distributions and the fitting of a
GPD above an extreme threshold (Sect. 2.3). By varying the
marginal distribution of the variables of our synthetic dataset,
we aim to capture uncertainties and errors arising from both
the fitting of the marginal distributions and the dependence
structure.

For both asymptotic dependence AD and asymptotic in-
dependence AI, the objective level curve lobj to be compared
has been fixed at the probability pobj = 0.001. For each of the
60 bivariate datasets, the six models presented are fitted to the
100 realizations. The dependence measures χ̂i and η̂i as well
as the level curve l̂obj, i are estimated for each of the six mod-
els, with i ∈ (1 : 6) corresponding to each model. We then
use the diagnostic tool and criteria presented in Sect. 3.2 to
compare the performance of the models. From the 100 real-
izations, 100 level curves l̂obj, i are generated for each model.
Three curves are designed: (i) the 2.5 % quantile level curve,
(ii) the median level curve and (iii) the 97.5 % quantile level
curve.

In an analogous way, for each of the diagnostic tools pre-
sented in Sect. 3.2, three values are computed: (i) the 2.5 %
quantile, (ii) the median and (iii) the 97.5 % quantile. To as-
sess more accurately whether the models manage to repre-
sent the synthetic data in the large value extremes, we com-
pared their fitting capabilities to a naïve approach. Here, the
naïve approach is an empirical level curve. For each of the 60
synthetic datasets, we compute the wd of the empirical level
curves to the reference curves following the same steps as for
the six models. The empirical wd (wdnaïve) is therefore com-
pared to thewd of each model. Models that represent the data
with more accuracy than a naïve approach (wd<wdnaïve) are
considered to be representative of the data. Figure 7 displays

the values of the wd for each model applied to each bivariate
dataset and highlight the cases where models outperform a
naïve approach (bold blue). Squares are coloured according
to the median of the wd , and thickness of the edges is pro-
portional to the size the confidence interval (i.e. the distance
between the quantiles Q2.5 and Q97.5).

It is important here to note that we tested more AD (36 %–
60 %) than AI (24 %–40 %) cases. To assess the flexibility
of models, additionally to comparison to the naïve approach,
we also consider the proportion of cases where models have
a wd<0.1. From Fig. 7, we observe the following:

– The Gumbel and normal copulas, which have been used
to generate the synthetic datasets with AD and AI, gen-
erally outperform all the other models in AD and AI
cases respectively.

– The conditional extremes model and the joint tail KDE
model are the most flexible models tested here as
they can handle (Cond-Ex) 98 % [72 %, 100 %] and
(JT KDE) 97 % [65 %, 100 %] of the situation with a
wd<0.1; these values reach 100 % for the AI cases.
However, the Cond-Ex model is slightly more flexible,
having a representative fit to more datasets (95 %) than
the JT-KDE model (68 %).

– The normal copula, even if asymptotically independent,
is the most flexible copula model with wd<wdnaïve in
47 % of the cases, more than the number of AD datasets.
The normal copula has a low wd (<0.1) in 76 % [60 %,
90 %] of the cases and has a representative fit to the data
for every AI case and in some AD cases.

– Gumbel and Galambos copulas have representative fits
to only 57 % of the AD datasets. Among the 36 AD
cases, they fail to represent only two with χ = 0.9. It
is important to note that both aforementioned copulas
cannot handle complete independence (η = 0.5) or neg-
ative dependence (η = 0.25).

– The FGM copula can only handle one type of extremal
dependence, which is asymptotic independence (AI)
with η = 0.5. Consequently, it is the least flexible model
in our results with a wd<wdnaïve in only 10 % of the
cases.

– Higher shape parameters of the margins are associated
with poorer goodness of fit for all models. It is partic-
ularly striking with the conditional extremes approach
which exhibits high uncertainty and high wd when both
margins have a standard deviation σ = 1.5.

The Cond-Ex and JT-KDE models provide close re-
sults according to Fig. 7 despite adopting very different
approaches. Thus, their flexibility arises from their semi-
parametric nature. Figure 7 also displays the uncertainty in
the estimate of wd . For all models, a more accurate fit is ac-
companied with a reduction in uncertainties. However, both
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Figure 7. Weighted normalized Euclidean distance (wd) to the reference curve for all 60 different synthetic datasets. Fitting capacities of
each model are represented. Values in cells and colours represent the median wd from low (dark green) to high (red). Bold blue values
highlight cases where models are representative of the data. Thickness of borders represent the 95 % uncertainty around the median value on
a logarithmic scale.

Cond-Ex and JT-KDE have on average more uncertainty
around their wd despite their good fitting capabilities. On
average, copulas tend to have less uncertainty due to their
parametric nature.

