Articles | Volume 13, issue 11
Nat. Hazards Earth Syst. Sci., 13, 3063–3081, 2013
https://doi.org/10.5194/nhess-13-3063-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Flood risk analysis and integrated management
Research article
29 Nov 2013
Research article
| 29 Nov 2013
Adaptability and transferability of flood loss functions in residential areas
H. Cammerer et al.
Related authors
No articles found.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
EGUsphere, https://doi.org/10.5194/egusphere-2022-244, https://doi.org/10.5194/egusphere-2022-244, 2022
Short summary
Short summary
In July 2021 intense rainfall caused devastating floods in Western Europe with 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP) questioning their warning system. An online survey revealed that 35 % of the respondents from NW and 29 % from RP did not receive any warning. Many of those who were warned did not expect severe flooding, nor did they know how to react. The study provides entry points for improving the warning system in Germany.
Annegret H. Thieken, Guilherme Samprogna Mohor, Heidi Kreibich, and Meike Müller
Nat. Hazards Earth Syst. Sci., 22, 165–185, https://doi.org/10.5194/nhess-22-165-2022, https://doi.org/10.5194/nhess-22-165-2022, 2022
Short summary
Short summary
Various floods hit Germany recently. While there was a river flood with some dike breaches in 2013, flooding in 2016 resulted directly from heavy rainfall, causing overflowing drainage systems in urban areas and destructive flash floods in steep catchments. Based on survey data, we analysed how residents coped with these different floods. We observed significantly different flood impacts, warnings, behaviour and recovery, offering entry points for tailored risk communication and support.
Guilherme S. Mohor, Annegret H. Thieken, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 21, 1599–1614, https://doi.org/10.5194/nhess-21-1599-2021, https://doi.org/10.5194/nhess-21-1599-2021, 2021
Short summary
Short summary
We explored differences in the damaging process across different flood types, regions within Germany, and six flood events through a numerical model in which the groups can learn from each other. Differences were found mostly across flood types, indicating the importance of identifying them, but there is great overlap across regions and flood events, indicating either that socioeconomic or temporal information was not well represented or that they are in fact less different within our cases.
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Jonas Laudan, Gert Zöller, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 20, 999–1023, https://doi.org/10.5194/nhess-20-999-2020, https://doi.org/10.5194/nhess-20-999-2020, 2020
Short summary
Short summary
The paper focuses on psychological impacts of river floods and flash floods on affected individuals. Since the connection between psychological characteristics and protection motivation is not yet fully understood, potential coherences are investigated with regard to both flood types. As a main result, the frequency of remembering an event seems to be positively connected to a greater willingness to protect oneself, especially if affected by a weaker flood event.
Jonas Laudan, Viktor Rözer, Tobias Sieg, Kristin Vogel, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 17, 2163–2179, https://doi.org/10.5194/nhess-17-2163-2017, https://doi.org/10.5194/nhess-17-2163-2017, 2017
Short summary
Short summary
The flash flood in Braunsbach, Germany, in May 2016 was a severe and rather unfamiliar event which caused high monetary losses and heavy damage to buildings. Between 7 and 8 June we investigated all affected houses and conducted damage assessment to gain insights into the damage driving factors of those events. We conclude that the damage driving factors are complex and also differ partly from those of riverine floods, pointing out the need for further research.
Heidi Kreibich, Meike Müller, Kai Schröter, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 17, 2075–2092, https://doi.org/10.5194/nhess-17-2075-2017, https://doi.org/10.5194/nhess-17-2075-2017, 2017
Short summary
Short summary
Early warning is essential for protecting people and mitigating damage in case of flood events. To gain more knowledge, surveys were taken after the 2002 and the 2013 floods in Germany. Results show that early warning and preparedness improved substantially. However, there is still room for further improvement, which needs to be triggered mainly by effective risk and emergency communication.
Matthieu Spekkers, Viktor Rözer, Annegret Thieken, Marie-Claire ten Veldhuis, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 17, 1337–1355, https://doi.org/10.5194/nhess-17-1337-2017, https://doi.org/10.5194/nhess-17-1337-2017, 2017
Patric Kellermann, Christine Schönberger, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 16, 2357–2371, https://doi.org/10.5194/nhess-16-2357-2016, https://doi.org/10.5194/nhess-16-2357-2016, 2016
Jaroslav Mysiak, Swenja Surminski, Annegret Thieken, Reinhard Mechler, and Jeroen Aerts
Nat. Hazards Earth Syst. Sci., 16, 2189–2193, https://doi.org/10.5194/nhess-16-2189-2016, https://doi.org/10.5194/nhess-16-2189-2016, 2016
Short summary
Short summary
In March 2015, a new international blueprint for disaster risk reduction (DRR) has been adopted in Sendai, Japan, at the end of the Third UN World Conference on Disaster Risk Reduction (WCDRR, March 14–18, 2015). We review and discuss the agreed commitments and targets, as well as the negotiation leading the Sendai Framework for DRR (SFDRR), and discuss briefly its implication for the later UN-led negotiations on sustainable development goals and climate change.
Annegret H. Thieken, Tina Bessel, Sarah Kienzler, Heidi Kreibich, Meike Müller, Sebastian Pisi, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 16, 1519–1540, https://doi.org/10.5194/nhess-16-1519-2016, https://doi.org/10.5194/nhess-16-1519-2016, 2016
Short summary
Short summary
In June 2013, widespread flooding and consequent damage and losses occurred in central Europe, especially in Germany. The paper explores what data are available to investigate the adverse impacts of the event, what kind of information can be retrieved from these data, and how good data and information fulfil requirements that were recently proposed for disaster reporting on the European and international level, e.g. by the Sendai Framework for Disaster Risk Reduction 2015–2030.
