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Abstract. Typhoon-specific rainfall-induced landslides pose
critical hazards in mountainous regions, yet existing warn-
ing systems inadequately capture the distinct rainfall dynam-
ics of these extreme events. To address this limitation, we
propose an integrated framework combining optimized sus-
ceptibility predictions with dynamic rainfall thresholds tai-
lored to typhoon patterns. The approach enhances machine
learning accuracy through buffer-based negative sampling
and variable weighting. It also introduces a spatiotemporal
rainfall analysis to distinguish between short-term intense
downpours and cumulative soil saturation. Tested in Zixing
City, Hunan Province, China, where over 700 landslides were
triggered by Typhoon Gaemi, the framework proved effec-
tive. The support vector machine (SVM) model achieved the
best performance using frequency ratio (FR) inputs with a
0.5 km buffer (F1-score: 0.859, AUC: 0.914), correctly clas-
sifying 86.4 % of landslides as high or very high suscep-
tibility. The rainfall analysis identified 24 h intensity com-
bined with 7 d antecedent rainfall as the optimal trigger, ef-
fectively capturing both immediate and cumulative moisture
effects. Spatially, rhyolite and granite slopes and areas near
roads emerged as hotspots for failure (distance < 800m,
FR = 1.499 for roads; FR = 1.546 for rhyolite). The inte-
grated warning system shows high spatial efficiency, with
high-risk areas covering only 34.2 % of the study region yet
capturing 71.4 % of historical landslides. Additionally, the
framework generated high-risk zone maps that align strongly
with historical events. This work highlights the unique nature

of typhoon-driven slope instability and provides a transfer-
able framework for disaster risk reduction in cyclone-prone
regions.

1 Introduction

Landslides pose significant threats to mountainous regions
globally (Froude and Petley, 2018), especially in areas where
steep terrain, complex geology (Thiene et al., 2017), and
extreme weather events like typhoons intersect. In South-
east China, typhoon-induced landslides have become a grow-
ing concern due to the region’s rapid urbanization and
the increasing variability in climate patterns (Gariano and
Guzzetti, 2016; Fan et al., 2018). The Nanling Mountains,
in southern China, are particularly vulnerable to landslides
due to a combination of extreme topographic relief and com-
plex geological conditions during the typhoon season (Zou et
al., 2023).

Typhoons typically bring prolonged antecedent rainfall,
followed by intense, short bursts of precipitation (Li et al.,
2019). These conditions create unique hydrological environ-
ments that exceed the complexity of typical rainfall-triggered
landslides (Chung and Li, 2022). These events trigger slope
failures through cumulative soil saturation and sudden hy-
drological stress, challenging traditional landslide prediction
methods (Yang et al., 2017). Despite advances in landslide
susceptibility prediction (LSP) and rainfall threshold mod-
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eling, current approaches remain inadequate. Three critical
limitations persist: severe data imbalance effects, suboptimal
integration of variable selection with machine learning algo-
rithms, and lack of spatially-explicit rainfall thresholds for
typhoon-specific conditions (Segoni et al., 2018a; Regmi et
al., 2024).

Most existing studies employ ad-hoc buffer distances
without systematic optimization, leading to inconsistent
model performance across different geological settings
(Lombardo and Mai, 2018). Traditional methods attempt to
mitigate this imbalance by randomly sampling non-landslide
points across the study area (Steger et al., 2016; Dou et al.,
2023). However, random selection can introduce spatial bias,
as non-landslide points might include areas that are unstable
but have not yet been identified as landslide-prone (Kalantar
et al., 2018).

To address this limitation, more recent approaches have
employed buffer-based negative sampling, which systemat-
ically excludes non-landslide points near known landslide
sites. This method assumes that adjacent areas share similar
environmental conditions (e.g., slope, lithology) and there-
fore should not be classified as “stable” (Achu et al., 2022).
Several studies have tested varying buffer distances, ranging
from tens to thousands of meters, to determine the optimal
distance for different regions. However, systematic evalua-
tion of buffer distance optimization coupled with variable
weighting methods remains largely unexplored.

LSP is primarily focused on identifying areas prone to
slope failure, based on static environmental factors such as
topography, lithology, land cover, and hydrology (Zézere et
al., 2017; Guo et al., 2024). Traditional approaches to LSP
often rely on deterministic and statistical methods, including
information value (IV), certainty factor (CF), frequency ra-
tio (FR), logistic regression (LR), and weight of evidence
(WOE). These methods quantify the relationship between
historical landslide occurrences and predisposing factors us-
ing linear or semi-linear approaches (Ciurleo et al., 2017;
Reichenbach et al., 2018). However, these methods oversim-
plify the complex, nonlinear interactions that govern slope
stability (Merghadi et al., 2020).