However, the copulas are penalized by the weighting func-
tion as they usually reproduce quite well the naïve part of
the curve. By considering again the percentage of situations
with a criterion below 0.1, the normal copula has its perfor-

mances reduced by the weighting function (−6 % compared
to d). The JT-KDE model has its performance boosted by the
weighting function (+7 % compared to d).

4 Application to natural hazards

Results from the simulation study presented in the previous
section (Sect. 3) can provide useful insights when modelling
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the interrelations between two natural hazards. In this sec-
tion, we will show how results previously presented can be
useful to identify the most relevant models for a given dataset
according to its visual characteristics. The concordance (or
discordance) of the relevant models can also increase (or de-
crease) confidence around the results.

The methodology for model selection presented here is
composed of five steps to select the most relevant model es-
timate joint exceedance probability level curves:

i. The two-tail dependence measures are estimated empir-
ically with a 95 % confidence interval. The dataset with
a tail dependence measure falling into that confidence
interval is suggested as analogue to the studied bivariate
dataset. To select relevant combinations of marginal dis-
tribution, a scatterplot is compared visually to density
plots for the 60 different datasets simulated in Sect. 3
and displayed in Fig. 5.

ii. From the aforementioned 60 datasets, a set of one to six
analogous datasets (i.e. with similar bivariate distribu-
tion) is taken.

iii. A confidence score is used to compare the abilities of
each model for the datasets selected in step (ii). For
each model, the confidence score is wd the average of
the computed weighted Euclidian distance wd for all
datasets selected in step (ii). By taking the average of
wd , a poor fit on one analogous dataset will have a high
influence on the confidence score.

iv. Models are fit to the bivariate hazard dataset, and level
curves from the most relevant models are kept.

v. Tail dependence measures are estimated using the most
relevant model with a possible new iteration of the four
previous steps according to the value of the dependence
measures.

To produce a confidence interval as was carried out in the
simulation study (Sect. 3) and to visually measure the un-
certainty associated with each level curve as in Sect. 3, we
use a non-parametric bootstrap procedure. The function ts-
boot from the R package “boot” (Davison and Hinkley, 1997;
Canty and Ripley, 2019) is used to generate 100 bootstrapped
replicate datasets with the same number of observations as
the original (but some are repeated). Our six models are then
fitted to the original dataset and on the 100 bootstrapped
replicates.

4.1 Rain and wind gusts at Heathrow Airport
(asymptotic independence)

Here, we study the interrelation between daily extreme wind
gusts (w) and extreme rainfall (r) at London Heathrow Air-
port, UK, for the period 1 January 1971 to 31 May 2018,
both introduced in Fig. 1. The relationship between wind

and rainfall has been studied both globally (Martius et al.,
2016) and locally (Johansson and Chen, 2003; Ming et al.,
2015). These two hazards are often associated with different
types of storms (Dowdy and Catto, 2017) and in particular
with cyclones (Ming et al., 2015; Raveh-Rubin and Wernli,
2016). In southern England, these two hazards are mostly as-
sociated with extratropical cyclones in the winter season and
thunderstorms in the summer season (Hawkes, 2008; Ander-
son and Klugmann, 2014; Webb and Elsom, 2016; Hendry et
al., 2019).

The bivariate dataset used to study the interrelation be-
tween wind gusts and rainfall at Heathrow Airport is com-
posed of the following data:

a. Daily wind gust (w). This is the daily maximum wind
gust at the London Heathrow Airport (UK) weather sta-
tion where a gust is the maximum value, over the ob-
serving cycle, of the 3 s running-average wind speed
(WMO, 2019). Wind gusts are short-lived peaks in wind
speed that can inflict great damage during a storm. How-
ever, this measurement might not capture the overall
wind intensity (Met Office, 2019). The time range of
the observations is 38 years, from 1 January 1971 to
31 May 2018, of which 74 d (0.4 % of the data) had no
values recorded and all other values in the dataset had
w>0 m s−1. These observation data have been provided
by the Met Office (2019).

b. Daily rainfall (r). This is the daily total precipitation in
a grid cell containing London Heathrow Airport (UK).
The data have been extracted from the E-OBS gridded
database (Cornes et al., 2018) which is formed from
the interpolation of observations from 18 595 meteoro-
logical stations through Europe and the Mediterranean
(including the Heathrow Airport station). It has been
shown that E-OBS has excellent correlation with other
high-resolution gridded datasets even if this correlation
tends to decrease for extremes (Hofstra et al., 2009).
However, by selecting a cell containing a weather sta-
tion we limit uncertainties arising from interpolation.
The spatial resolution in the E-OBS dataset is 0.1◦×
0.1◦, and the period covered is 1950 to 2019. Data from
1 January 1971 to 31 May 2018 (38 years) in the cell
containing Heathrow Airport are used, with a total of
6074 d (35.1 % of the dataset) having non-zero rainfall
r>0 mm d−1.

