Articles | Volume 19, issue 3
https://doi.org/10.5194/nhess-19-551-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-19-551-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Preface: Damage of natural hazards: assessment and mitigation
Heidi Kreibich
CORRESPONDING AUTHOR
German Research Centre for Geosciences GFZ, Section Hydrology, Potsdam,
Germany
Thomas Thaler
Institute of Mountain Risk Engineering, University of Natural Resources
and Life Sciences (BOKU), Vienna, Austria
Thomas Glade
Department of Geography and Regional Research, University of Vienna,
Vienna, Austria
Daniela Molinari
Department of Civil and Environmental Engineering, Politecnico di Milano,
Milan, Italy
Related authors
Kasra Rafiezadeh Shahi, Nivedita Sairam, Lukas Schoppa, Le Thanh Sang, Do Ly Hoai Tan, and Heidi Kreibich
EGUsphere, https://doi.org/10.22541/essoar.172081523.38063336/v1, https://doi.org/10.22541/essoar.172081523.38063336/v1, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Ho Chi Minh City (HCMC) faces severe flood risks from climatic and socio-economic changes, requiring effective adaptation solutions. Flood loss estimation is crucial, but advanced probabilistic models addressing key drivers and uncertainty are lacking. This study presents a probabilistic flood loss model with a feature selection paradigm for HCMC’s residential sector. Experiments using new survey data from flood-affected households demonstrate the model's superior performance.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-183, https://doi.org/10.5194/nhess-2024-183, 2024
Preprint under review for NHESS
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
EGUsphere, https://doi.org/10.5194/egusphere-2024-2556, https://doi.org/10.5194/egusphere-2024-2556, 2024
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
EGUsphere, https://doi.org/10.5194/egusphere-2024-2340, https://doi.org/10.5194/egusphere-2024-2340, 2024
Short summary
Short summary
Many households in Vietnam depend on revenues from microbusinesses (shop-houses). However, losses caused by regular flooding to the microbusinesses are not modelled. Business turnover, building age and water depth are found to be the main drivers of flood losses to microbusinesses. We built and validated probabilistic models (Non-parametric Bayesian Networks) that estimate flood losses to microbusinesses. The results help in flood risk management and adaption decision making for microbusinesses.
Belinda Rhein and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2024-2066, https://doi.org/10.5194/egusphere-2024-2066, 2024
Short summary
Short summary
The 2021 flood killed 190 people in Germany, 134 of them in the Ahr valley, making it the deadliest flood in recent German history. The flash flood was extreme in terms of water levels, flow velocities and flood extent, early warning and evacuation were inadequate. Many died on the ground floor or in the street, with older and impaired individuals especially vulnerable. Clear warnings should urge people to seek safety rather than save belongings, and timely evacuations are essential.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1588, https://doi.org/10.5194/egusphere-2024-1588, 2024
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated all farmers' individual choices—like changing crops or digging wells—and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damages. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrology models in shaping policies to lessen drought impacts.
Seth Bryant, Heidi Kreibich, and Bruno Merz
Proc. IAHS, 386, 181–187, https://doi.org/10.5194/piahs-386-181-2024, https://doi.org/10.5194/piahs-386-181-2024, 2024
Short summary
Short summary
Our study found that simplifying data in flood risk models can introduce errors. We tested 344 damage functions and found errors up to 40 % of the total asset value. This means large-scale flood risk assessments may have significant errors due to the modelling approach. Our research highlights the need for more attention to data aggregation in flood risk models.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 23, 1125–1138, https://doi.org/10.5194/nhess-23-1125-2023, https://doi.org/10.5194/nhess-23-1125-2023, 2023
Short summary
Short summary
Coastal Asian cities are becoming more vulnerable to flooding. In this study we analyse the data collected from flood-prone houses in Ho Chi Minh City to identify what motivates the households to adopt flood precautionary measures. The results revealed that educating the households about the available flood precautionary measures and communicating the flood protection measures taken by the government encourage the households to adopt measures without having to experience multiple flood events.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Brunella Bonaccorso, Carmelo Cammalleri, Athanasios Loukas, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 1857–1862, https://doi.org/10.5194/nhess-22-1857-2022, https://doi.org/10.5194/nhess-22-1857-2022, 2022
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Annegret H. Thieken, Guilherme Samprogna Mohor, Heidi Kreibich, and Meike Müller
Nat. Hazards Earth Syst. Sci., 22, 165–185, https://doi.org/10.5194/nhess-22-165-2022, https://doi.org/10.5194/nhess-22-165-2022, 2022
Short summary
Short summary
Various floods hit Germany recently. While there was a river flood with some dike breaches in 2013, flooding in 2016 resulted directly from heavy rainfall, causing overflowing drainage systems in urban areas and destructive flash floods in steep catchments. Based on survey data, we analysed how residents coped with these different floods. We observed significantly different flood impacts, warnings, behaviour and recovery, offering entry points for tailored risk communication and support.
Valeria Cigala, Giulia Roder, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 85–96, https://doi.org/10.5194/nhess-22-85-2022, https://doi.org/10.5194/nhess-22-85-2022, 2022
Short summary
Short summary
Non-male scientists constitute a minority in the geoscience professional environment, and they are underrepresented in disaster risk reduction planning. So far the international agenda has failed to effectively promote gender inclusion in disaster policy, preventing non-male scientists from career development and recognition. Here we share the thoughts, experiences, and priorities of women and non-binary scientists as a starting point to expand the discourse and promote intersectional research.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Marco Cerri, Max Steinhausen, Heidi Kreibich, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 21, 643–662, https://doi.org/10.5194/nhess-21-643-2021, https://doi.org/10.5194/nhess-21-643-2021, 2021
Short summary
Short summary
Effective flood management requires information about the potential consequences of flooding. We show how openly accessible data from OpenStreetMap can support the estimation of flood damage for residential buildings. Working with methods of machine learning, the building geometry is used to predict flood damage in combination with information about inundation depth. Our approach makes it easier to transfer models to regions where no detailed data of flood impacts have been observed yet.
