Articles | Volume 16, issue 3
https://doi.org/10.5194/nhess-16-719-2016
https://doi.org/10.5194/nhess-16-719-2016
Research article
 | 
15 Mar 2016
Research article |  | 15 Mar 2016

Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff

Julie D'Amato, Didier Hantz, Antoine Guerin, Michel Jaboyedoff, Laurent Baillet, and Armand Mariscal

Related authors

A tool for estimating ground-based InSAR acquisition characteristics prior to monitoring installation and survey and its differences from satellite InSAR
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024,https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary
Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate
Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff
Earth Surf. Dynam., 12, 641–656, https://doi.org/10.5194/esurf-12-641-2024,https://doi.org/10.5194/esurf-12-641-2024, 2024
Short summary
Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022,https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
An explicit GPU-based material point method solver for elastoplastic problems (ep2-3De v1.0)
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 14, 7749–7774, https://doi.org/10.5194/gmd-14-7749-2021,https://doi.org/10.5194/gmd-14-7749-2021, 2021
Short summary
An efficient two-layer landslide-tsunami numerical model: effects of momentum transfer validated with physical experiments of waves generated by granular landslides
Martin Franz, Michel Jaboyedoff, Ryan P. Mulligan, Yury Podladchikov, and W. Andy Take
Nat. Hazards Earth Syst. Sci., 21, 1229–1245, https://doi.org/10.5194/nhess-21-1229-2021,https://doi.org/10.5194/nhess-21-1229-2021, 2021
Short summary

Related subject area

Landslides and Debris Flows Hazards
Predicting deep-seated landslide displacement on Taiwan's Lushan through the integration of convolutional neural networks and the Age of Exploration-Inspired Optimizer
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci., 25, 119–146, https://doi.org/10.5194/nhess-25-119-2025,https://doi.org/10.5194/nhess-25-119-2025, 2025
Short summary
Limit analysis of earthquake-induced landslides considering two strength envelopes
Di Wu, Yuke Wang, and Xin Chen
Nat. Hazards Earth Syst. Sci., 24, 4617–4630, https://doi.org/10.5194/nhess-24-4617-2024,https://doi.org/10.5194/nhess-24-4617-2024, 2024
Short summary
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024,https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024,https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary

Cited articles

Abellan, A., Calvet, J., Vilaplana, J. M., and Blanchard, J.: Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring, Geomorphology, 119, 162–171, https://doi.org/10.1016/j.geomorph.2010.03.016, 2010.
Abellan, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., and Lato, M. J.: Terrestrial laser scanning of rock slope instabilities, Earth Surf. Proc. Land., 39, 80–97, https://doi.org/10.1002/esp.3493, 2014.
Bertrand-Krajewski, J.: Cours d'hydrologie urbaine. Partie 2: La pluie, URGC-INSA, Lyon, 2007.
Bost, M.: Altération par le gel des massifs rocheux: etude expérimentale et modélisation des mécanismes de génération des contraintes dans les fissures, PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris, 2008.
Brázdil, R., Šilhán, K., Pánek, T., Dobrovolný, P., Kašičková, L., and Tolasz, R.: The influence of meteorological factors on rockfall in the Moravskoslezské Beskydy Mts, Geografie – Sborník České geografické společnosti, Praha, 117, 1–20, 2012.
Download
Short summary
The influence of meteorological conditions on rockfall occurrence has been often highlighted, but quantitative analyses are rare. A near-continuous survey of a limestone cliff has shown that the rockfall frequency can be multiplied by 7 during freeze-thaw episodes and 26 when the mean rainfall intensity (since the beginning of the rainfall episode) is higher than 5 mm h−1. Based on these results, a three-level scale has been proposed for predicting the temporal variations of rockfall frequency.
Altmetrics
Final-revised paper
Preprint