From 1 January 1971 to 31 May 2018 there are a to-
tal of 17 318 d (including leap years). Our bivariate wind
gust–rainfall dataset is composed of those values where
there are both non-zero rainfall r>0 mm d−1 and wind gusts
w>0 m s−1 recorded, resulting in a total of 6044 bivariate ob-
servations (34.9 % of the days in our record). An overview of
both daily rainfall and daily wind gust is displayed in Fig. 8
in the form of monthly violin plots, where the probability
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Figure 8. Violin plots of daily wind gust w (red) and daily non-
zero rainfall r (blue) by month for the period 1 January 1971 to
31 May 2018 at the Heathrow Airport weather station, UK. Dia-
monds represent the median of all values for that month from 1971–
2018. Numbers at the top of the graph represent the average number
of days per month where there is recorded both non-zero rainfall
r>0 mm d−1 and wind gusts w>0 m s−1. Daily rainfall data from
E-OBS (Cornes et al., 2018) and wind gust data (maximum 3 s wind
velocity in a day) from the Met Office (2019).

density of w and r at different values are given, smoothed by
a kernel density estimator.

From Fig. 8 we observe a seasonality in daily wind gust
speed. January is the month with the highest median (dia-
mond symbol) and range of most values in the violin plot,
while July is the month with the lowest median and range
of most values in the violin plot. The daily non-zero rainfall
median per month varies between 2.5 mm in February and
3.5 mm in June, with the highest individual daily values oc-
curring in October (53.3 mm d−1), May (49.6 mm d−1) and
June (49.2 mm d−1). The dataset is also represented as a scat-
terplot in Fig. 9. The scatterplot will be used for the model
selection methodology presented at the beginning of Sect. 4.

Extreme rainfall and extreme wind have a compound in-
terrelation according to Tilloy et al. (2019). We then estimate
the joint exceedance probability curve, corresponding to a
PAND probability (Sect. 2.3).

We now go through the four steps presented for rainfall
and wind gusts in Heathrow.

i. From Figs. 5 and 9, along with empirical estimates of χ
and η, we hypothesize that over our time range 1971–
2018, daily rainfall and daily maximum wind gusts in
London Heathrow Airport are asymptotically indepen-
dent or weakly dependent (η = 0.5;χ = 0.05;χ = 0.1)
and that both marginal distributions have a small shape
parameter (AB, BB).

ii. This then gives us four analogous datasets, and it is then
possible to visually infer from Fig. 6 which models are

Figure 9. Days where there are recorded both daily wind gust
(m s−1) w and non-zero daily rainfall (mm d−1) r>0 mm d−1 at
Heathrow Airport (London, UK) for the period 1971–2018. Daily
rainfall data from E-OBS (Cornes et al., 2018) and wind gust
data (the maximum 3 s wind velocity in a day) from the Met Of-
fice (2019). Colours (legend) represent the bivariate density esti-
mated from a kernel density estimator with higher values and lighter
colours representing a higher density of points at that bivariate value
(r , w).

the most suitable for these conditions. The four analo-
gous datasets are the following:

(a) χ = 0.05 and AB

(b) χ = 0.05 and BB

(c) η = 0.5 and AB

(d) η = 0.5 and BB

(e) χ = 0.1 and AB

(f) χ = 0.1 and BB.

iii. The confidence score for each model is wd the aver-
age of the weighted Euclidean distance wd from the
four situations above. For the Gumbel and Galambos
copulas, the cases of independence or negative de-
pendence between variables are outside the modelling
range (Sect. 2.3.1), and thus the confidence score for
these models has been penalized by putting wd = 1.0
for η = 0.5 and η = 0.25. The conditional extremes
model has the smallest confidence score wd = 0.02 and
is representative of all six analogous datasets. The JT-
KDE model has a wd = 0.03 and is representative of
four out of six analogous datasets. The FGM and nor-
mal copulas have a confidence score of wd = 0.04 and
are only representative in AI cases. Gumbel and Galam-
bos copulas have a confidence score of wd = 0.35 due
to their penalty (Table 4).

According to these three first steps, the conditional ex-
tremes model appears to be the most suitable. However,
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Table 4. Euclidian weighted distance (wd) for datasets 1 to 6 based on wind–rainfall and six models, along with confidence scores (average
of the wd for datasets 1 to 6). In italic bold are highlighted the values below the naïve approach wd , and the average values of four models
with confidence scores < 0.1 are highlighted in bold.