In contrast, machine learning (ML) algorithms, such as
support vector machine (SVM) and light gradient boost-
ing machine (LightGBM), have emerged as powerful al-
ternatives. SVM excels in high-dimensional classification
tasks and effectively identifies optimal hyperplanes separat-
ing landslide-prone from stable areas (San, 2014; Huang and
Zhao, 2018). LightGBM offers superior scalability and com-
putational efficiency for processing large geospatial datasets
(Sun et al., 2023). Both SVM and LightGBM capture in-
tricate relationships among variables without restrictive as-
sumptions, making them superior to traditional methods in
terms of predictive accuracy (Yang et al., 2023). However,
frameworks that systematically integrate variable weighting
methods with advanced ML algorithms for LSP optimization
are lacking.
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For temporal prediction, existing rainfall threshold ap-
proaches predominantly use generalized regional thresh-
olds that inadequately capture local geological heterogene-
ity and typhoon-specific rainfall patterns (Calvello and Pi-
ciullo, 2016; Guzzetti, 2021; Banfi and De Michele, 2024).
These thresholds are typically defined based on cumulative
or intensity-duration (I-D) rainfall values (Piciullo et al.,
2017; Segoni et al., 2018a). In typhoon-prone regions, dy-
namic rainfall thresholds are crucial due to the unique combi-
nation of long-duration antecedent rainfall and sudden high-
intensity bursts of precipitation (Guzzetti et al., 2020). Tradi-
tional empirical methods fail to provide spatially continuous
threshold surfaces that account for local environmental vari-
ability (Piciullo et al., 2018).

Recent advances have integrated multi-temporal rainfall
parameters with advanced statistical techniques to optimize
rainfall thresholds (Segoni et al., 2015; Huang et al., 2022),
accounting for diverse triggering mechanisms. Additionally,
spatial interpolation methods, such as Kriging, have been
applied to generate continuous rainfall threshold surfaces
that allow for local variations in geological and environ-
mental conditions (Kenanoglu et al., 2019; Segoni et al.,
2018b). This approach, when combined with high-resolution
susceptibility maps, contributes to the development of inte-
grated hazard warning systems that can dynamically adjust
to typhoon-specific rainfall-induced scenarios (Piciullo et al.,
2018; Mirus et al., 2018).

This study examines Zixing City, a mountainous re-
gion in southeastern Hunan Province, frequently affected by
typhoon-induced extreme rainfall. Its steep slopes, fractured
geology, and high sensitivity to rapid pore-pressure increase
render it particularly vulnerable (Ma et al., 2025). The large
number of landslides (> 700) triggered by Typhoon Gaemi
in July 2024 provides a valuable dataset for model calibra-
tion and validation.

Here we developed an integrated framework that combines
(i) optimized buffer distances for negative sampling, (ii) bi-
variate weighting methods (IV, CF, FR) with advanced ma-
chine learning classifiers (SVM, LightGBM), and (iii) spa-
tially continuous, typhoon-specific rainfall thresholds de-
rived through Kriging interpolation. The specific objectives
are to (1) determine optimal buffer distances that minimize
spatial bias in imbalanced datasets, (2) evaluate the perfor-
mance gain from coupling bivariate weights with machine
learning algorithms, (3) establish dynamic rainfall thresh-
olds suited to typhoon rainfall patterns, (4) generate contin-
uous threshold surfaces via Kriging, and (5) integrate high-
resolution susceptibility maps with these thresholds to sup-
port an operational early warning system. This approach im-
proves landslide prediction in typhoon-prone mountainous
regions and provides a transferable methodology for similar
environments.
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2 Study area and data sources
2.1 Study area

Zixing City (25°34'-26°18' N, 113°08'-113°44’ E), covering
2747 km? in southeastern Hunan Province, China (Fig. 1), is
located within the Nanling Mountains geological province.
Situated approximately 400 km inland from the South China
Sea, Zixing lies at the intersection of the Nanling Moun-
tains and low hills, forming a watershed divide between
the Yangtze and Pearl River basins. The region is charac-
terized by steep topography, with elevations ranging from
125 to 1691 m and slopes exceeding 30° across 78 % of the
area. This mountainous terrain, combined with fractured ge-
ology and active NE-SW trending faults such as the Chaling-
Yongxing Fault Zone, creates a permeable fracture network
that facilitates groundwater drainage.