P. Kellermann, A. Schöbel, G. Kundela, and A. H. Thieken
Nat. Hazards Earth Syst. Sci., 15, 2485–2496, https://doi.org/10.5194/nhess-15-2485-2015, https://doi.org/10.5194/nhess-15-2485-2015, 2015
S. Kienzler, I. Pech, H. Kreibich, M. Müller, and A. H. Thieken
Nat. Hazards Earth Syst. Sci., 15, 505–526, https://doi.org/10.5194/nhess-15-505-2015, https://doi.org/10.5194/nhess-15-505-2015, 2015
S. Uhlemann, A. H. Thieken, and B. Merz
Nat. Hazards Earth Syst. Sci., 14, 189–208, https://doi.org/10.5194/nhess-14-189-2014, https://doi.org/10.5194/nhess-14-189-2014, 2014
C. Pfurtscheller and A. H. Thieken
Nat. Hazards Earth Syst. Sci., 13, 2619–2637, https://doi.org/10.5194/nhess-13-2619-2013, https://doi.org/10.5194/nhess-13-2619-2013, 2013
V. Meyer, N. Becker, V. Markantonis, R. Schwarze, J. C. J. M. van den Bergh, L. M. Bouwer, P. Bubeck, P. Ciavola, E. Genovese, C. Green, S. Hallegatte, H. Kreibich, Q. Lequeux, I. Logar, E. Papyrakis, C. Pfurtscheller, J. Poussin, V. Przyluski, A. H. Thieken, and C. Viavattene
Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, https://doi.org/10.5194/nhess-13-1351-2013, 2013
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Tsunami risk perception in central and southern Italy
Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event
Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models
Building-scale flood loss estimation through vulnerability pattern characterization: application to an urban flood in Milan, Italy
Process-based flood damage modelling relying on expert knowledge: a methodological contribution applied to the agricultural sector
Dynamic risk assessment of compound hazards based on VFS–IEM–IDM: a case study of typhoon–rainstorm hazards in Shenzhen, China
Integrated seismic risk assessment in Nepal
Machine learning models to predict myocardial infarctions from past climatic and environmental conditions
Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany
Invited perspectives: Managed realignment as a solution to mitigate coastal flood risks – optimizing success through knowledge co-production
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Estimating return intervals for extreme climate conditions related to winter disasters and livestock mortality in Mongolia
Surveying the surveyors to address risk perception and adaptive-behaviour cross-study comparability
Comparison of sustainable flood risk management by four countries – the United Kingdom, the Netherlands, the United States, and Japan – and the implications for Asian coastal megacities
Projected impact of heat on mortality and labour productivity under climate change in Switzerland
Full-scale experiments to examine the role of deadwood in rockfall dynamics in forests
Predicting drought and subsidence risks in France
Review article: Potential of Nature-Based Solutions to Mitigate Hydro-Meteorological Risks in Sub-Saharan Africa
The determinants affecting the intention of urban residents to prepare for flood risk in China
Strategic framework for natural disaster risk mitigation using deep learning and cost-benefit analysis
Risk communication during seismo-volcanic crises: the example of Mayotte, France
Invited perspectives: Challenges and step changes for natural hazard – perspectives from the German Committee for Disaster Reduction (DKKV)
Invited perspectives: When research meets practice: challenges, opportunities, and suggestions from the implementation of the Floods Directive in the largest Italian river basin
Rapid landslide risk zoning toward multi-slope units of the Neikuihui tribe for preliminary disaster management
INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
Effective uncertainty visualization for aftershock forecast maps
Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment
Education, financial aid, and awareness can reduce smallholder farmers' vulnerability to drought under climate change
Regional county-level housing inventory predictions and the effects on hurricane risk
Brief communication: Key papers of 20 years in Natural Hazards and Earth System Sciences
Invited Perspectives: “Small country, big challenges – Switzerland's hazard prevention research”
Invited perspectives: Challenges and future directions in improving bridge flood resilience
Bangladesh's vulnerability to cyclonic coastal flooding
Classifying offshore faults for hazard assessment: A new approach based on fault size and vertical displacement
A geography of drought indices: mismatch between indicators of drought and its impacts on water and food securities
Cost–benefit analysis of coastal flood defence measures in the North Adriatic Sea
About the return period of a catastrophe
Invited perspectives: Current challenges to face knowns and unknowns in natural hazard risk management – an insurer perspective
Brief communication: Radar images for monitoring informal urban settlements in vulnerable zones in Lima, Peru
A simulation–optimization framework for post-disaster allocation of mental health resources
Lessons learned about the importance of raising risk awareness in the Mediterranean region (north Morocco and west Sardinia, Italy)
Stochastic system dynamics modelling for climate change water scarcity assessment of a reservoir in the Italian Alps
Multiple hazards and risk perceptions over time: the availability heuristic in Italy and Sweden under COVID-19
Review article: Mapping the adaptation solution space – lessons from Jakarta
Risk perception of local stakeholders on natural hazards: implications for theory and practice
Brief communication: Effective earthquake early warning systems: appropriate messaging and public awareness roles
Flood–pedestrian simulator for modelling human response dynamics during flood-induced evacuation: Hillsborough stadium case study
Review article: Brief history of volcanic risk in the Neapolitan area (Campania, southern Italy): a critical review
Are interactions important in estimating flood damage to economic entities? The case of wine-making in France
Residential building stock modelling for mainland China targeted for seismic risk assessment
Lorenzo Cugliari, Massimo Crescimbene, Federica La Longa, Andrea Cerase, Alessandro Amato, and Loredana Cerbara
Nat. Hazards Earth Syst. Sci., 22, 4119–4138, https://doi.org/10.5194/nhess-22-4119-2022, https://doi.org/10.5194/nhess-22-4119-2022, 2022
Short summary
Short summary
The Tsunami Alert Centre of the National Institute of Geophysics and Volcanology (CAT-INGV) has been promoting the study of tsunami risk perception in Italy since 2018. A total of 7342 questionnaires were collected in three survey phases (2018, 2020, 2021). In this work we present the main results of the three survey phases, with a comparison among the eight surveyed regions and between the coastal regions and some coastal metropolitan cities involved in the survey.
Elco E. Koks, Kees C. H. van Ginkel, Margreet J. E. van Marle, and Anne Lemnitzer
Nat. Hazards Earth Syst. Sci., 22, 3831–3838, https://doi.org/10.5194/nhess-22-3831-2022, https://doi.org/10.5194/nhess-22-3831-2022, 2022
Short summary
Short summary
This study provides an overview of the impacts to critical infrastructure and how recovery has progressed after the July 2021 flood event in Germany, Belgium and the Netherlands. The results show that Germany and Belgium were particularly affected, with many infrastructure assets severely damaged or completely destroyed. This study helps to better understand how infrastructure can be affected by flooding and can be used for validation purposes for future studies.
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022, https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
Andrea Taramelli, Margherita Righini, Emiliana Valentini, Lorenzo Alfieri, Ignacio Gatti, and Simone Gabellani
Nat. Hazards Earth Syst. Sci., 22, 3543–3569, https://doi.org/10.5194/nhess-22-3543-2022, https://doi.org/10.5194/nhess-22-3543-2022, 2022
Short summary
Short summary
This work aims to support decision-making processes to prioritize effective interventions for flood risk reduction and mitigation for the implementation of flood risk management concepts in urban areas. Our findings provide new insights into vulnerability spatialization of urban flood events for the residential sector, demonstrating that the nature of flood pathways varies spatially and is influenced by landscape characteristics, as well as building features.
Pauline Brémond, Anne-Laurence Agenais, Frédéric Grelot, and Claire Richert
Nat. Hazards Earth Syst. Sci., 22, 3385–3412, https://doi.org/10.5194/nhess-22-3385-2022, https://doi.org/10.5194/nhess-22-3385-2022, 2022
Short summary
Short summary
It is impossible to protect all issues against flood risk. To prioritise protection, economic analyses are conducted. The French Ministry of the Environment wanted to make available damage functions that we have developed for several sectors. For this, we propose a methodological framework and apply it to the model we have developed to assess damage to agriculture. This improves the description, validation, transferability and updatability of models based on expert knowledge.
Wenwu Gong, Jie Jiang, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 3271–3283, https://doi.org/10.5194/nhess-22-3271-2022, https://doi.org/10.5194/nhess-22-3271-2022, 2022
Short summary
Short summary
We propose a model named variable fuzzy set and information diffusion (VFS–IEM–IDM) to assess the dynamic risk of compound hazards, which takes into account the interrelations between the hazard drivers, deals with the problem of data sparsity, and considers the temporal dynamics of the occurrences of the compound hazards. To examine the efficacy of the proposed VFS–IEM–IDM model, a case study of typhoon–rainstorm risks in Shenzhen, China, is presented.