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Sergiy Vorogushyn, Björn Guse, Heidi Kreibich, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, https://doi.org/10.5194/nhess-20-967-2020, 2020
Short summary
Short summary
For effective risk management, flood risk should be properly assessed. Traditionally, risk is assessed by making the assumption of invariant flow or loss probabilities (the chance that a given discharge or loss is exceeded) within the river catchment during a single flood event. However, in reality, flooding is more severe in some regions than others. This study indicates the importance of representing the spatial dependence of flood peaks and damage for risk assessments.
Dominik Paprotny, Heidi Kreibich, Oswaldo Morales-Nápoles, Paweł Terefenko, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 20, 323–343, https://doi.org/10.5194/nhess-20-323-2020, https://doi.org/10.5194/nhess-20-323-2020, 2020
Short summary
Short summary
Houses and their contents in Europe are worth trillions of euros, resulting in high losses from natural hazards. Hence, risk assessments need to reliably estimate the size and value of houses, including the value of durable goods kept inside. In this work we show how openly available or open datasets can be used to predict the size of individual residential buildings. Further, we provide standardized monetary values of houses and contents per square metre of floor space for 30 countries.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Björn Guse, Heiko Apel, Heidi Kreibich, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 18, 3089–3108, https://doi.org/10.5194/nhess-18-3089-2018, https://doi.org/10.5194/nhess-18-3089-2018, 2018
Short summary
Short summary
We present a comprehensive sensitivity analysis considering changes along the complete flood risk chain to understand how changes in different drivers affect flood risk. Results show that changes in dike systems or in vulnerability may outweigh changes in often investigated components, such as climate change. Although the specific results are conditional on the case study and assumptions, they highlight the need for a broader consideration of potential drivers of change in a comprehensive way.
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Francesca Carisi, Kai Schröter, Alessio Domeneghetti, Heidi Kreibich, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 18, 2057–2079, https://doi.org/10.5194/nhess-18-2057-2018, https://doi.org/10.5194/nhess-18-2057-2018, 2018
Short summary
Short summary
By analyzing a comprehensive loss dataset of affected private households after a recent river flood event in northern Italy, we tackle the problem of flood damage estimation in Emilia-Romagna (Italy). We develop empirical uni- and multivariable loss models for the residential sector. Outcomes highlight that the latter seem to outperform the former and, in addition, results show a higher accuracy of univariable models based on local data compared to literature ones derived for different contexts.
Marlies Holkje Barendrecht, Alberto Viglione, Heidi Kreibich, Sergiy Vorogushyn, Bruno Merz, and Günter Blöschl
Proc. IAHS, 379, 193–198, https://doi.org/10.5194/piahs-379-193-2018, https://doi.org/10.5194/piahs-379-193-2018, 2018
Short summary
Short summary
The aim of this paper is to assess whether a Socio-Hydrological model can be calibrated to data artificially generated from it. This is not trivial because the model is highly nonlinear and it is not clear what amount of data would be needed for calibration. We demonstrate that, using Bayesian inference, the parameters of the model can be estimated quite accurately from relatively few data, which could be available in real case studies.
Rui Figueiredo, Kai Schröter, Alexander Weiss-Motz, Mario L. V. Martina, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 18, 1297–1314, https://doi.org/10.5194/nhess-18-1297-2018, https://doi.org/10.5194/nhess-18-1297-2018, 2018
Short summary
Short summary
Flood loss modelling is subject to large uncertainty that is often neglected. Most models are deterministic, and large disparities exist among them. Adopting a single model may lead to inaccurate loss estimates and sub-optimal decision-making. This paper proposes the use of multi-model ensembles to address such issues. We demonstrate that this can be a simple and pragmatic approach to obtain more accurate loss estimates and reliable probability distributions of model uncertainty.
Kai Schröter, Daniela Molinari, Michael Kunz, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 18, 963–968, https://doi.org/10.5194/nhess-18-963-2018, https://doi.org/10.5194/nhess-18-963-2018, 2018
Heidi Kreibich, Meike Müller, Kai Schröter, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 17, 2075–2092, https://doi.org/10.5194/nhess-17-2075-2017, https://doi.org/10.5194/nhess-17-2075-2017, 2017
Short summary
Short summary
Early warning is essential for protecting people and mitigating damage in case of flood events. To gain more knowledge, surveys were taken after the 2002 and the 2013 floods in Germany. Results show that early warning and preparedness improved substantially. However, there is still room for further improvement, which needs to be triggered mainly by effective risk and emergency communication.
Matthieu Spekkers, Viktor Rözer, Annegret Thieken, Marie-Claire ten Veldhuis, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 17, 1337–1355, https://doi.org/10.5194/nhess-17-1337-2017, https://doi.org/10.5194/nhess-17-1337-2017, 2017
Annegret H. Thieken, Tina Bessel, Sarah Kienzler, Heidi Kreibich, Meike Müller, Sebastian Pisi, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 16, 1519–1540, https://doi.org/10.5194/nhess-16-1519-2016, https://doi.org/10.5194/nhess-16-1519-2016, 2016
Short summary
Short summary
In June 2013, widespread flooding and consequent damage and losses occurred in central Europe, especially in Germany. The paper explores what data are available to investigate the adverse impacts of the event, what kind of information can be retrieved from these data, and how good data and information fulfil requirements that were recently proposed for disaster reporting on the European and international level, e.g. by the Sendai Framework for Disaster Risk Reduction 2015–2030.
Heidi Kreibich, Kai Schröter, and Bruno Merz
Proc. IAHS, 373, 179–182, https://doi.org/10.5194/piahs-373-179-2016, https://doi.org/10.5194/piahs-373-179-2016, 2016
Philip Bubeck, Jeroen C. J. H. Aerts, Hans de Moel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 16, 1005–1010, https://doi.org/10.5194/nhess-16-1005-2016, https://doi.org/10.5194/nhess-16-1005-2016, 2016
J. Fohringer, D. Dransch, H. Kreibich, and K. Schröter
Nat. Hazards Earth Syst. Sci., 15, 2725–2738, https://doi.org/10.5194/nhess-15-2725-2015, https://doi.org/10.5194/nhess-15-2725-2015, 2015
Short summary
Short summary
During and shortly after a disaster, data about the hazard and its consequences are scarce and not readily available. This research proposes a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in the case of floods. The case study of the June 2013 flood in the city of Dresden shows that social media may help to bridge the information gap when traditional data sources are lacking or are sparse.