The climate of Zixing is subtropical monsoon, with an-
nual precipitation averaging 1550 mm, 70 % of which occurs
from April to September. Typhoons significantly contribute
to rainfall, inducing rapid pore-pressure increases in shal-
low aquifers (3-8 m depth). These climatic and geological
conditions make Zixing particularly vulnerable to landslides,
providing a valuable context for this study. The extensive
landslide dataset triggered by Typhoon Gaemi in July 2024
(> 700 events) serves as a critical resource for model cali-
bration and validation.

2.2 Data collection and preprocessing
2.2.1 Compilation of landslide catalogue

A comprehensive inventory of 705 landslide events triggered
by Typhoon Gaemi on 27 July 2024, was compiled from the
Hunan Center for Natural Resources Affairs. The landslide
locations were verified through field inspections and high-
resolution satellite imagery to ensure spatial accuracy and
completeness of the dataset.

2.2.2 Landslide conditioning factors and data sources

Based on extensive literature reviews and the geoenviron-
mental characteristics of the study area, twelve condition-
ing factors were selected for landslide susceptibility analy-
sis: elevation, slope gradient, slope orientation, curvature, to-
pographic wetness index (TWI), stream power index (SPI),
normalized difference vegetation index (NDVI), distances to
roads, rivers, and faults, and lithology (Fig. 2).

Topographic factors (elevation, slope gradient, slope ori-
entation, TWI, SPI, and curvature) were extracted from
a 30m digital elevation model (DEM) obtained from the
Geospatial Data Cloud (https://www.gscloud.cn, last access:
20 October 2023). Environmental factors including NDVI
and proximity variables (distances to roads, rivers, and fault
lines) were derived from 1 : 50000-scale cartographic maps
and Landsat 8 OLI imagery from the same platform. Geo-
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logical composition and structural data were acquired from
1 : 100000-scale geological maps.

2.2.3 Data preprocessing and spatial standardization

We transformed all conditioning factors into continuous sta-
tistical measures using I'V, CF, and FR methods and then re-
sampled them to a uniform 60 m resolution. This resolution
was selected to balance computational efficiency with scale
appropriateness for regional landslide analysis while main-
taining compatibility with the available geological map scale
(1:100000).

The study area was divided into 60 x 60 m grid cells, with
landslides smaller than the grid resolution aggregated to the
nearest cell centroid. Multiple landslides within a single cell
were treated as one event to maintain spatial independence
required for machine learning modeling. This preprocessing
approach ensures statistical validity by minimizing spatial
autocorrelation effects while providing adequate representa-
tion of landslide distribution patterns across the study area.

2.2.4 Rainfall data collection and spatial distribution

Rainfall data for the study were obtained from 12 auto-
matic rain gauge stations strategically distributed across Zix-
ing City and its surrounding areas (Fig. 1). These stations,
operated by the Hunan Meteorological Administration, pro-
vided hourly precipitation records during Typhoon Gaemi
(20-30 July 2024) and the preceding antecedent period. The
spatial distribution of gauge stations ensured adequate cover-
age of the study area’s topographic and climatic gradients.

To assign rainfall parameters (H1, H12, H24, H72, and
D7) to each of the 705 landslide points, we employed the
Kriging interpolation to generate spatially continuous rainfall
surfaces from discrete gauge measurements. This geostatis-
tical method accounts for spatial autocorrelation in rainfall
patterns and provides optimal unbiased estimates by weight-
ing nearby observations based on their spatial proximity and
correlation structure.

Spherical variogram models were fitted to the rainfall data
through iterative optimization, with model selection based
on minimum Akaike Information Criterion (AIC) values.
The interpolation accuracy was rigorously evaluated through
leave-one-out cross-validation, where each gauge station was
sequentially removed and its rainfall values predicted using
the remaining 11 stations. Four statistical metrics were used
to assess performance: Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), correlation coefficient (R), and
Nash-Sutcliffe Efficiency (NSE).

The validation results demonstrated acceptable interpola-
tion accuracy across all rainfall parameters, with correlation
coefficients ranging from 0.76 to 0.87 and Nash-Sutcliffe
Efficiency values between 0.71-0.82. Despite some limita-
tions inherent to the sparse gauge network in mountainous
terrain, the interpolation performance was deemed sufficient
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Figure 1. Geographical distribution of the study area, landslides and rainfall gauges.

for regional landslide susceptibility analysis, ensuring rea-
sonable spatial representation of precipitation patterns across
the study area.