Sanish Bhochhibhoya and Roisha Maharjan
Nat. Hazards Earth Syst. Sci., 22, 3211–3230, https://doi.org/10.5194/nhess-22-3211-2022, https://doi.org/10.5194/nhess-22-3211-2022, 2022
Short summary
Short summary
This is a comprehensive approach to risk assessment that considers the dynamic relationship between loss and damage. The study combines physical risk with social science to mitigate the disaster caused by earthquakes in Nepal, taking socioeconomical parameters into account such that the risk estimates can be monitored over time. The main objective is to recognize the cause of and solutions to seismic hazard, building the interrelationship between individual, natural, and built-in environments.
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022, https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Short summary
Myocardial infarctions (MIs; heart attacks) are influenced by temperature extremes, air pollution, lack of green spaces and ageing population. Here, we apply machine learning (ML) models in order to estimate the influence of various environmental and demographic risk factors. The resulting ML models can accurately reproduce observed annual variability in MI and inter-annual trends. The models allow quantification of the importance of individual factors and can be used to project future risk.
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022, https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Short summary
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we collected a large number of marks along the Kinzig, southwestern Germany, and tested them for plausibility and temporal continuance. Despite uncertainty, the marks appeared to be an overall consistent and practical source that may also increase flood risk awareness. A wide agreement between the current flood hazard maps and the collected flood marks moreover indicated a robust local hazard assessment.
Mark Schuerch, Hannah L. Mossman, Harriet E. Moore, Elizabeth Christie, and Joshua Kiesel
Nat. Hazards Earth Syst. Sci., 22, 2879–2890, https://doi.org/10.5194/nhess-22-2879-2022, https://doi.org/10.5194/nhess-22-2879-2022, 2022
Short summary
Short summary
Coastal nature-based solutions to adapt to sea-level rise, such as managed realignments (MRs), are becoming increasingly popular amongst scientists and coastal managers. However, local communities often oppose these projects, partly because scientific evidence for their efficiency is limited. Here, we propose a framework to work with stakeholders and communities to define success variables of MR projects and co-produce novel knowledge on the projects’ efficiency to mitigate coastal flood risks.
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Masahiko Haraguchi, Nicole Davi, Mukund Palat Rao, Caroline Leland, Masataka Watanabe, and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 22, 2751–2770, https://doi.org/10.5194/nhess-22-2751-2022, https://doi.org/10.5194/nhess-22-2751-2022, 2022
Short summary
Short summary
Mass livestock mortality during severe winters (dzud in Mongolian) is a compound event. Summer droughts are a precondition for dzud. We estimate the return levels of relevant variables: summer drought conditions and minimum winter temperature. The result shows that the return levels of drought conditions vary over time. Winter severity, however, is constant. We link climatic factors to socioeconomic impacts and draw attention to the need for index insurance.
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022, https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Short summary
It remains unclear why people fail to act adaptively to reduce future losses, even when there is ever-richer information available. To improve the ability of researchers to build cumulative knowledge, we conducted an international survey – the Risk Perception and Behaviour Survey of Surveyors (Risk-SoS). We find that most studies are exploratory and often overlook theoretical efforts that would enable the accumulation of evidence. We offer several recommendations for future studies.
Faith Ka Shun Chan, Liang Emlyn Yang, Gordon Mitchell, Nigel Wright, Mingfu Guan, Xiaohui Lu, Zilin Wang, Burrell Montz, and Olalekan Adekola
Nat. Hazards Earth Syst. Sci., 22, 2567–2588, https://doi.org/10.5194/nhess-22-2567-2022, https://doi.org/10.5194/nhess-22-2567-2022, 2022
Short summary
Short summary
Sustainable flood risk management (SFRM) has become popular since the 1980s. This study examines the past and present flood management experiences in four developed countries (UK, the Netherlands, USA, and Japan) that have frequently suffered floods. We analysed ways towards SFRM among Asian coastal cities, which are still reliant on a hard-engineering approach that is insufficient to reduce future flood risk. We recommend stakeholders adopt mixed options to undertake SFRM practices.
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
Adrian Ringenbach, Elia Stihl, Yves Bühler, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Guang Lu, Andreas Stoffel, Martin Kistler, Sandro Degonda, Kevin Simmler, Daniel Mader, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022, https://doi.org/10.5194/nhess-22-2433-2022, 2022
Short summary
Short summary
Forests have a recognized braking effect on rockfalls. The impact of lying deadwood, however, is mainly neglected. We conducted 1 : 1-scale rockfall experiments in three different states of a spruce forest to fill this knowledge gap: the original forest, the forest including lying deadwood and the cleared area. The deposition points clearly show that deadwood has a protective effect. We reproduced those experimental results numerically, considering three-dimensional cones to be deadwood.
Arthur Charpentier, Molly James, and Hani Ali
Nat. Hazards Earth Syst. Sci., 22, 2401–2418, https://doi.org/10.5194/nhess-22-2401-2022, https://doi.org/10.5194/nhess-22-2401-2022, 2022
Short summary
Short summary
Predicting consequences of drought episodes is complex, all the more when focusing on subsidence. We use 20 years of insurer data to derive a model to predict both the intensity and the severity of such events, using geophysical and climatic information located in space and time.
Kirk B. Enu, Aude Zingraff-Hamed, Mohammad A. Rahman, Lindsay C. Stringer, and Stephan Pauleit
EGUsphere, https://doi.org/10.5194/egusphere-2022-604, https://doi.org/10.5194/egusphere-2022-604, 2022
Short summary
Short summary
Lately, nature-based solutions are becoming popular for mitigating hydro-meteorological risks such as floods, especially in Europe. However, its uptake in Sub-Saharan Africa is unclear. We therefore undertook this review and found that there is at least one reported nature-based solution used to mitigate flood, heatwave or drought risk in 71 % of urban areas of Sub-Saharan Africa. Even so, these nature-based solutions are being implemented where risks are but not where risks are most severe.
Tiantian Wang, Yunmeng Lu, Tiezhong Liu, Yujiang Zhang, Xiaohan Yan, and Yi Liu
Nat. Hazards Earth Syst. Sci., 22, 2185–2199, https://doi.org/10.5194/nhess-22-2185-2022, https://doi.org/10.5194/nhess-22-2185-2022, 2022
Short summary
Short summary
To identify the main determinants influencing urban residents' intention to prepare for flood risk in China, we developed an integrated theoretical framework based on protection motivation theory (PMT) and validated it with structural equation modeling. The results showed that both threat perception and coping appraisal were effective in increasing residents' intention to prepare. In addition, individual heterogeneity and social context also had an impact on preparedness intentions.
Ji-Myong Kim, Sang-Guk Yum, Hyunsoung Park, and Junseo Bae
Nat. Hazards Earth Syst. Sci., 22, 2131–2144, https://doi.org/10.5194/nhess-22-2131-2022, https://doi.org/10.5194/nhess-22-2131-2022, 2022
Short summary
Short summary
Insurance data has been utilized with deep learning techniques to predict natural disaster damage losses in South Korea.
Maud Devès, Robin Lacassin, Hugues Pécout, and Geoffrey Robert
Nat. Hazards Earth Syst. Sci., 22, 2001–2029, https://doi.org/10.5194/nhess-22-2001-2022, https://doi.org/10.5194/nhess-22-2001-2022, 2022
Short summary
Short summary
This paper focuses on the issue of population information about natural hazards and disaster risk. It builds on the analysis of the unique seismo-volcanic crisis on the island of Mayotte, France, that started in May 2018 and lasted several years. We document the gradual response of the actors in charge of scientific monitoring and risk management. We then make recommendations for improving risk communication strategies in Mayotte and also in contexts where comparable geo-crises may happen.