Dataset Cond-Ex JT-KDE Gumcop Normalcop FGMcop Galamboscop

1 0.03 0.03 0.02 0.04 0.04 0.02
2 0.02 0.02 0.01 0.03 0.04 0.02
3 0.02 0.02 1.00 0.01 0.01 1.00
4 0.01 0.01 1.00 0.01 0.01 1.00
5 0.02 0.04 0.02 0.06 0.07 0.02
6 0.03 0.04 0.02 0.06 0.08 0.02
Average 0.02 0.03 0.35 0.04 0.04 0.35

Table 5. Estimates of dependence parameters χ and η for extreme rainfall and wind gust at Heathrow Airport for the time range 1971–2018.

Models Cond-Ex JT-KDE Gumcop Normalcop FGMcop Galamboscop

χ 0.01 [0.00, 0.02] 0.06 [0.05, 0.09] 0.04 [0.01, 0.06] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.04 [0.02, 0.06]
η 0.49 [0.45, 0.54] 0.54 [0.49, 0.59] 1.00 [1.00, 1.00] 0.52 [0.51, 0.54] 0.50 [0.50, 0.50] 1.00 [1.00, 1.00]

we selected the four most relevant models for the bivari-
ate dataset of daily rainfall and daily wind gust at London
Heathrow Airport. The conditional extremes model, the JT-
KDE model, the normal copula and the FGM copula all have
low wd as can be seen in Table 4.

iv. For illustration and/or confronting our models with the
data, the six models are fit to the dataset and joint ex-
ceedance level curves are produced with a joint ex-
ceedance probability set at p = 0.001, corresponding to
a bivariate return period of 8 years. However, another
joint exceedance probability could have been chosen.

In Fig. 10 are displayed the level curves produced from
the four models that were selected after steps (i) to (iii) above
(Cond-Ex, JT-KDE, Normalcop and FGMcop), and their cor-
responding values are presented in bold numbers in Table 4.

From Fig. 10, we can observe that the conditional extremes
model, the FGM copula and the normal copula all produce
very similar joint exceedance curves and that their confi-
dence intervals overlap. Table 5 displays the estimates (with
bounds of the 95 % confidence interval) of the two depen-
dence parameters χ and η from the six models. These esti-
mates converge toward a very weak asymptotic dependence.
However, the estimation of dependence parameters in near
independence is highly uncertain (Sect. 3.3.2).

4.2 Daily wildfire number and temperature extremes
in Portugal (asymptotic dependence)

Here we present a second example of applying our models
to natural hazards data, using as a case study daily tempera-
ture and daily number of wildfires in Portugal. Wildfire vari-
ables such as daily number and burned area depend on many
influences such as wind speed, direction and gustiness; to-

pography; and type of fuel and soil moisture (Hincks et al.,
2013). The aim of our study is not to decipher the processes
leading to a wildfire but rather to provide an exemplar study
examining the relationship between the two variables, daily
temperature and daily number of wildfires, in a given case
study area.

It has been shown that dry and warm conditions increase
the risk of wildfire (Littell et al., 2009; AghaKouchak et al.,
2018). Witte et al. (2011), establishing a direct link between
a persistent heatwave and wildfire outbreaks in Russia and
eastern Europe in 2010. The northern Mediterranean coun-
tries (Portugal, Spain, France, Italy and Greece) are particu-
larly affected by summer fires (Vitolo et al., 2019).

Among these, Portugal holds the highest number of wild-
fires per land area (Pereira et al., 2011). There are many en-
vironmental and anthropogenic factors influencing the rural
fire regime in Portugal and making its territory a fire-prone
area. However, the majority of rural fires is recorded during
hot and dry conditions in the summer (Pereira et al., 2011).

Here, we used the mainland Continental Portuguese Rural
Fire Database, which includes 450 000 fires, covers the pe-
riod 1980–2005 (Pereira et al., 2011) and includes data for
all 18 districts in Portugal. This database is the largest such
database in Europe in terms of total number of recorded fires
in the 1980–2005 period (Pereira et al., 2011) and includes
fires recorded down to a size of 0.001 ha. From the Conti-
nental Portuguese Rural Fire Database, we chose to focus on
Porto District, which was the worst affected in the period (out
of the 18 Portuguese districts) in terms of number of wildfires
with 21.6 % of the total fire recorded in the dataset between
1980 and 2005. Porto District is situated in the northern part
of Portugal (see Fig. 11), has an area of 2395 km2 and is one
of the most populated districts of Portugal with an estimated
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Figure 10. Level curves for a PAND joint probability p = 0.001 of daily wind gust and daily rainfall at Heathrow Airport (London, UK).
Level curves from the four models selected through the model selection methodology are displayed.