3 Methodologies

This study proposes an integrated framework for optimizing
LSP and typhoon-specific rainfall thresholds within hazard
warning systems (Fig. 3). The framework includes the fol-
lowing key components: (1) landslide susceptibility predic-
tion and mapping, utilizing twelve conditioning factors prior-
itizing typhoon-induced hydrological responses (e.g., TWI,
SPI) and 705 landslide records from 27 July 2024, optimized
with five buffer distances and evaluated using ROC curves;
(2) dynamic rainfall threshold modeling based on typhoon
rainfall parameterization, validated and spatially interpolated
using Kriging; and (3) the integration of spatial and temporal
probabilities to develop a typhoon-specific rainfall-induced
landslide warning system, demonstrated through a case study
in Zixing City.

3.1 Landslide susceptibility prediction and mapping

3.1.1 Machine learning models: selection rationale and
implementation

We selected SVM and LightGBM to address three key chal-
lenges in typhoon-specific rainfall-induced landslide predic-
tion: (1) severe class imbalance (landslides < 0.5 % of study
area), (2) complex non-linear interactions between rainfall
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and terrain factors, and (3) computational efficiency for op-
erational early warning.

SVM excels in binary classification with limited samples
through structural risk minimization (Kalantar et al., 2018),
making it suitable for typhoon-triggered landslide mapping.
Its margin-maximization approach handles the class imbal-
ance between stable and landslide areas, while the RBF ker-
nel captures localized failure patterns under concentrated
typhoon rainfall. The regularization parameter C prevents
overfitting to specific typhoon events, ensuring model trans-
ferability. The SVM optimization problem is defined as:

1
C 1
m;rézw Tw+ ;Ez (1)
subject to the constraint:
vi(wlo@i) +b) = 1-&, §=0, i=1,...n 2)

where w is the normal vector to the hyperplane, b is the
bias term, &; are slack variables, ¢ (x;) maps input vectors
to a higher-dimensional space,and y; denotes the class label
(=1 or 1) for each sample x;. We optimized the RBF kernel
parameters using grid-search with 5-fold cross-validation,
where C € [0.1, 100] and y € [0.001, 1]. Across all configu-
rations (three input methods x five buffer distances), optimal
values varied as follows: C = 5-15 and y = 0.10-0.25, with
median values of C =10 and y = 0.15.

LightGBM complements SVM through gradient boosting
with sequential error correction, offering distinct advantages
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Figure 2. Landslide-related conditioning factors.
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for regional-scale landslide mapping. Its histogram-based al-
gorithm enables efficient processing of large spatial datasets
(Sun et al., 2023). Additionally, LightGBM automatically
captures complex feature interactions. The minimized objec-
tive function is expressed as:

N M
L= (y —9i>2+A2||9j||2 3)
]:

i=1

where y; is the true label, y; is the predictive value, A is
a regularization parameter, and 6; represents the parame-
ters of the model. We optimized LightGBM hyperparameters
through Bayesian optimization. The optimal hyperparame-
ters ranged as: num_leaves = 25-35, learning_rate = 0.03—
0.08, and max_depth = 6-10. Early stopping with a 50-
round patience window resulted in model convergence at
120-220 trees across different scenarios.

3.1.2 Input variable weighting methods

The IV method, grounded in information theory, assesses
how different factors contribute to landslide susceptibility
within a study area (Niu et al., 2024). Factors such as dis-
tance to roads and lithology were weighted higher in Zixing
City due to their interaction with typhoon-induced soil satu-
ration. The IV for each evaluation factor is determined using
the formula below:

IV(F,-,K):lnM “)

Si/S

where IV(F;, K) is the information value of evaluation factor
F; in relation to landslide event K, N; refers to the number of
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landslides, N is the total number of landslides, S; represents
the area covered by factor F;, and § is the total area of the
study area.

The CF method is a widely utilized probabilistic technique
for assessing the likelihood of landslide occurrences (Zhao
et al., 2021). It quantifies the prior probability of a landslide
initiation under specific conditions of influential factors, uti-
lizing spatial data from known landslide locations. The ex-
pression of CF is as follows:

PP, —PP;
CF = mv PPa < PPA (5)
=) _PRPP.  pp - pp
PP, (1-PPy)° a — s

where CF is the certainty factor indicating the degree of as-
sociation between an influential factor and potential land-
slide occurrence. It is derived from two area-proportional
measures: PP,, the proportion of landslide points within
a specific factor class (number of landslide points in the
class/total area of the class); and PPy, the proportion of land-
slide points across the entire study region (total number of
landslide points/ total area of the region).

The FR is a prevalent method in statistical analysis that as-
sesses the relative impact of various factors on the incidence
of landslides (Panchal and Shrivastava, 2021). An elevated
FR value denotes a more significant influence of a factor on
the likelihood of landslides. The FR is determined by the fol-
lowing equation:

R = Ni/N (6)
Si/S

where FR is the frequency ratio, N; represents the number of

landslides within the area corresponding to the conditioning
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factor, NV is the total number of landslides, S; is the area cov-
ered by the conditioning factor and S is the total area of the
study region.