Benni Thiebes, Ronja Winkhardt-Enz, Reimund Schwarze, and Stefan Pickl
Nat. Hazards Earth Syst. Sci., 22, 1969–1972, https://doi.org/10.5194/nhess-22-1969-2022, https://doi.org/10.5194/nhess-22-1969-2022, 2022
Short summary
Short summary
The worldwide challenge of the present as well as the future is to navigate the global community to a sustainable and secure future. Humanity is increasingly facing multiple risks under more challenging conditions. The continuation of climate change and the ever more frequent occurrence of extreme, multi-hazard, and cascading events are interacting with increasingly complex and interconnected societies.
Tommaso Simonelli, Laura Zoppi, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022, https://doi.org/10.5194/nhess-22-1819-2022, 2022
Short summary
Short summary
The paper discusses challenges (and solutions) emerged during a collaboration among practitioners, stakeholders, and scientists in the definition of flood damage maps in the Po River District. Social aspects were proven to be fundamental components of the risk assessment; variety of competences in the working group was key in finding solutions and revealing weaknesses of intermediate proposals. This paper finally highlights the need of duplicating such an experience at a broader European level.
Chih-Chung Chung and Zih-Yi Li
Nat. Hazards Earth Syst. Sci., 22, 1777–1794, https://doi.org/10.5194/nhess-22-1777-2022, https://doi.org/10.5194/nhess-22-1777-2022, 2022
Short summary
Short summary
The Neikuihui tribe in northern Taiwan faces landslides during rainfall events. Since the government needs to respond with disaster management for the most at-risk tribes, this study develops rapid risk zoning, which involves the susceptibility, activity, exposure, and vulnerability of each slope unit of the area. Results reveal that one of the slope units of the Neikuihui tribal area has a higher risk and did suffer a landslide during the typhoon in 2016.
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Max Schneider, Michelle McDowell, Peter Guttorp, E. Ashley Steel, and Nadine Fleischhut
Nat. Hazards Earth Syst. Sci., 22, 1499–1518, https://doi.org/10.5194/nhess-22-1499-2022, https://doi.org/10.5194/nhess-22-1499-2022, 2022
Short summary
Short summary
Aftershock forecasts are desired for risk response, but public communications often omit their uncertainty. We evaluate three uncertainty visualization designs for aftershock forecast maps. In an online experiment, participants complete map-reading and judgment tasks relevant across natural hazards. While all designs reveal which areas are likely to have many or no aftershocks, one design can also convey that areas with high uncertainty can have more aftershocks than forecasted.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Marthe L. K. Wens, Anne F. van Loon, Ted I. E. Veldkamp, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 22, 1201–1232, https://doi.org/10.5194/nhess-22-1201-2022, https://doi.org/10.5194/nhess-22-1201-2022, 2022
Short summary
Short summary
In this paper, we present an application of the empirically calibrated drought risk adaptation model ADOPT for the case of smallholder farmers in the Kenyan drylands. ADOPT is used to evaluate the effect of various top-down drought risk reduction interventions (extension services, early warning systems, ex ante cash transfers, and low credit rates) on individual and community drought risk (adaptation levels, food insecurity, poverty, emergency aid) under different climate change scenarios.
Caroline J. Williams, Rachel A. Davidson, Linda K. Nozick, Joseph E. Trainor, Meghan Millea, and Jamie L. Kruse
Nat. Hazards Earth Syst. Sci., 22, 1055–1072, https://doi.org/10.5194/nhess-22-1055-2022, https://doi.org/10.5194/nhess-22-1055-2022, 2022
Short summary
Short summary
A neural network model based on publicly available data was developed to forecast the number of housing units for each of 1000 counties in the southeastern United States in each of the next 20 years. The estimated number of housing units is almost always (97 % of the time) less than 1 percentage point different than the observed number, which are predictive errors acceptable for most practical purposes. The housing unit projections can help quantify changes in future expected hurricane impacts.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Dorothea Wabbels and Gian Reto Bezzola
Nat. Hazards Earth Syst. Sci., 22, 927–930, https://doi.org/10.5194/nhess-22-927-2022, https://doi.org/10.5194/nhess-22-927-2022, 2022
Short summary
Short summary
Due to its geography and climate, densely populated Switzerland is often affected by water-related hazards such as surface runoff, floods, debris flows, landslides, rockfalls and avalanches. Almost every part of Switzerland is exposed to natural hazards, and anyone can be affected.
Enrico Tubaldi, Christopher J. White, Edoardo Patelli, Stergios Aristoteles Mitoulis, Gustavo de Almeida, Jim Brown, Michael Cranston, Martin Hardman, Eftychia Koursari, Rob Lamb, Hazel McDonald, Richard Mathews, Richard Newell, Alonso Pizarro, Marta Roca, and Daniele Zonta
Nat. Hazards Earth Syst. Sci., 22, 795–812, https://doi.org/10.5194/nhess-22-795-2022, https://doi.org/10.5194/nhess-22-795-2022, 2022
Short summary
Short summary
Bridges are critical infrastructure components of transport networks. A large number of these critical assets cross or are adjacent to waterways and are therefore exposed to the potentially devastating impact of floods. This paper discusses a series of issues and areas where improvements in research and practice are required in the context of risk assessment and management of bridges exposed to flood hazard, with the ultimate goal of guiding future efforts in improving bridge flood resilience.
Aurélia Bernard, Nathalie Long, Mélanie Becker, Jamal Khan, and Sylvie Fanchette
Nat. Hazards Earth Syst. Sci., 22, 729–751, https://doi.org/10.5194/nhess-22-729-2022, https://doi.org/10.5194/nhess-22-729-2022, 2022
Short summary
Short summary
This article reviews current scientific literature in order to define vulnerability in the context of coastal Bangladesh facing cyclonic flooding. A new metric, called the socio-spatial vulnerability index, is defined as a function of both the probability of the cyclonic flood hazard and the sensitivity of delta inhabitants. The main result shows that three very densely populated districts, located in the Ganges delta tidal floodplain, are highly vulnerable to cyclonic flooding.
May Laor and Zohar Gvirtzman
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-393, https://doi.org/10.5194/nhess-2021-393, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
The goal of this study is to provide a practical solution for early-stage planning of marine infrastructure. The motivation behind this study is developing a methodology for fault hazard assessment in the marine env. We measured fault displacement rates (a proxy for surface rupture), and fault plane size (a proxy for potential magnitudes). Together, we classified faults by their size and rate of motion and prepared a map of each fault is color-coded by low-, moderate-, or high-risk levels.
Sarra Kchouk, Lieke A. Melsen, David W. Walker, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022, https://doi.org/10.5194/nhess-22-323-2022, 2022
Short summary
Short summary
The aim of our study was to question the validity of the assumed direct linkage between drivers of drought and its impacts on water and food securities, mainly found in the frameworks of drought early warning systems (DEWSs). We analysed more than 5000 scientific studies leading us to the conclusion that the local context can contribute to drought drivers resulting in these drought impacts. Our research aims to increase the relevance and utility of the information provided by DEWSs.