Figure 11. Portugal study area for the interrelation between extreme
hot temperature and wildfire-burned areas. The red area represents
Porto District in Portugal, containing the studied wildfire-burned
areas. The blue tiles represent cells from the high-resolution gridded
dataset of daily climates over Europe (E-OBS; Cornes et al., 2018)
containing mean daily temperature data. Satellite image retrieved
with ggmap (Kahle and Wickham, 2013). © Google Maps (2020).

population of 1 780 659 in 2019 (Instituto Nacional de Es-
tatística Portugal, 2019).

The bivariate dataset used to study the interrelation be-
tween extreme temperature and wildfire-burned areas in
Porto District is composed of the following data:

a. Daily number of wildfires (f). The daily number of wild-
fires for the 26-year period 1980–2005 for Porto Dis-
trict was extracted from the Continental Portuguese Ru-
ral Fire Database dataset from Pereira et al. (2011). To
account for undersampling of smaller wildfires in ear-
lier years, and as suggested by Pereira et al. (2011), we
used only those fires with a burned area AF ≥ 0.1 ha,
resulting in 59 522 fires, an average of 6.3 fires d−1 (for
those days with at least one fire occurrence) over Porto
District in Portugal (2395 km2).

b. Daily temperature data (t). Daily mean temperature was
extracted from the E-OBS gridded dataset (Cornes et
al., 2018). We approximate the area in red in Fig. 11
(Porto District) for each day with one temperature value
by taking the average of daily temperatures in each of
the six 0.25◦×0.25◦ cells represented by blue rectangles
in Fig. 11. This assumption reduces the confidence in
return-level values and adds up with other interpolation
uncertainties arising from the data (Hofstra et al., 2009).
Moreover, the temperature in the six cells are strongly
correlated (Pearson correlation coefficient ρ>0.98) and
variations in temperature are mostly due to the distance
to the sea and altitude (Miranda et al., 2002).

The 26 years from 1980 to 2005 have a total of 9496 d. Of
these, a total of 3442 d (36 % of the days) have both non-zero
days for number of wildfires and a mean temperature value,
which are used in our final bivariate dataset. An overview of
both daily mean temperature and daily number of wildfires is
displayed in Fig. 12 in the form of monthly violin plots.

From Fig. 12 we observe the seasonality in daily mean
temperature with January the coldest month (median=
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Figure 12. Violin plot of those days with both daily mean tempera-
ture (red, upper violin plots) t and daily number of wildfires (blue,
lower violin plots) f ≥ 1 fire d−1, by month for the period 1980–
2005 in Porto District (Portugal). Only those wildfires with burned
area AF ≥ 0.1 ha are included. Diamonds for both temperature and
wildfires represent the median of all values in that month over the
period of record. Numbers at the top of the graph represent the av-
erage number of days per month where there are recorded both a
temperature value t and at least one wildfire (f ≥ 1 fire d−1). Daily
mean temperature data from E-OBS (Cornes et al., 2018) and wild-
fire data from Pereira et al. ( 2011).

Figure 13. Scatterplot of temperature dependence on wildfire oc-
currence in Porto District, Portugal, for the period 1980–2005, for
those days where there are recorded both mean daily temperature
(t) and at least one fire, with f the number of wildfires in 1 d. Only
those wildfires with burned area AF ≥ 0.1 ha are included. Daily
mean temperature data from E-OBS (Cornes et al., 2018) and wild-
fire data from Pereira et al. (2011). Colours represent the bivariate
density estimated from a kernel density estimator.

8.3 ◦C) and August the warmest (median= 21.0 ◦C). Daily
number of wildfires (with burned area AF ≥ 0.1 ha) per
month varies between median of 1.0–2.5 fire d−1 in win-
ter months (November to February) and 7.0–22.5 fire d−1

in summer months (from June to September). The dataset
is also represented as a scatterplot in Fig. 13. The scatterplot
will be used for the model selection methodology presented
at the beginning of Sect. 4.

As discussed in the beginning of this section, extreme
(hot) temperature and wildfire are interrelated. Indeed, ex-
treme (hot) temperature may promote the development of
wildfires (Witte et al., 2011; Sutanto et al., 2020) Accord-
ing to Tilloy et al. (2019), this is a change condition interre-
lation (i.e. one hazard changes an environmental parameter
that causes a move toward a change in the likelihood of an-
other hazard). We then estimate the conditional exceedance
probability curve (Sect. 2.3).