S. Kienzler, I. Pech, H. Kreibich, M. Müller, and A. H. Thieken
Nat. Hazards Earth Syst. Sci., 15, 505–526, https://doi.org/10.5194/nhess-15-505-2015, https://doi.org/10.5194/nhess-15-505-2015, 2015
P. Hudson, W. J. W. Botzen, H. Kreibich, P. Bubeck, and J. C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 14, 1731–1747, https://doi.org/10.5194/nhess-14-1731-2014, https://doi.org/10.5194/nhess-14-1731-2014, 2014
I. Seifert, W. J. W. Botzen, H. Kreibich, and J. C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 13, 1691–1705, https://doi.org/10.5194/nhess-13-1691-2013, https://doi.org/10.5194/nhess-13-1691-2013, 2013
V. Meyer, N. Becker, V. Markantonis, R. Schwarze, J. C. J. M. van den Bergh, L. M. Bouwer, P. Bubeck, P. Ciavola, E. Genovese, C. Green, S. Hallegatte, H. Kreibich, Q. Lequeux, I. Logar, E. Papyrakis, C. Pfurtscheller, J. Poussin, V. Przyluski, A. H. Thieken, and C. Viavattene
Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, https://doi.org/10.5194/nhess-13-1351-2013, 2013
B. Merz, H. Kreibich, and U. Lall
Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, https://doi.org/10.5194/nhess-13-53-2013, 2013
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Kasra Rafiezadeh Shahi, Nivedita Sairam, Lukas Schoppa, Le Thanh Sang, Do Ly Hoai Tan, and Heidi Kreibich
EGUsphere, https://doi.org/10.22541/essoar.172081523.38063336/v1, https://doi.org/10.22541/essoar.172081523.38063336/v1, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Ho Chi Minh City (HCMC) faces severe flood risks from climatic and socio-economic changes, requiring effective adaptation solutions. Flood loss estimation is crucial, but advanced probabilistic models addressing key drivers and uncertainty are lacking. This study presents a probabilistic flood loss model with a feature selection paradigm for HCMC’s residential sector. Experiments using new survey data from flood-affected households demonstrate the model's superior performance.
Marta Ballocci, Daniela Molinari, Giovanni Marin, Marta Galliani, Alessio Domeneghetti, Giovanni Menduni, Simone Sterlacchini, and Francesco Ballio
EGUsphere, https://doi.org/10.5194/egusphere-2024-3017, https://doi.org/10.5194/egusphere-2024-3017, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study estimates flood direct damage to businesses in Italy using 812 damage records from five riverine flood case studies. A multiple regression model predicts economic damage based on business size, water depth, and economic sectors. The results show that damage increases non-proportionally with firm size, while water depth mainly affects stock damage. Healthcare, commercial, and manufacturing sectors are most vulnerable to building, stock, and equipment damage, respectively.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-183, https://doi.org/10.5194/nhess-2024-183, 2024
Preprint under review for NHESS
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Cristina Prieto, Dhruvesh Patel, Dawei Han, Benjamin Dewals, Michaela Bray, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 24, 3381–3386, https://doi.org/10.5194/nhess-24-3381-2024, https://doi.org/10.5194/nhess-24-3381-2024, 2024
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
EGUsphere, https://doi.org/10.5194/egusphere-2024-2556, https://doi.org/10.5194/egusphere-2024-2556, 2024
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
EGUsphere, https://doi.org/10.5194/egusphere-2024-2340, https://doi.org/10.5194/egusphere-2024-2340, 2024
Short summary
Short summary
Many households in Vietnam depend on revenues from microbusinesses (shop-houses). However, losses caused by regular flooding to the microbusinesses are not modelled. Business turnover, building age and water depth are found to be the main drivers of flood losses to microbusinesses. We built and validated probabilistic models (Non-parametric Bayesian Networks) that estimate flood losses to microbusinesses. The results help in flood risk management and adaption decision making for microbusinesses.
Belinda Rhein and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2024-2066, https://doi.org/10.5194/egusphere-2024-2066, 2024
Short summary
Short summary
The 2021 flood killed 190 people in Germany, 134 of them in the Ahr valley, making it the deadliest flood in recent German history. The flash flood was extreme in terms of water levels, flow velocities and flood extent, early warning and evacuation were inadequate. Many died on the ground floor or in the street, with older and impaired individuals especially vulnerable. Clear warnings should urge people to seek safety rather than save belongings, and timely evacuations are essential.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1588, https://doi.org/10.5194/egusphere-2024-1588, 2024
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated all farmers' individual choices—like changing crops or digging wells—and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damages. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrology models in shaping policies to lessen drought impacts.
Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 24, 1681–1696, https://doi.org/10.5194/nhess-24-1681-2024, https://doi.org/10.5194/nhess-24-1681-2024, 2024
Short summary
Short summary
INSYDE 2.0 is a tool for modelling flood damage to residential buildings. By incorporating ultra-detailed survey and desk-based data, it improves the reliability and informativeness of damage assessments while addressing input data uncertainties.
Natasha Petruccelli, Luca Mantecchini, Alice Gallazzi, Daniela Molinari, Mohammed Hammouti, Marco Zazzeri, Simone Sterlacchini, Francesco Ballio, Armando Brath, and Alessio Domeneghetti
Proc. IAHS, 385, 407–413, https://doi.org/10.5194/piahs-385-407-2024, https://doi.org/10.5194/piahs-385-407-2024, 2024
Short summary
Short summary
The study illustrates the methodology developed for flood risk assessment for road and railway infrastructures. Through the creation of a detailed database, using different data sources, and the definition of a risk matrix, a risk level (High, Medium, Low and Null) is assigned to each section, considering the physical and functional characteristics of the infrastructure, as well as its relevance and the magnitude of the expected event.