Mattia Amadio, Arthur H. Essenfelder, Stefano Bagli, Sepehr Marzi, Paolo Mazzoli, Jaroslav Mysiak, and Stephen Roberts
Nat. Hazards Earth Syst. Sci., 22, 265–286, https://doi.org/10.5194/nhess-22-265-2022, https://doi.org/10.5194/nhess-22-265-2022, 2022
Short summary
Short summary
We estimate the risk associated with storm surge events at two case study locations along the North Adriatic Italian coast, considering sea level rise up to the year 2100, and perform a cost–benefit analysis of planned or proposed coastal renovation projects. The study uses nearshore hydrodynamic modelling. Our findings represent a useful indication for disaster risk management, helping to understand the importance of investing in adaptation and estimating the economic return on investments.
Mathias Raschke
Nat. Hazards Earth Syst. Sci., 22, 245–263, https://doi.org/10.5194/nhess-22-245-2022, https://doi.org/10.5194/nhess-22-245-2022, 2022
Short summary
Short summary
We develop the combined return period to stochastically measure hazard and catastrophe events. This is used to estimate a risk curve by stochastic scaling of historical events and averaging corresponding risk parameters in combination with a vulnerability model. We apply the method to extratropical cyclones over Germany and estimate the risk for insured losses. The results are strongly influenced by assumptions about spatial dependence.
Madeleine-Sophie Déroche
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-6, https://doi.org/10.5194/nhess-2022-6, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
This paper highlights the need for an in-depth review of the current loss modelling framework, created at the early 1990s, to capture the increased complexity of each driver of the risk (exposure, hazard and vulnerability) as well as their interconnection.
Luis Moya, Fernando Garcia, Carlos Gonzales, Miguel Diaz, Carlos Zavala, Miguel Estrada, Fumio Yamazaki, Shunichi Koshimura, Erick Mas, and Bruno Adriano
Nat. Hazards Earth Syst. Sci., 22, 65–70, https://doi.org/10.5194/nhess-22-65-2022, https://doi.org/10.5194/nhess-22-65-2022, 2022
Short summary
Short summary
Informal occupation of unused lands for settlements is a critical issue in Peru. In most cases, such areas are unsafe against natural hazards. We performed a time-series analysis of Sentinel-1 images at recent informal settlements in Lima. The result suggests that a low-cost and sustainable monitoring system of informal settlements can be implemented.
Stephen Cunningham, Steven Schuldt, Christopher Chini, and Justin Delorit
Nat. Hazards Earth Syst. Sci., 21, 3843–3862, https://doi.org/10.5194/nhess-21-3843-2021, https://doi.org/10.5194/nhess-21-3843-2021, 2021
Short summary
Short summary
The severity of disaster-induced mental health illness outcomes varies based on factors such as socioeconomic standing, age, and degree of exposure. This research proposes a resource allocation framework allowing decision-makers the capability to assess the capacity and scalability of early, intermediate, and long-term mental health treatment and recovery. Ultimately, this framework can inform policy and operational decisions based on community needs and constrained resources post-disaster.
Ante Ivčević, Hubert Mazurek, Lionel Siame, Raquel Bertoldo, Vania Statzu, Kamal Agharroud, Isabel Estrela Rego, Nibedita Mukherjee, and Olivier Bellier
Nat. Hazards Earth Syst. Sci., 21, 3749–3765, https://doi.org/10.5194/nhess-21-3749-2021, https://doi.org/10.5194/nhess-21-3749-2021, 2021
Short summary
Short summary
The results from two Mediterranean case studies, in north Morocco and west Sardinia, confirm the importance of interdisciplinarity and risk awareness sessions for risk management. The policy literature and interviews held with the administration, associations and scientists indicate that although recognised, the importance of risk awareness sessions is not necessarily put into practice. As a consequence, this could lead to a failure of risk management policy.
Stefano Terzi, Janez Sušnik, Stefan Schneiderbauer, Silvia Torresan, and Andrea Critto
Nat. Hazards Earth Syst. Sci., 21, 3519–3537, https://doi.org/10.5194/nhess-21-3519-2021, https://doi.org/10.5194/nhess-21-3519-2021, 2021
Short summary
Short summary
This study combines outputs from multiple models with statistical assessments of past and future water availability and demand for the Santa Giustina reservoir (Autonomous Province of Trento, Italy). Considering future climate change scenarios, results show high reductions for stored volume and turbined water, with increasing frequency, duration and severity. These results call for the need to adapt to reductions in water availability and effects on the Santa Giustina reservoir management.
Giuliano Di Baldassarre, Elena Mondino, Maria Rusca, Emanuele Del Giudice, Johanna Mård, Elena Ridolfi, Anna Scolobig, and Elena Raffetti
Nat. Hazards Earth Syst. Sci., 21, 3439–3447, https://doi.org/10.5194/nhess-21-3439-2021, https://doi.org/10.5194/nhess-21-3439-2021, 2021
Short summary
Short summary
COVID-19 has affected humankind in an unprecedented way, and it has changed how people perceive multiple risks. In this paper, we compare public risk perceptions in Italy and Sweden in two different phases of the pandemic. We found that people are more worried about risks related to recently experienced events. This finding is in line with the availability heuristic: individuals assess the risk associated with a given hazard based on how easily it comes to their mind.
Mia Wannewitz and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 21, 3285–3322, https://doi.org/10.5194/nhess-21-3285-2021, https://doi.org/10.5194/nhess-21-3285-2021, 2021
Short summary
Short summary
Focusing on Jakarta as a city with high flood risk and adaptation pressure, this study presents findings from a systematic literature review of adaptation options and the adaptation solution space to counter the city’s flood problem. Results indicate that the perceived solution space is skewed towards protection against flooding, while soft and hybrid adaptation options are less considered. This significantly influences flood risk management, including its effectiveness and sustainability.
Mihai Ciprian Mărgărint, Mihai Niculiță, Giulia Roder, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3251–3283, https://doi.org/10.5194/nhess-21-3251-2021, https://doi.org/10.5194/nhess-21-3251-2021, 2021
Short summary
Short summary
Local stakeholders' knowledge plays a deciding role in emergencies, supporting rescue officers in natural hazard events; coordinating; and assisting, both physically and psychologically, the affected populations. Their risk perception was assessed using a questionnaire for an area in north-eastern Romania. The results show low preparedness and reveal substantial distinctions among stakeholders and different risks based on their cognitive and behavioral roles in their communities.
Meng Zhang, Xue Qiao, Barnabas C. Seyler, Baofeng Di, Yuan Wang, and Ya Tang
Nat. Hazards Earth Syst. Sci., 21, 3243–3250, https://doi.org/10.5194/nhess-21-3243-2021, https://doi.org/10.5194/nhess-21-3243-2021, 2021
Short summary
Short summary
Earthquake early warning systems (EEWSs) can help reduce losses, but their effectiveness depends on adequate public perception and understanding of EEWSs. This study examined the performance of the EEWS in China's Sichuan Province during the 2019 Changning earthquake. We found a big gap existed between the EEWS's message, the public's perception of it, and their response. The study highlights the importance of gauging EEWS alert effectiveness and public participation for long-term resiliency.