We now go through the four steps introduced at the begin-
ning of Sect. 4.

i. From Figs. 5 and 13, along with empirical estimates of
χ and η, we hypothesize that over our time range, there
is asymptotic dependence for the mean daily tempera-
ture, the number of wildfires per day are asymptotically
dependent (χ = 0.5−χ = 0.3), and one marginal dis-
tribution has a slightly small shape parameter and the
other one is heavily right-skewed (AC, BC).

ii. This then gives us four analogous datasets, and it is then
possible to know from Fig. 8 which models are the most
adapted to these conditions. The four datasets are the
following:

(a) χ = 0.5 and AC

(b) χ = 0.5 and BC

(c) χ = 0.3 and AC

(d) χ = 0.3 and BC

iii. The confidence score for each model is the average of
the wd from the four aforementioned datasets. Based
on Table 6, the normal copula and FGM copula do
not seem suitable for modelling the joint occurrence
of wildfire and extreme temperature as these poorly
fit the four datasets. The Gumbel and Galambos cop-
ulas (wd = 0.02) and the conditional extremes model
(wd = 0.04) are representative of the four analogous
datasets. The joint tail KDE model has a confidence
score wd = 0.05 and is representative of two analogous
datasets.

According to these three first steps, we can identify the
most relevant model for the bivariate dataset of daily maxi-
mum temperature and daily wildfire occurrence in Porto Dis-
trict: the Gumbel copula, Galambos copula, JT-KDE model
and conditional extremes model are the most relevant models
for our dataset.
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Table 6. Weighted Euclidian distance (wd) for datasets 1 to 4 based on extreme temperature wildfire and six models, along with confidence
scores (average of the wd for datasets 1 to 4). In italic bold are highlighted the values below the naïve approach wd , and the average values
of the four models with confidence scores<0.1 are highlighted in bold.

Dataset Cond-Ex JT-KDE Gumcop Normalcop FGMcop Galamboscop

1 0.03 0.04 0.02 0.12 0.29 0.02
2 0.05 0.06 0.04 0.18 0.42 0.04
3 0.03 0.05 0.02 0.13 0.20 0.02
4 0.06 0.07 0.04 0.19 0.28 0.04
Average 0.04 0.05 0.03 0.15 0.30 0.03

iv. For illustration and/or the confronting of the models
with the data, the six models are fit to the dataset and the
joint exceedance level curves are produced with a joint
exceedance probability set at p = 0.001, corresponding
to a bivariate return period of approximately 8 years.

In Fig. 14 are displayed the conditional level curves pro-
duced from the four models that were selected after steps (i)
to (iii) and shown as bold values in Table 6 (Cond-Ex, JT-
KDE, Gumcop and Galamboscop).

From Fig. 14, we can observe that JT-KDE and the
Gumbel copula produce very similar conditional exceedance
curves and that their confidence intervals strongly overlap.
However, the conditional extremes model provides a lower
estimate than the other approaches, the number of wildfires
being conditional on the temperature being above a given
threshold.

In Table 7, we present the estimates (with bounds of the
95 % confidence interval) of the two dependence parameters
χ and η from the six models, providing a bit more insight into
the dependence structure. These estimates converge toward
a moderate asymptotic dependence varying from χ = 0.15
(Cond-Ex) to χ = 0.47 (Gumcop). Even if all models tend
to show asymptotic dependence between the two variables,
estimates of η are less than 1.0 for the normal copula, the JT-
KDE model and the Cond-Ex with values varying between
0.67 and 0.79. This still implies a positive association be-
tween the two variables.

5 Discussion and conclusions

Quantifying and measuring the interrelations between differ-
ent natural hazards is a key element when adopting a multi-
hazard approach (Gill and Malamud, 2014; Leonard et al.,
2014). In this study, we focused on statistical approaches
that are often used to characterize and model interrelations
between hazards. Another focus has been on modelling re-
lationships between hazards at an extreme level. In total
six statistical models with different characteristics (nature
of asymptotic dependence, parametric and semi-parametric)
were compared. Some of these models have already been
used to study compound extremes in hydrology and clima-
tology (Hao et al., 2018; Liu et al., 2018; Sadegh et al., 2018;

Cooley et al., 2019). However, these have not been compared
over a broad range of bivariate datasets and applied to the
same natural hazards in the same location.

This section will discuss the following three themes be-
fore a short conclusion: (a) choices influencing the results
of the simulation study, (b) uncertainties at the interface be-
tween asymptotic dependence and asymptotic independence,
and (c) possible extensions of this approach to more than two
hazards.

Choices influencing the results of the simulation study.
This study aimed to assess the fitting ability of several bi-
variate models to a broad range of datasets. In order to do
so, models were compared in their ability to reproduce an
extreme level curve (see Sect. 3.2.1). The level curve cor-
responding to the PAND probability has been selected as a
comparison point because it is commonly used in the litera-
ture and is relevant for practitioners. The choice of this level
curve and its shape could influence our results. The extreme
level curve probability was set at p = 0.001. The multivari-
ate regular variation framework (Resnick, 1987) provides ev-
idence supporting the fact that the dependence structure re-
mains identical in the whole extreme domain. However, some
results shown in Sect. 3.3 might have been influenced by the
value of the joint exceedance probability. In particular, it is
likely that when decreasing the level curve probability (i.e.
to more extreme values), the flexibility and abilities of the
asymptotically independent normal copula will decrease.