Seth Bryant, Heidi Kreibich, and Bruno Merz
Proc. IAHS, 386, 181–187, https://doi.org/10.5194/piahs-386-181-2024, https://doi.org/10.5194/piahs-386-181-2024, 2024
Short summary
Short summary
Our study found that simplifying data in flood risk models can introduce errors. We tested 344 damage functions and found errors up to 40 % of the total asset value. This means large-scale flood risk assessments may have significant errors due to the modelling approach. Our research highlights the need for more attention to data aggregation in flood risk models.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Panagiotis Asaridis and Daniela Molinari
Adv. Geosci., 61, 1–21, https://doi.org/10.5194/adgeo-61-1-2023, https://doi.org/10.5194/adgeo-61-1-2023, 2023
Short summary
Short summary
This paper presents a conceptual model for the estimation of flood damage to power grids and reviews the available methodologies, to better understand current modelling approaches, challenges, and limitations. The model adopts an interdisciplinary and multi-scale evaluation approach to handle the complex damage mechanisms and capture the cascading effects. In doing so, it adapts to different geographical and economic contexts, allowing stakeholders to implement comprehensive damage assessments.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 23, 1125–1138, https://doi.org/10.5194/nhess-23-1125-2023, https://doi.org/10.5194/nhess-23-1125-2023, 2023
Short summary
Short summary
Coastal Asian cities are becoming more vulnerable to flooding. In this study we analyse the data collected from flood-prone houses in Ho Chi Minh City to identify what motivates the households to adopt flood precautionary measures. The results revealed that educating the households about the available flood precautionary measures and communicating the flood protection measures taken by the government encourage the households to adopt measures without having to experience multiple flood events.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Tommaso Simonelli, Laura Zoppi, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022, https://doi.org/10.5194/nhess-22-1819-2022, 2022
Short summary
Short summary
The paper discusses challenges (and solutions) emerged during a collaboration among practitioners, stakeholders, and scientists in the definition of flood damage maps in the Po River District. Social aspects were proven to be fundamental components of the risk assessment; variety of competences in the working group was key in finding solutions and revealing weaknesses of intermediate proposals. This paper finally highlights the need of duplicating such an experience at a broader European level.
Brunella Bonaccorso, Carmelo Cammalleri, Athanasios Loukas, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 1857–1862, https://doi.org/10.5194/nhess-22-1857-2022, https://doi.org/10.5194/nhess-22-1857-2022, 2022
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Annegret H. Thieken, Guilherme Samprogna Mohor, Heidi Kreibich, and Meike Müller
Nat. Hazards Earth Syst. Sci., 22, 165–185, https://doi.org/10.5194/nhess-22-165-2022, https://doi.org/10.5194/nhess-22-165-2022, 2022
Short summary
Short summary
Various floods hit Germany recently. While there was a river flood with some dike breaches in 2013, flooding in 2016 resulted directly from heavy rainfall, causing overflowing drainage systems in urban areas and destructive flash floods in steep catchments. Based on survey data, we analysed how residents coped with these different floods. We observed significantly different flood impacts, warnings, behaviour and recovery, offering entry points for tailored risk communication and support.
Valeria Cigala, Giulia Roder, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 85–96, https://doi.org/10.5194/nhess-22-85-2022, https://doi.org/10.5194/nhess-22-85-2022, 2022
Short summary
Short summary
Non-male scientists constitute a minority in the geoscience professional environment, and they are underrepresented in disaster risk reduction planning. So far the international agenda has failed to effectively promote gender inclusion in disaster policy, preventing non-male scientists from career development and recognition. Here we share the thoughts, experiences, and priorities of women and non-binary scientists as a starting point to expand the discourse and promote intersectional research.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Marco Cerri, Max Steinhausen, Heidi Kreibich, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 21, 643–662, https://doi.org/10.5194/nhess-21-643-2021, https://doi.org/10.5194/nhess-21-643-2021, 2021
Short summary
Short summary
Effective flood management requires information about the potential consequences of flooding. We show how openly accessible data from OpenStreetMap can support the estimation of flood damage for residential buildings. Working with methods of machine learning, the building geometry is used to predict flood damage in combination with information about inundation depth. Our approach makes it easier to transfer models to regions where no detailed data of flood impacts have been observed yet.
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Marta Galliani, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2937–2941, https://doi.org/10.5194/nhess-20-2937-2020, https://doi.org/10.5194/nhess-20-2937-2020, 2020
Short summary
Short summary
INSYDE is a multivariable synthetic model for flood damage assessment of dwellings. The analysis and use of this model highlighted some weaknesses, linked to its complexity, that can undermine its usability and correct implementation. This study proposes a simplified version of INSYDE which maintains its multivariable and synthetic nature but has simpler mathematical formulations permitting an easier use and a direct analysis of the relation between damage and its explanatory variables.
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Charlotte Heinzlef, Bruno Barocca, Mattia Leone, Thomas Glade, and Damien Serre
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-217, https://doi.org/10.5194/nhess-2020-217, 2020
Preprint withdrawn
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Sergiy Vorogushyn, Björn Guse, Heidi Kreibich, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, https://doi.org/10.5194/nhess-20-967-2020, 2020
Short summary
Short summary
For effective risk management, flood risk should be properly assessed. Traditionally, risk is assessed by making the assumption of invariant flow or loss probabilities (the chance that a given discharge or loss is exceeded) within the river catchment during a single flood event. However, in reality, flooding is more severe in some regions than others. This study indicates the importance of representing the spatial dependence of flood peaks and damage for risk assessments.