Mohammad Shirvani and Georges Kesserwani
Nat. Hazards Earth Syst. Sci., 21, 3175–3198, https://doi.org/10.5194/nhess-21-3175-2021, https://doi.org/10.5194/nhess-21-3175-2021, 2021
Short summary
Short summary
Flooding in and around urban hubs can stress people. Immediate evacuation is a usual countermeasure taken at the onset of a flooding event. The flood–pedestrian simulator simulates evacuation of people prior to and during a flood event. It provides information on the spatio-temporal responses of individuals, evacuation time, and possible safe destinations. This study demonstrates the simulator when considering more realistic human body and age characteristics and responses to floodwater.
Stefano Carlino
Nat. Hazards Earth Syst. Sci., 21, 3097–3112, https://doi.org/10.5194/nhess-21-3097-2021, https://doi.org/10.5194/nhess-21-3097-2021, 2021
Short summary
Short summary
This paper reports a brief history of volcanic risk in the Neapolitan district, where the presence of three active volcanoes (Vesuvius, Campi Flegrei caldera and Ischia island) exposes this highly urbanized area to hazard of potential eruptions. I am trying to obtain new food for thought for the scientific community working to mitigate the volcanic risk of this area, revisiting about 40 years of debates around volcanic risk in Naples.
David Nortes Martínez, Frédéric Grelot, Pauline Brémond, Stefano Farolfi, and Juliette Rouchier
Nat. Hazards Earth Syst. Sci., 21, 3057–3084, https://doi.org/10.5194/nhess-21-3057-2021, https://doi.org/10.5194/nhess-21-3057-2021, 2021
Short summary
Short summary
Estimating flood damage, although crucial for assessing flood risk and for designing mitigation policies, continues to face numerous challenges, notably the assessment of indirect damage. We focus on flood damage induced by the interactions between economic activities. By modeling the production processes of a cooperative wine-making system, we show that these interactions are important depending on their spatial and temporal characteristics.
Danhua Xin, James Edward Daniell, Hing-Ho Tsang, and Friedemann Wenzel
Nat. Hazards Earth Syst. Sci., 21, 3031–3056, https://doi.org/10.5194/nhess-21-3031-2021, https://doi.org/10.5194/nhess-21-3031-2021, 2021
Short summary
Short summary
A grid-level residential building stock model (in terms of floor area and replacement value) targeted for seismic risk analysis for mainland China is developed by using census and population density data. Comparisons with previous studies and yearbook records indicate the reliability of our model. The modelled results are openly accessible and can be conveniently updated when more detailed census or statistics data are available.
Cited articles
Amt der NÖ Landesregierung: Standardisiertes Bewertungsverfahren für Hochwasserschäden bei Wohngebäuden und zugehörigen Nebengebäuden einschliesslich Zentralheizung, Inventar und Aussenanlagen. Richtwerte 2012/13, St.Pölten, available at: http://www.noe.gv.at/bilder/d63/Katastrophenschaeden_Technikerbehelf_2012.pdf?25222 (last access: May 2013), Amt der NÖ Landesregierung – Gruppe Baudirektion, St. Pölten, 2012.
Amt der Tiroler Landesregierung: Hydrologische Übersicht August 2005, Landesbaudirektion – Hydrographie, Innsbruck, 2005.
Amt der Tiroler Landesregierung: Rechnungsabschluss 2005 des Landes Tirol, Landesrechnungshof, Innsbruck, 2006.
Amt der Tiroler Landesregierung: Regionalwirtschaftliches Programm für die Region Naturschutzgebiet-Naturpark Tiroler Lech, Abteilung Raumordnung – Statistik, Innsbruck, 2008.
Apel, H., Aronica, G., Kreibich, H., and Thieken, A.: Flood risk analyses – how detailed do we need to be?, Nat. Hazards, 49, 79–98, https://doi.org/10.1007/s11069-008-9277-8, 2009.
BMLFUW: Hochwasser 2005 – Ereignisdokumentation der Bundeswasserbauverwaltung, des Forsttechnischen Dienstes für Wildbach- und Lawinenverbauung und des Hydrographischen Dienstes, Bundesministerium für Land- und Forstwirtschaft, Umwelt- und Wasserwirtschaft - Sektion Wasser, Vienna, 2006.
Bubeck, P., de Moel, H., Bouwer, L. M., and Aerts, J. C. J. H.: How reliable are projections of future flood damage?, Nat. Hazards Earth Syst. Sci., 11, 3293–3306, https://doi.org/10.5194/nhess-11-3293-2011, 2011.
Büchele, B., Kreibich, H., Kron, A., Thieken, A., Ihringer, J., Oberle, P., Merz, B., and Nestmann, F.: Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks, Nat. Hazards Earth Syst. Sci., 6, 485–503, https://doi.org/10.5194/nhess-6-485-2006, 2006.
BWW, BRP, BUWAL: Berücksichtigung der Hochwassergefahren bei raumwirksamen Tätigkeiten, Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung, Bundesamt für Umwelt, Wald und Landschaft, Bern und Biel, 1997.
Cammerer, H. and Thieken, A. H.: Flood Loss Reduction due to Private Precaution, in: Urban Flood Risk Management – Approaches to enhance resilience of communities, Proceedings of the International Symposium UFRIM, Graz, Austria, 21–23 September 2011, 381–386, 2011.
Cammerer, H. and Thieken, A.: Historical development and future outlook of the flood damage potential of residential areas in the Alpine Lech Valley (Austria) between 1971 and 2030, Regional Environ. Change, 13, 999–1012, https://doi.org/10.1007/s10113-013-0407-9, 2013.
Cammerer, H., Thieken, A., and Verburg, P.: Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria), Nat. Hazards, 68, 1243–1270, https://doi.org/10.1007/s11069-012-0280-8, 2013.
Chang, L.-F., Lin, C.-H., and Su, M.-D.: Application of geographic weighted regression to establish flood-damage functions reflecting spatial variation, Water SA, 34, 209–215, 2008.
Cochrane, H.: Economic loss: myth and measurement, Disaster Prevent. Manage., 13, 290–296, https://doi.org/10.1108/09653560410556500, 2004.
de Moel, H. and Aerts, J.: Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates, Nat. Hazards, 58, 407–425, https://doi.org/10.1007/s11069-010-9675-6, 2011.
de Moel, H., van Alphen, J., and Aerts, J. C. J. H.: Flood maps in Europe – methods, availability and use, Nat. Hazards Earth Syst. Sci., 9, 289–301, https://doi.org/10.5194/nhess-9-289-2009, 2009.
de Moel, H., Asselman, N. E. M., and Aerts, J. C. J. H.: Uncertainty and sensitivity analysis of coastal flood damage estimates in the west of the Netherlands, Nat. Hazards Earth Syst. Sci., 12, 1045–1058, https://doi.org/10.5194/nhess-12-1045-2012, 2012.
Dobler, C., Stötter, J., and Schöberl, F.: Assessment of climate change impacts on the hydrology of the Lech Valley in northern Alps, J. Water Climate Change, 1, 207–218, https://doi.org/10.2166/wcc.2010.122, 2010.
Downton, M. and Pielke, R.: How Accurate are Disaster Loss Data? The Case of U.S. Flood Damage, Nat. Hazards, 35, 211–228, https://doi.org/10.1007/s11069-004-4808-4, 2005.