There are many copulas other than the four selected in this
study (Nelsen, 2006; Sadegh et al., 2017) that have been de-
veloped. Nevertheless, we believe the four copulas used in
this study are suitable for bivariate extreme value analysis
and are amongst the most widely used in the literature (Gen-
est and Favre, 2007; Genest and Nešlehová, 2013). Another
influential choice in this study has been the number of syn-
thetic data points generated in each realization of the dataset.

The number of data points and dataset size is an impor-
tant influence on uncertainty in natural hazard modelling and
probabilistic approaches (Frau et al., 2017; Liu et al., 2018).
For each simulation, we simulated n= 5000 data points.
Some other simulation studies took a higher number of data
points (Zheng et al., 2014; Cooley et al., 2019); however, we
replicated the simulation 100 times and produced confidence
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Figure 14. Level curves for a PAND joint probability p = 0.001 of daily mean temperature and daily number of wildfire occurrences in
Porto District, Portugal, for the period 1980–2005. Level curves from the four models selected through the model selection methodology are
displayed.

Table 7. Estimates of dependence parameters χ and η for mean daily temperature and daily occurrences of wildfire in Porto District for the
period 1980–2005.

Models Cond-Ex JT-KDE Gumcop Normalcop FGMcop Galamboscop

χ 0.15 [0.06, 0.20] 0.26 [0.21, 0.30] 0.47 [0.45, 0.49] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.46 [0.44, 0.49]
η 0.67 [0.59, 0.72] 0.67 [0.62, 0.71] 1.00 [1.00, 1.00] 0.79 [0.78, 0.80] 0.50 [0.50, 0.50] 1.00 [1.00, 1.00]

intervals, thus ensuring consistency of our results. We also
found that threshold selections, to fit the generalized Pareto
distributions of the marginal distributions and to estimate the
extremal dependence measures, have an influence on our re-
sults.

Uncertainties at the interface between asymptotic depen-
dence and asymptotic independence. From the results of the
simulation study (Sect. 3.3) and the two case study applica-
tions (Sect. 4), one can observe that the interface between
asymptotic dependence and asymptotic independence can be
unclear. In Sect. 3.3, we discussed the decrease in model per-
formance and the increase in uncertainty for low values of χ
and high values of η. Taking the assumption of asymptotic in-
dependence or asymptotic dependence can have a significant
impact on the estimation of joint return levels. We find that
extra care is required when dealing with bivariate datasets
which are near independence as in Sect. 4.1.

Possible extension of the approaches to more than two haz-
ards. As presented through this paper, the study of interrela-
tions between natural hazards has primarily been carried out
by hazard pairs (e.g. Gill and Malamud, 2014). Dependence
measures and a variety of different models or level curves, all
presented in this article, are powerful tools to assess, quan-

tify and model interrelations between two hazards. However,
in many cases, multi-hazard events include more than two
hazards interacting in various ways (e.g. Gill and Malamud,
2014; Leonard et al., 2014). The use of models presented in
this article can be extended to more than two variables, some-
times with disadvantages. One of these disadvantages is that
the parametric nature of copulas leads to a lack of flexibility
when going to higher dimensionality (Bevacqua et al., 2017;
Hao et al., 2018). The JT-KDE and Cond-Ex models are suit-
able for higher dimensions (Davison and Huser, 2015; Coo-
ley et al., 2019), although these have not been tested for high
dimensional multi-hazard modelling yet (Tilloy et al., 2019).

Recent research conducted suggest pair-copula construc-
tion (Bedford and Cooke, 2002; Hashemi et al., 2016; Be-
vacqua et al., 2017, Liu et al., 2018) and non-parametric
Bayesian networks (NPBNs; Hanea et al., 2015; Couasnon
et al., 2018) can be used to model multi-hazard events with
more than two hazards. The vine copula framework allows
one to select different bivariate copulas for each pair of
variables, providing a great flexibility in dependence mod-
elling (Brechmann and Schepsmeier, 2013; Hao and Singh,
2016). Non-parametric Bayesian networks, which are asso-
ciated with the structure of Bayesian networks and copulas
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(Hanea, 2010; Hanea et al., 2010, 2015), have been used
to study multiple dependences between river discharge and
storm surges in the USA during a hurricane (Couasnon et al.,
2018).