Thomas Thaler
Geogr. Helv., 75, 19–21, https://doi.org/10.5194/gh-75-19-2020, https://doi.org/10.5194/gh-75-19-2020, 2020
Dominik Paprotny, Heidi Kreibich, Oswaldo Morales-Nápoles, Paweł Terefenko, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 20, 323–343, https://doi.org/10.5194/nhess-20-323-2020, https://doi.org/10.5194/nhess-20-323-2020, 2020
Short summary
Short summary
Houses and their contents in Europe are worth trillions of euros, resulting in high losses from natural hazards. Hence, risk assessments need to reliably estimate the size and value of houses, including the value of durable goods kept inside. In this work we show how openly available or open datasets can be used to predict the size of individual residential buildings. Further, we provide standardized monetary values of houses and contents per square metre of floor space for 30 countries.
Daniela Molinari, Anna Rita Scorzini, Alice Gallazzi, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 19, 2565–2582, https://doi.org/10.5194/nhess-19-2565-2019, https://doi.org/10.5194/nhess-19-2565-2019, 2019
Short summary
Short summary
The paper presents AGRIDE-c: a conceptual model for the estimation of flood damage to crops. The model estimates both the physical damage on the plants and its economic consequences on the income of the farmers. This allows AGRIDE-c to support effective damage mitigation strategies, at both public and individual farmer levels. The model can be adapted to different geographical and economic contexts, as exemplified by its implementation for the context of northern Italy.
Matthias Schlögl, Gerald Richter, Michael Avian, Thomas Thaler, Gerhard Heiss, Gernot Lenz, and Sven Fuchs
Nat. Hazards Earth Syst. Sci., 19, 201–219, https://doi.org/10.5194/nhess-19-201-2019, https://doi.org/10.5194/nhess-19-201-2019, 2019
Short summary
Short summary
Landslides are destructive events, threatening the integrity of land transport systems. This paper presents how road networks are vulnerable to landslides, with emphasis on the consequences for affected road users. Results show the merits of using agent-based traffic modelling to assess the impacts of road network interruptions on rural communities by providing insights into the characteristics of the population affected and the effects on its daily routine in terms of detour costs.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Björn Guse, Heiko Apel, Heidi Kreibich, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 18, 3089–3108, https://doi.org/10.5194/nhess-18-3089-2018, https://doi.org/10.5194/nhess-18-3089-2018, 2018
Short summary
Short summary
We present a comprehensive sensitivity analysis considering changes along the complete flood risk chain to understand how changes in different drivers affect flood risk. Results show that changes in dike systems or in vulnerability may outweigh changes in often investigated components, such as climate change. Although the specific results are conditional on the case study and assumptions, they highlight the need for a broader consideration of potential drivers of change in a comprehensive way.
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Ekrem Canli, Martin Mergili, Benni Thiebes, and Thomas Glade
Nat. Hazards Earth Syst. Sci., 18, 2183–2202, https://doi.org/10.5194/nhess-18-2183-2018, https://doi.org/10.5194/nhess-18-2183-2018, 2018
Short summary
Short summary
Regional-scale landslide forecasting traditionally strongly relies on empirical approaches and landslide-triggering rainfall thresholds. Today, probabilistic methods utilizing ensemble predictions are frequently used for flood forecasting. In our study, we specify how such an approach could also be applied for landslide forecasts and for operational landslide forecasting and early warning systems. To this end, we implemented a physically based landslide model in a probabilistic framework.
Francesca Carisi, Kai Schröter, Alessio Domeneghetti, Heidi Kreibich, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 18, 2057–2079, https://doi.org/10.5194/nhess-18-2057-2018, https://doi.org/10.5194/nhess-18-2057-2018, 2018
Short summary
Short summary
By analyzing a comprehensive loss dataset of affected private households after a recent river flood event in northern Italy, we tackle the problem of flood damage estimation in Emilia-Romagna (Italy). We develop empirical uni- and multivariable loss models for the residential sector. Outcomes highlight that the latter seem to outperform the former and, in addition, results show a higher accuracy of univariable models based on local data compared to literature ones derived for different contexts.
Marlies Holkje Barendrecht, Alberto Viglione, Heidi Kreibich, Sergiy Vorogushyn, Bruno Merz, and Günter Blöschl
Proc. IAHS, 379, 193–198, https://doi.org/10.5194/piahs-379-193-2018, https://doi.org/10.5194/piahs-379-193-2018, 2018
Short summary
Short summary
The aim of this paper is to assess whether a Socio-Hydrological model can be calibrated to data artificially generated from it. This is not trivial because the model is highly nonlinear and it is not clear what amount of data would be needed for calibration. We demonstrate that, using Bayesian inference, the parameters of the model can be estimated quite accurately from relatively few data, which could be available in real case studies.
Rui Figueiredo, Kai Schröter, Alexander Weiss-Motz, Mario L. V. Martina, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 18, 1297–1314, https://doi.org/10.5194/nhess-18-1297-2018, https://doi.org/10.5194/nhess-18-1297-2018, 2018
Short summary
Short summary
Flood loss modelling is subject to large uncertainty that is often neglected. Most models are deterministic, and large disparities exist among them. Adopting a single model may lead to inaccurate loss estimates and sub-optimal decision-making. This paper proposes the use of multi-model ensembles to address such issues. We demonstrate that this can be a simple and pragmatic approach to obtain more accurate loss estimates and reliable probability distributions of model uncertainty.
Kai Schröter, Daniela Molinari, Michael Kunz, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 18, 963–968, https://doi.org/10.5194/nhess-18-963-2018, https://doi.org/10.5194/nhess-18-963-2018, 2018
Heidi Kreibich, Meike Müller, Kai Schröter, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 17, 2075–2092, https://doi.org/10.5194/nhess-17-2075-2017, https://doi.org/10.5194/nhess-17-2075-2017, 2017
Short summary
Short summary
Early warning is essential for protecting people and mitigating damage in case of flood events. To gain more knowledge, surveys were taken after the 2002 and the 2013 floods in Germany. Results show that early warning and preparedness improved substantially. However, there is still room for further improvement, which needs to be triggered mainly by effective risk and emergency communication.