Dung, N. V., Merz, B., Bárdossy, A., Thang, T. D., and Apel, H.: Multi-objective automatic calibration of hydrodynamic models utilizing inundation maps and gauge data, Hydrol. Earth Syst. Sci., 15, 1339–1354, https://doi.org/10.5194/hess-15-1339-2011, 2011.
Dutta, D., Herath, S., and Musiake, K.: A mathematical model for flood loss estimation, J. Hydrol., 277, 24–49, https://doi.org/10.1016/S0022-1694(03)00084-2, 2003.
Ebner, V., Fritzmann, P., Gstaiger, V., Kelterer, M., Maurer, D., and Nieland, S.: Rekonstruktion der Hochwasseranschlagslinien an Gebäuden vom Augusthochwasser 2005 und Vergleich der Ergebnisse mit den HORA-Modellierungen, Abschlussbericht Projektmodul 2006/07, Institut für Geographie, Innsbruck, 2007.
EC (European Commission): A new EU Floods Directive 2007/60/EC, available at: http://ec.europa.eu/environment/water/flood_risk/ (last access: May 2013), 2007.
Egorova, R., van Noortwijk, J. M., and Holterman, S. R.: Uncertainty in flood damage estimation, Int. J. River Basin Manage., 6, 139–148, https://doi.org/10.1080/15715124.2008.9635343, 2008.
Elmer, F., Thieken, A. H., Pech, I., and Kreibich, H.: Influence of flood frequency on residential building losses, Nat. Hazards Earth Syst. Sci., 10, 2145–2159, https://doi.org/10.5194/nhess-10-2145-2010, 2010.
Freni, G., La Loggia, G., and Notaro, V.: Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation, Water Sci. Technol., 61, 2979–2993, 2010.
Fuchs, S., Heiss, K., and Hübl, J.: Towards an empirical vulnerability function for use in debris flow risk assessment, Nat. Hazards Earth Syst. Sci., 7, 495–506, https://doi.org/10.5194/nhess-7-495-2007, 2007.
Habersack, H., Bügel, J., and Petrascheck, A.: Analyse der Hochwasserereignisse vom August 2002 – FloodRisk, Synthesebericht, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien, 2004.
Holub, M. and Fuchs, S.: Mitigating mountain hazards in Austria – legislation, risk transfer, and awareness building, Nat. Hazards Earth Syst. Sci., 9, 523–537, https://doi.org/10.5194/nhess-9-523-2009, 2009.
Holub, M., Suda, J., and Fuchs, S.: Mountain hazards: reducing vulnerability by adapted building design, Environ. Earth Sci., 66, 1853–1870, https://doi.org/10.1007/s12665-011-1410-4, 2012.
Huttenlau, M. and Stötter, J.: Ermittlung des monetären Werteinventars als Basis von Analysen naturgefahreninduzierter Risiken in Tirol (Österreich), Geogr. Helv., 63, 85–93, https://doi.org/10.5194/gh-63-85-2008, 2008.
Hydrotec: Hochwasser-Aktionsplan Lippe, Grundlagen, Überflutungsgebiet, Schadenspotenzial, Defizite und Maßnahmen, Studie im Auftrag des Staatlichen Umweltamts Lippstadt, Aachen, 2002.
ICPR (International Commission for the Protection the Rhine): Atlas of Flood Danger and Potential Damage Due to Extreme Floods of the Rhine, International Commission for the Protection of the Rhine, Koblenz, 2001.
Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., Gericke, A., Neal, J., Aerts, J. C. J. H., and Ward, P. J.: Comparative flood damage model assessment: towards a European approach, Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, 2012.
Kang, J.-L., Su, M.-D., and Chang, L.-F.: Loss functions and framework for regional flood damage estimation in residential area, J. Mar. Sci. Technol., 13, 193–199, 2005.
Keiler, M., Zischg, A., and Fuchs, S.: Methoden zur GIS-basierten Erhebung des Schadenpotenzials für naturgefahreninduzierte Risiken, in: GIS und Sicherheitsmanagement, edited by: Strobl, J. and Roth, C., Wichmann, Heidelberg, 118–128, 2006.
Kelman, I. and Spence, R.: An overview of flood actions on buildings, Eng. Geol., 73, 297–309, https://doi.org/10.1016/j.enggeo.2004.01.010, 2004.
Kreibich, H. and Thieken, A. H.: Assessment of damage caused by high groundwater inundation, Water Resour. Res., 44, W09409, https://doi.org/10.1029/2007wr006621, 2008.
Kreibich, H. and Thieken, A. H.: Coping with floods in the city of Dresden, Germany, Nat. Hazards, 51, 423–436, https://doi.org/10.1007/s11069-007-9200-8, 2009.
Kreibich, H., Thieken, A. H., Petrow, T., Müller, M., and Merz, B.: Flood loss reduction of private households due to building precautionary measures – lessons learned from the Elbe flood in August 2002, Nat. Hazards Earth Syst. Sci., 5, 117–126, https://doi.org/10.5194/nhess-5-117-2005, 2005.
Kreibich, H., Piroth, K., Seifert, I., Maiwald, H., Kunert, U., Schwarz, J., Merz, B., and Thieken, A. H.: Is flow velocity a significant parameter in flood damage modelling?, Nat. Hazards Earth Syst. Sci., 9, 1679–1692, https://doi.org/10.5194/nhess-9-1679-2009, 2009.
Kreibich, H., Christenberger, S., and Schwarze, R.: Economic motivation of households to undertake private precautionary measures against floods, Nat. Hazards Earth Syst. Sci., 11, 309–321, https://doi.org/10.5194/nhess-11-309-2011, 2011a.
Kreibich, H., Meyer, S., and Diekkrüger, B.: Weiterentwicklung von FLEMOps zur Modellierung von Grundhochwasserschäden und Wohngebäuden, Hydrol. Wasserbewirts., 55, 300–309, 2011b.
Kröll, A.: Chronik der Gemeinde Pflach, Museumsvereins des Bezirkes Reutte, Reutte, 607 pp., 2007.
Luino, F., Cirio, C., Biddoccu, M., Agangi, A., Giulietto, W., Godone, F., and Nigrelli, G.: Application of a model to the evaluation of flood damage, GeoInformatica, 13, 339–353, https://doi.org/10.1007/s10707-008-0070-3, 2009.
Merz, B. and Thieken, A.: Flood risk curves and uncertainty bounds, Nat. Hazards, 51, 437–458, https://doi.org/10.1007/s11069-009-9452-6, 2009.
Merz, B., Kreibich, H., Thieken, A., and Schmidtke, R.: Estimation uncertainty of direct monetary flood damage to buildings, Nat. Hazards Earth Syst. Sci., 4, 153–163, https://doi.org/10.5194/nhess-4-153-2004, 2004.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article "Assessment of economic flood damage", Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Merz, B., Kreibich, H., and Lall, U.: Multi-variate flood damage assessment: a tree-based data-mining approach, Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, 2013.
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.
Mudelsee, M., Börngen, M., Tetzlaff, G., and Grünewald, U.: Extreme floods in central Europe over the past 500 years: Role of cyclone pathway "Zugstrasse Vb", J. Geophys. Res. Atmos., 109, D23101, https://doi.org/10.1029/2004jd005034, 2004.
