Articles | Volume 26, issue 1
https://doi.org/10.5194/nhess-26-611-2026
https://doi.org/10.5194/nhess-26-611-2026
Research article
 | 
29 Jan 2026
Research article |  | 29 Jan 2026

From typhoon rainfall to slope failure: optimizing susceptibility models and dynamic thresholds for landslide warnings in Zixing City, China

Weifeng Xiao, Guangchong Yao, Zhenghui Xiao, Ge Liu, Luguang Luo, Yunjiang Cao, and Wei Yin

Related authors

Fusion of Landsat 8 Operational Land Imager and Geostationary Ocean Color Imager for hourly monitoring surface morphology of lake ice with high resolution in Chagan Lake of Northeast China
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023,https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022,https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary

Cited articles

Achu, A. L., Aju, C. D., Pham, Q. B., Reghunath, R., and Anh, D. T.: Landslide susceptibility modeling using hybrid bivariate statistical-based machine-learning method in a highland segment of Southern Western Ghats, India, Environ. Earth Sci., 81, 361, https://doi.org/10.1007/s12665-022-10464-z, 2022. 
Banfi, F. and De Michele, C.: Temporal clustering of precipitation driving landslides over the Italian Territory, Earths Future, 12, e2023EF003885, https://doi.org/10.1029/2023EF003885, 2024. 
Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds, Nat. Hazards Earth Syst. Sci., 18, 31–39, https://doi.org/10.5194/nhess-18-31-2018, 2018. 
Calvello, M. and Piciullo, L.: Assessing the performance of regional landslide early warning models: the EDuMaP method, Nat. Hazards Earth Syst. Sci., 16, 103–122, https://doi.org/10.5194/nhess-16-103-2016, 2016. 
Chang, Z. L., Huang, J. S., Huang, F. M., Bhuyan, K., Meena, S. R., and Catani, F.: Uncertainty analysis of non-landslide sample selection in landslide susceptibility prediction using slope unit-based machine learning models, Gondwana Res., 117, 307–320, https://doi.org/10.1016/j.gr.2023.02.007, 2023. 
Download
Short summary
In China’s Zixing City, typhoon landslides are rising with climate change. This study used machine learning on Typhoon Gaemi (2024) data, identifying 86.4 % of high-risk landslides. A rainfall model (24 h+7-day) achieved 71.8 % accuracy, guiding a warning system matching 71.4 % of historical events.
Share
Altmetrics
Final-revised paper
Preprint