Daniela Molinari, Karin De Bruijn, Jessica Castillo, Giuseppe T. Aronica, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-303, https://doi.org/10.5194/nhess-2017-303, 2017
Preprint retracted
Short summary
Short summary
Flood risk estimates are characterised by significant uncertainties; accordingly, evaluating the reliability of such estimates (i.e. validating flood risk models) is crucial. Here, we discuss the state of art of flood risk models validation with the aim of identifying policy and research recommendations towards promoting more common practice of validation. The main conclusions from this review can be summarised as the need of higher quality data to perform validation and of benchmark solutions.
Matthieu Spekkers, Viktor Rözer, Annegret Thieken, Marie-Claire ten Veldhuis, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 17, 1337–1355, https://doi.org/10.5194/nhess-17-1337-2017, https://doi.org/10.5194/nhess-17-1337-2017, 2017
Sven Fuchs, Margreth Keiler, and Thomas Glade
Nat. Hazards Earth Syst. Sci., 17, 1203–1206, https://doi.org/10.5194/nhess-17-1203-2017, https://doi.org/10.5194/nhess-17-1203-2017, 2017
Sven Fuchs, Konstantinos Karagiorgos, Kyriaki Kitikidou, Fotios Maris, Spyridon Paparrizos, and Thomas Thaler
Hydrol. Earth Syst. Sci., 21, 3183–3198, https://doi.org/10.5194/hess-21-3183-2017, https://doi.org/10.5194/hess-21-3183-2017, 2017
Short summary
Short summary
Flood risk management often overlooks public perception of the hazard, and, therefore, many risk management plans have failed. This paper examines the private adaptation capacity and willingness with respect to flood hazards as one reason for this failure. Based on the results of our case studies in Greece, key issues to be addressed were identified and improvements are being recommended for the social dimension surrounding the implementation of flood risk management plans.
Scira Menoni, Daniela Molinari, Francesco Ballio, Guido Minucci, Ouejdane Mejri, Funda Atun, Nicola Berni, and Claudia Pandolfo
Nat. Hazards Earth Syst. Sci., 16, 2783–2797, https://doi.org/10.5194/nhess-16-2783-2016, https://doi.org/10.5194/nhess-16-2783-2016, 2016
Short summary
Short summary
This paper presents a model to develop multipurpose complete event scenarios, which address all the needs that arise after a disaster. In detail, such scenarios (i) are multisectoral, (ii) address the spatial scales relevant for the event at stake, (iii) consider the temporal evolution of damage and (iv) allow damage mechanisms to be understood. The model allows flood mitigation strategies to be optimized, as proved by its use in a case study.
Stefan Steger, Alexander Brenning, Rainer Bell, and Thomas Glade
Nat. Hazards Earth Syst. Sci., 16, 2729–2745, https://doi.org/10.5194/nhess-16-2729-2016, https://doi.org/10.5194/nhess-16-2729-2016, 2016
Short summary
Short summary
This study investigates the propagation of landslide inventory-based positional errors into statistical landslide susceptibility models by artificially introducing such spatial inaccuracies. The findings highlight that (i) an increasing positional error is related to increasing distortions of modelling and validation results, (ii) interrelations between inventory-based errors and modelling results are complex, and (iii) inventory-based errors can be counteracted by adapting the study design.
Francesco Dottori, Rui Figueiredo, Mario L. V. Martina, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 16, 2577–2591, https://doi.org/10.5194/nhess-16-2577-2016, https://doi.org/10.5194/nhess-16-2577-2016, 2016
Short summary
Short summary
INSYDE is a new synthetic flood damage model based on a component-by-component analysis of physical damage to buildings. The damage functions are designed using an expert-based approach with the support of existing scientific and technical literature, loss adjustment studies, and damage surveys. The model structure is designed to be transparent and flexible, and therefore it can be applied in different geographical contexts.
Annegret H. Thieken, Tina Bessel, Sarah Kienzler, Heidi Kreibich, Meike Müller, Sebastian Pisi, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 16, 1519–1540, https://doi.org/10.5194/nhess-16-1519-2016, https://doi.org/10.5194/nhess-16-1519-2016, 2016
Short summary
Short summary
In June 2013, widespread flooding and consequent damage and losses occurred in central Europe, especially in Germany. The paper explores what data are available to investigate the adverse impacts of the event, what kind of information can be retrieved from these data, and how good data and information fulfil requirements that were recently proposed for disaster reporting on the European and international level, e.g. by the Sendai Framework for Disaster Risk Reduction 2015–2030.
Heidi Kreibich, Kai Schröter, and Bruno Merz
Proc. IAHS, 373, 179–182, https://doi.org/10.5194/piahs-373-179-2016, https://doi.org/10.5194/piahs-373-179-2016, 2016
Philip Bubeck, Jeroen C. J. H. Aerts, Hans de Moel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 16, 1005–1010, https://doi.org/10.5194/nhess-16-1005-2016, https://doi.org/10.5194/nhess-16-1005-2016, 2016
J. Fohringer, D. Dransch, H. Kreibich, and K. Schröter
Nat. Hazards Earth Syst. Sci., 15, 2725–2738, https://doi.org/10.5194/nhess-15-2725-2015, https://doi.org/10.5194/nhess-15-2725-2015, 2015
Short summary
Short summary
During and shortly after a disaster, data about the hazard and its consequences are scarce and not readily available. This research proposes a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in the case of floods. The case study of the June 2013 flood in the city of Dresden shows that social media may help to bridge the information gap when traditional data sources are lacking or are sparse.