MURL: Potenzielle Hochwasserschäden am Rhein in Nordrhein-Westfalen, Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes Nordrhein-Westfalen, Düsseldorf, 2000.
Nicholas, J., Holt, G. D., and Proverbs, D.: Towards standardising the assessment of flood damaged properties in the UK, Struct. Survey, 19, 163–172, 2001.
Noack, M. and Yörük, A.: Uncertainty in hydrodynamic-numerical modelling of flood areas, Hydrol. Wasserbewirts., 52, 73–178, 2008.
Nujic, M.: HYDRO_AS-2D – Ein zweidimensionales Strömungsmodell für die wasserwirtschaftliche Praxis, Benutzerhandbuch, Rosenheim, 2003.
Oliveri, E. and Santoro, M.: Estimation of urban structural flood damages: the case study of Palermo, Urban Water J., 2, 223–234, https://doi.org/10.1016/s1462-0758(00)00062-5, 2000.
Papathoma-Köhle, M., Kappes, M., Keiler, M., and Glade, T.: Physical vulnerability assessment for alpine hazards: state of the art and future needs, Nat. Hazards, 58, 645–680, https://doi.org/10.1007/s11069-010-9632-4, 2011.
Penning-Rowsell, E. C. and Chatterton, J. B.: The benefits of flood alleviation: A manual of assessment techniques, Gower Technical Press, Aldershot, 1977.
Penning-Rowsell, E., Johnson, C., Tunstall, S., Tapseel, S., Morris, J., Chatterton, J., and Green, C.: The Benefits of Flood and Coastal Risk Management: a Handbook of Assessment Techniques, Middlesex University Press, London, 2005.
Pistrika, A. and Jonkman, S.: Damage to residential buildings due to flooding of New Orleans after hurricane Katrina, Nat. Hazards, 54, 413–434, https://doi.org/10.1007/s11069-009-9476-y, 2010.
Prettenthaler, F., Amrusch, P., and Habsburg-Lothringen, C.: Estimation of an absolute flood damage curve based on an Austrian case study under a dam breach scenario, Nat. Hazards Earth Syst. Sci., 10, 881–894, https://doi.org/10.5194/nhess-10-881-2010, 2010.
Raschky, P., Schwarze, R., Schwindt, M., and Weck-Hannemann, H.: Alternative Finanzierungs- und Versicherungslösungen. Vergleich unterschiedlicher Risikotransfersysteme dreier vom Augusthochwasser 2005 betroffener Länder: Deutschland, Österreich und Schweiz, Präventionsstiftung der Kantonalen Gebäudeversicherungen, Bern, 2009.
Schwarz, J. and Maiwald, H.: Prognose der Bauwerksschädigung unter Hochwassereinwirkung, Bautechnik, 84, 450–464, https://doi.org/10.1002/bate.200710039, 2007.
Schwarz, J., Maiwald, H., and Gerstberger, A.: Quantifizierung der Schäden infolge Hochwassereinwirkung: Fallstudie Eilenburg, Bautechnik, 82, 845–856, https://doi.org/10.1002/bate.200590247, 2005.
Seibert, P., Frank, A., and Formayer, H.: Synoptic and regional patterns of heavy precipitation in Austria, Theor. Appl. Climatol., 87, 139–153, https://doi.org/10.1007/s00704-006-0198-8, 2007.
Seifert, I., Kreibich, H., Merz, B., and Thieken, A. H.: Application and validation of FLEMOcs – a flood-loss estimation model for the commercial sector, Hydrolog. Sci. J., 55, 1315–1324, https://doi.org/10.1080/02626667.2010.536440, 2010.
Smith, D. I.: Flood damage estimation – a review of urban stage-damage curves and loss functions, Water SA, 20, 231–238, 1994.
Smith, K. and Ward, R.: Floods: Physical processes and Human Impacts, John Wiley & Sons, Chichester, 1998.
Statistics Austria: Baukostenindex Wohnhaus- und Siedlungsbau Basisjahr 2005, available at: http://www.statistik.at/web_de/statistiken/preise/baukostenindex/ index.html (last access: May 2013), 2013a.
Statistics Austria: Ein Blick auf die Gemeinden, available at: http://www.statistik.at/web_de/services/ein_blick_auf_die_gemeinde/index.html (last access: May 2013), 2013b.
Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.: Flood damage and influencing factors: new insights from the August 2002 flood in Germany, Water Resour. Res., 41, W12430, https://doi.org/10.1029/2005wr004177, 2005.
Thieken, A. H., Müller, M., Kleist, L., Seifert, I., Borst, D., and Werner, U.: Regionalisation of asset values for risk analyses, Nat. Hazards Earth Syst. Sci., 6, 167–178, https://doi.org/10.5194/nhess-6-167-2006, 2006.
Thieken, A. H., Kreibich, H., Müller, M., and Merz, B.: Coping with floods: preparedness, response and recovery of flood-affected residents in Germany in 2002, Hydrol. Sci. J., 52, 1016–1037, https://doi.org/10.1623/hysj.52.5.1016, 2007.
Thieken, A., Olschewski, A., Kreibich, H., Kobsch, S., and Merz, B.: Development and evaluation of FLEMOps – a new Flood Loss Estimation MOdel for the private sector, in: Flood Recovery, Innovation and Response, edited by: Proverbs, D., Brebbia, C. A., and Penning-Rowsell, E., WIT Press, 315–324, 2008.
Thieken, A. H., Seifert, I., and Merz, B.: Hochwasserschäden: Erfassung, Abschätzung und Vermeidung, Oekom Verlag GmbH, München, 2010.
Thieken, A. H., Cammerer, H., Dobler, C., Lammel, J., Bronstert, A., Stötter, J., and Schöberl, F.: Analysing changes in flood risks in an Alpine catchment, in: Managing Alpine Future II – Inspire and Drive Sustainable Mountain Regions, Proceedings of the Innsbruck Conference 23–23 November 2011, 97–107, 2011.
Thywissen, K.: Components of Risk. A Comparative Glossary, United Nation University, 2006.
Totschnig, R. and Fuchs, S.: Mountain torrents: Quantifying vulnerability and assessing uncertainties, Eng. Geol., 155, 31–44, https://doi.org/10.1016/j.enggeo.2012.12.019, 2013.
Totschnig, R., Sedlacek, W., and Fuchs, S.: A quantitative vulnerability function for fluvial sediment transport, Nat. Hazards, 58, 681–703, https://doi.org/10.1007/s11069-010-9623-5, 2011.
van Bebber, W. J.: Die Wettervorhersage, 2nd Edn., Enke, Stuttgart, 219 pp., 1898.
van der Veen, A. and Logtmeijer, C.: Economic Hotspots: Visualizing Vulnerability to Flooding, Nat Hazards, 36, 65–80, https://doi.org/10.1007/s11069-004-4542-y, 2005.
White, G.: Human adjustment to floods – a Geographical Approach to the Flood Problem in the United States, Research Paper No. 29, University of Chicago, USA, 1945.
Wuensch, A., Herrmann, U., Kreibich, H., and Thieken, A. H.: The role of disaggregation of asset values in flood loss estimation: a comparison of different modeling approaches at the Mulde River, Germany, Environ. Manage., 44, 524–541, https://doi.org/10.1007/s00267-009-9335-3, 2009.
Special issue
Altmetrics
Final-revised paper
Preprint