In conclusion, we have compared and examined the
strengths and weaknesses of six distinct bivariate extreme
models in the context of hazard interrelations. These six
models are grounded in multivariate extreme value the-
ory and represent the diversity of approaches (e.g. non-
parametric vs. parametric) currently applied to hazard inter-
relation analysis. With this study we aimed to contribute to a
better understanding of the applicability of bivariate extreme
models to a wide range of natural hazard interrelations. The
methodology developed in this article is aimed to be widely
applicable to a variety of different hazards and different in-
terrelations, here represented by the 60 synthetic datasets cre-
ated.

Abilities of each model have been assessed with two met-
rics: (i) dependence measure; (ii) bivariate return level (level
curves). These two metrics and the different diagnostic tools
developed in this study offer new intuitive ways to decipher
the dependence between two variables. We recommend se-
lecting a range of models rather than one when studying in-
terrelations between two hazards. To highlight the benefits
of the systematic framework developed, we studied the de-
pendence between extremes (natural hazards) of the follow-
ing environmental data: (i) daily precipitation accumulation
and daily maximum wind gust (maximum over a period of
3 s) at Heathrow Airport (UK) over the period 1971–2018
and (ii) daily mean temperature and daily number of wild-
fires in Porto District, Portugal, over the period 1980–2005.
The two datasets represent different hazard interrelations: (i)
compound interrelation between extreme wind and extreme
rainfall and (ii) change condition interrelation where higher
air temperatures change conditions for wildfire occurrence.
In both cases, a sample of the most relevant model among
the six used in this study has been selected and fitted to the
bivariate datasets. The good agreement in the estimation of
the bivariate return period between models corroborates the
relevance of the comparison metrics we developed.
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Appendix A: Comparing model abilities through tail
dependence measures

A1 Tail dependence measure estimations

Tail dependence measures η and χ are estimated by each
model. For copulas, these measures are related to the copula
parameters. In our set of four copulas, two are asymptotically
dependent (Gumbel and Galambos) with η = 1 and two are
asymptotically independent (normal and FGM) with χ = 0.

For the non-parametric joint tail approach, the χ and η
measures are estimated following the procedure used by
Winter (2016). For the conditional model, both measures are
estimated from the simulated points. Marginal distributions
(X1, X2) are transformed to the uniform margins (U1, U2).
The χ measure is estimated by calculating the probability
P(V > u|U > u) (Eq. 4). The η measure is estimated in two
steps. First we estimate χ(u) as (Coles et al., 1999)

χ (u)=
2logP(U > u)

logP (U > u, V > u)
− 1

=
2log(1− u)

log (χ (u)(1− u))
− 1 (A1)

for 0≤ u≤ 1, with u being a sufficiently high threshold. Sec-
ond, the η measure is estimated from χ (Eq. A1).

To compare the estimated dependence measure to the ref-
erence value, the root-mean-square error (RMSE), a measure
of efficiency that accounts for both the bias and variance in
the estimates, is used, similarly to Zheng et al. (2014). Sim-
ilarly to the metrics used in Sect. 3, the RMSE is calculated
from 100 realizations of the 60 datasets.

A2 Comparison of model abilities

The estimation of the dependence measure is an important
step in bivariate analysis (Coles et al., 1999; Heffernan, 2000;
Zheng et al., 2013, 2014; Dutfoy et al., 2014). Models have
also been compared on their ability to estimate the depen-
dence measures χ and η. Results arising from this compar-
ison provide a different perspective on the abilities of each
model. Figure A1 shows the RMSE of the dependence mea-
sure estimations for each of the 60 synthetic datasets.

From Fig. A1, we observe the following:

– Marginal distributions do not have a significant impact
on the accuracy of the estimation of these measures for
the copulas.

– Marginal distributions have a small impact on the esti-
mation of the dependence measures for the conditional
extremes model and the joint tail model; however this
impact is not as important as for the level curve estima-
tion.

– All copulas estimate very accurately the dependence
measure within their operating range (AI for normal

copula, near independence for FGM copula and AD
for Gumbel and Galambos copulas). However, only the
conditional extremes model and the joint tail model can
estimate both η and χ .

– The dependence measure estimator used in the joint tail
KDE approach offers slightly more accurate estimation,
particularly for η.

– Estimation performance of both joint tail KDE and con-
dition extreme models decreases when approaching the
interface between asymptotic dependence and asymp-
totic independence. The RMSE at χ = 0.05 is close to
100 % of the value of χ while the RMSE at η = 0.9 is at
its highest for both the Cond-Ex and JT-KDE models.
It is then hard to decipher with confidence the nature
of the dependence in the asymptotic domain for low χ

values and high η values.
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Figure A1. RMSE (root-mean-square error) in the estimated dependence measures compared to the reference for all 60 different datasets.
Fitting capacities of each model are represented. Values in cells and colours represent the median RMSE from low (dark green) to high (red).
Thickness of cell borders represent the 95 % uncertainty around the median value.
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