S. Kienzler, I. Pech, H. Kreibich, M. Müller, and A. H. Thieken
Nat. Hazards Earth Syst. Sci., 15, 505–526, https://doi.org/10.5194/nhess-15-505-2015, https://doi.org/10.5194/nhess-15-505-2015, 2015
P. Hudson, W. J. W. Botzen, H. Kreibich, P. Bubeck, and J. C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 14, 1731–1747, https://doi.org/10.5194/nhess-14-1731-2014, https://doi.org/10.5194/nhess-14-1731-2014, 2014
D. Molinari, S. Menoni, G. T. Aronica, F. Ballio, N. Berni, C. Pandolfo, M. Stelluti, and G. Minucci
Nat. Hazards Earth Syst. Sci., 14, 901–916, https://doi.org/10.5194/nhess-14-901-2014, https://doi.org/10.5194/nhess-14-901-2014, 2014
H. Petschko, A. Brenning, R. Bell, J. Goetz, and T. Glade
Nat. Hazards Earth Syst. Sci., 14, 95–118, https://doi.org/10.5194/nhess-14-95-2014, https://doi.org/10.5194/nhess-14-95-2014, 2014
B. Schwendtner, M. Papathoma-Köhle, and T. Glade
Nat. Hazards Earth Syst. Sci., 13, 2195–2207, https://doi.org/10.5194/nhess-13-2195-2013, https://doi.org/10.5194/nhess-13-2195-2013, 2013
I. Seifert, W. J. W. Botzen, H. Kreibich, and J. C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 13, 1691–1705, https://doi.org/10.5194/nhess-13-1691-2013, https://doi.org/10.5194/nhess-13-1691-2013, 2013
V. Meyer, N. Becker, V. Markantonis, R. Schwarze, J. C. J. M. van den Bergh, L. M. Bouwer, P. Bubeck, P. Ciavola, E. Genovese, C. Green, S. Hallegatte, H. Kreibich, Q. Lequeux, I. Logar, E. Papyrakis, C. Pfurtscheller, J. Poussin, V. Przyluski, A. H. Thieken, and C. Viavattene
Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, https://doi.org/10.5194/nhess-13-1351-2013, 2013
B. Merz, H. Kreibich, and U. Lall
Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, https://doi.org/10.5194/nhess-13-53-2013, 2013
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Cited articles
Altunışık, A. C. and Genç, A. F.: Earthquake response of
heavily damaged historical masonry mosques after restoration, Nat. Hazards
Earth Syst. Sci., 17, 1811–1821, https://doi.org/10.5194/nhess-17-1811-2017,
2017.
Bachmair, S., Svensson, C., Prosdocimi, I., Hannaford, J., and Stahl, K.:
Developing drought impact functions for drought risk management, Nat. Hazards
Earth Syst. Sci., 17, 1947–1960, https://doi.org/10.5194/nhess-17-1947-2017,
2017.
Bernet, D. B., Prasuhn, V., and Weingartner, R.: Surface water floods in
Switzerland: what insurance claim records tell us about the damage in space
and time, Nat. Hazards Earth Syst. Sci., 17, 1659–1682,
https://doi.org/10.5194/nhess-17-1659-2017, 2017.
Cortès, M., Turco, M., Llasat-Botija, M., and Llasat, M. C.: The
relationship between precipitation and insurance data for floods in a
Mediterranean region (northeast Spain), Nat. Hazards Earth Syst. Sci., 18,
857–868, https://doi.org/10.5194/nhess-18-857-2018, 2018.
de Moel, H., Jongman, B., Kreibich, H., Merz, B., Penning-Rowsell, E., and
Ward, P. J.: Flood risk assessments at different spatial scales, Mitig.
Adapt. Strat. Gl., 20, 865–890, https://doi.org/10.1007/s11027-015-9654-z, 2015.
Evers, M., Jonoski, A., Almoradie, A., and Lange, L.: Collaborative decision
making in sustainable flood risk management: A socio-technical approach and
tools for participatory governance, Environ. Sci. Policy,
55, 335–344, 2016.
Falter, D., Nguyen, D., Vorogushyn, S., Schröter, K., Hundecha, Y.,
Kreibich, H., Apel, H., Theisselmann, F., and Merz, B.: Continuous,
large-scale simulation model for flood risk assessments: proof-of-concept,
J. Flood Risk Manag., 9, 3–21, https://doi.org/10.1111/jfr3.12105, 2016.
Figueiredo, R., Schröter, K., Weiss-Motz, A., Martina, M. L. V., and
Kreibich, H.: Multi-model ensembles for assessment of flood losses and
associated uncertainty, Nat. Hazards Earth Syst. Sci., 18, 1297–1314,
https://doi.org/10.5194/nhess-18-1297-2018, 2018.
Fohringer, J., Dransch, D., Kreibich, H., and Schröter, K.: Social media as
an information source for rapid flood inundation mapping, Nat. Hazards Earth
Syst. Sci., 15, 2725–2738, https://doi.org/10.5194/nhess-15-2725-2015, 2015.
Hufschmidt, G., Crozier, M., and Glade, T.: Evolution of natural risk:
research framework and perspectives, Nat. Hazards Earth Syst. Sci., 5,
375–387, https://doi.org/10.5194/nhess-5-375-2005, 2005.
ICSU (International Council for Science): A Science Plan for Integrated
Research on Disaster Risk: Addressing the Challenge of Natural and
Human-induced Environmental Hazards, available at:
https://council.science/publications/a-science-plan-for-integrated-research-on-disaster-risk
(last access: 11 March 2019), 2008.
Kreibich, H., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola,
P., Green, C., Hallegatte, S., Logar, I., Meyer, V., Schwarze, R., and
Thieken, A. H.: Costing natural hazards, Nat. Clim. Change, 4, 303–306,
https://doi.org/10.1038/nclimate2182, 2014.
Kreibich, H., Bubeck, P., Van Vliet, M., and De Moel, H.: A review of
damage-reducing measures to manage fluvial flood risks in a changing climate,
Mitig. Adapt. Strat. Gl., 20, 967–989, https://doi.org/10.1007/s11027-014-9629-5, 2015.
Kreibich, H., Botto, A., Merz, B., and Schröter, K.: Probabilistic,
Multivariable Flood Loss Modeling on the Mesoscale with BT-FLEMO, Risk Anal., 37, 774–787, https://doi.org/10.1111/risa.12650, 2017a.
Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C. J. H., Apel,
H., Aronica, G. T., Arnbjerg-Nielsen, K., Bouwer, L. M., Bubeck, P.,
Caloiero, T., Do, T. C., Cortès, M., Gain, A. K., Giampá, V.,
Kuhlicke, C., Kundzewicz, Z. W., Llasat, M. C., Mård, J., Matczak, P.,
Mazzoleni, M., Molinari, D., Nguyen, D., Petrucci, O., Schröter, K.,
Slager, K., Thieken, A. H., Ward, P. J., and Merz, B.: Adaptation to flood
risk – results of international paired flood event studies, Earths Future,
5, 953–965, https://doi.org/10.1002/2017EF000606, 2017b.
Kreibich, H., Blauhut, V., Aerts, J. C. J. H., Bouwer, L. M., Van Lanen, H.
A. J., Mejia, A., Mens, M., and Van Loon, A. F.: How to improve attribution
of changes in drought and flood impacts, Hydrolog. Sci. J., 64, 1–18,
https://doi.org/10.1080/02626667.2018.1558367, 2019.
Laudan, J., Rözer, V., Sieg, T., Vogel, K., and Thieken, A. H.: Damage
assessment in Braunsbach 2016: data collection and analysis for an improved
understanding of damaging processes during flash floods, Nat. Hazards Earth
Syst. Sci., 17, 2163–2179, https://doi.org/10.5194/nhess-17-2163-2017, 2017.
Livaoğlu, R., Timuragaoglu, M. Ö., Serhatoglu, C., and Döven, M.
S.: Damage during the 6–24 February 2017 Ayvacık (Çanakkale)
earthquake swarm, Nat. Hazards Earth Syst. Sci., 18, 921–934,
https://doi.org/10.5194/nhess-18-921-2018, 2018.
Markantonis, V., Farinosi, F., Dondeynaz, C., Ameztoy, I., Pastori, M.,
Marletta, L., Ali, A., and Carmona Moreno, C.: Assessing floods and droughts
in the Mékrou River basin (West Africa): a combined household survey and
climatic trends analysis approach, Nat. Hazards Earth Syst. Sci., 18,
1279–1296, https://doi.org/10.5194/nhess-18-1279-2018, 2018.
Neumayer, E. and Barthel, F.: Normalizing economic loss from natural
disasters: A global analysis, Global Environ. Change, 21, 13–24, 2011.
Peichl, M., Thober, S., Meyer, V., and Samaniego, L.: The effect of soil
moisture anomalies on maize yield in Germany, Nat. Hazards Earth Syst. Sci.,
18, 889–906, https://doi.org/10.5194/nhess-18-889-2018, 2018.
Rözer, V., Müller, M., Bubeck, P., Kienzler, S., Thieken, A., Pech,
I., Schröter, K., Buchholz, O., and Kreibich, H.: Coping with Pluvial
Floods by Private Households, Water, 8, 304, https://doi.org/10.3390/w8070304, 2016.
Sairam, N., Schröter, K., Lüdtke, S., Merz, B., and Kreibich, H.:
Quantifying Flood Vulnerability Reduction via Private Precaution, Earths Future, 7,
https://doi.org/10.1029/2018EF000994, 2019.
Schröter, K., Lüdtke, S., Redweik, R., Meier, J., Bochow, M., Ross,
L., Nagel, C., and Kreibich, H.: Flood loss estimation using 3D city models
and remote sensing data, Environ. Modell. Softw., 105, 118–131,
https://doi.org/10.1016/j.envsoft.2018.03.032, 2018.
Spekkers, M., Rözer, V., Thieken, A., ten Veldhuis, M.-C., and Kreibich,
H.: A comparative survey of the impacts of extreme rainfall in two
international case studies, Nat. Hazards Earth Syst. Sci., 17, 1337–1355,
https://doi.org/10.5194/nhess-17-1337-2017, 2017.
Thaler, T., Fuchs, S., Priest, S., and Doorn, N.: Social justice in the
context of adaptation to climate change-reflecting on different policy
approaches to distribute and allocate flood risk management, Reg. Environ. Change, 18, 305–309, 2018.
Thieken, A. H., Bessel, T., Kienzler, S., Kreibich, H., Müller, M., Pisi,
S., and Schröter, K.: The flood of June 2013 in Germany: how much do we
know about its impacts?, Nat. Hazards Earth Syst. Sci., 16, 1519–1540,
https://doi.org/10.5194/nhess-16-1519-2016, 2016.
Vorogushyn, S., Bates, P. D., de Bruijn, K., Castellarin, A., Kreibich, H.,
Priest, S., Schröter, K., Bagli, S., Blöschl, G., Domeneghetti, A.,
Gouldby, B., Klijn, F., Lammersen, R., Neal, J. C., Ridder, N., Terink, W.,
Viavattene, C., Viglione, A., Zanardo, S., and Merz, B.: Evolutionary leap in
large-scale flood risk assessment needed, Wires Water, 5, e1266,
https://doi.org/10.1002/wat2.1266, 2018.
Wagenaar, D., de Jong, J., and Bouwer, L. M.: Multi-variable flood damage
modelling with limited data using supervised learning approaches, Nat.
Hazards Earth Syst. Sci., 17, 1683–1696,
https://doi.org/10.5194/nhess-17-1683-2017, 2017.
Wagenaar, D., Lüdtke, S., Schröter, K., Bouwer, L. M., and Kreibich,
H.: Regional and Temporal Transferability of Multivariable Flood Damage
Models, Water Resour. Res., 54, 3688–3703, https://doi.org/10.1029/2017WR022233, 2018.
Yılmaz, M. F. and Çağlayan, B. Ö.: Seismic assessment of a
multi-span steel railway bridge in Turkey based on nonlinear time history,
Nat. Hazards Earth Syst. Sci., 18, 231–240,
https://doi.org/10.5194/nhess-18-231-2018, 2018.
Zhang, Z., Li, N., Xie, W., Liu, Y., Feng, J., Chen, X., and Liu, L.:
Assessment of the ripple effects and spatial heterogeneity of total losses in
the capital of China after a great catastrophic shock, Nat. Hazards Earth
Syst. Sci., 17, 367–379, https://doi.org/10.5194/nhess-17-367-2017, 2017.
Special issue
Altmetrics