3.1.3 Buffer distance optimization and uncertainty
assessment for LSP

To generate negative (non-landslide) samples for LSP, ar-
eas within buffer distances of d =0.1, 0.5, 1.0, 2.0, and
5.0km around landslide locations were excluded, with bal-
anced negative samples (n = 705) randomly selected from
remaining stable areas for each distance. The optimal buffer
distance was determined by evaluating SVM and LightGBM
model performance using AUC, Precision, Recall, and F1-
score metrics.

The selection of buffer distances (0.1-5.0km) was based
on Zixing’s geomorphological considerations and prac-
tices commonly reported in LSP. This range encompasses
multiple spatial scales: slope-scale processes (0.1-0.5 km),
catchment-scale features (1.0-2.0km), and regional-scale
geological units (5.0km). The evaluation ensures optimal
spatial representation without a priori assumptions about
scale dependencies (Chang et al., 2023).

Prediction uncertainty was assessed using the mean and
standard deviation (SD) of predicted landslide susceptibil-
ity values. Lower mean and SD values indicate reduced pre-
diction uncertainty and more concentrated susceptibility pat-
terns, suggesting higher model confidence in LSP (Huang et
al., 2022), thereby complementing the buffer distance opti-
mization process.

3.2 Effective rainfall threshold modeling

3.2.1 Rainfall parameterization and threshold
calculation

Typhoon-induced landslides are generally influenced by a
combination of antecedent moisture conditions and imme-
diate precipitation, rather than by isolated rainfall events
(Mondini et al., 2023; Tufano et al., 2021). To account for
the cumulative impact of multi-day rainfall while incorpo-
rating hydrological processes such as evapotranspiration and
drainage, we adopted the concept of effective rainfall (Pe),
calculated as:

n
Pe=YK'P, 7
i=0
where P; represents the daily rainfall on the ith day preced-
ing landslide occurrence, n denotes the number of antecedent
days considered, and k is the effective rainfall decay coeffi-

cient (Segoni et al., 2018a). For hourly rainfall parameteriza-
tion, P; is derived as:

P = Z R;j (®)
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where R;; is the hourly rainfall at the jth hour of the ith day.
3.2.2 Long-term and short-term rainfall parameters

Rainfall-triggered landslides are generally triggered by two
dominant mechanisms: prolonged low-intensity rainfall and
short-duration high-intensity storms. Based on statistical
analysis of historical landslide events in Hunan Province
(Xiao et al., 2025), a 7d antecedent period was identified as
optimal for characterizing long-term rainfall impacts. Con-
sequently, the 7 d effective rainfall (D7) was selected as the
long-term parameter. Short-term rainfall metrics were de-
fined as cumulative precipitation over 1 h (H1), 12h (H12),
24h (H24), and 72h (H72) preceding landslide initiation.
These intervals capture distinct rainfall characteristics: H1
reflects extreme short-term intensity for rapid slope failures,
H12 and H24 represent sub-daily to daily precipitation crit-
ical for intermediate responses, and H72 accounts for multi-
day storm sequences.

3.2.3 Rainfall threshold model development

The threshold modeling framework comprises three sequen-
tial steps:

1. Parameter calculation: For each landslide sample, short-
term rainfall parameters (H1, H12, H24, and H72)
and the long-term rainfall parameter (D7) are calcu-
lated. The ratios of short-term parameters to the long-
term parameter are computed as: Rl = H1/D7, R12 =
H12/D7,R24 = H24/D7, and R72 = H72/D7.

2. Threshold setting: Long-to-short-term ratio coefficients
(RC1, RC12, RC24, and RC72) are introduced as
thresholds to determine the dominant rainfall pattern
for each landslide. These thresholds are used to clas-
sify landslides into short-term or long-term Typhoon-
induced categories.

3. Coefficient optimization: A cyclic trial-and-error
method is employed to determine the optimal ratio co-
efficients (RC1, RC12, RC24, and RC72), maximizing
the accuracy and reliability of the model.

3.2.4 Optimal ratio coefficient threshold determination

The process of determining the optimal long-to-short-term
ratio coefficient threshold is demonstrated using H12-D7 as
an example. The process for the remaining coefficients (H1-
D7, H24-D7, and H72-D7) follows a similar approach. A 5-
fold cross-validation method is applied, with the following
procedure:

1. Rainfall data extraction for landslide locations: For each
of the 705 landslide points, R12 and D7 values are
extracted from these interpolated surfaces at the exact
landslide coordinates, ensuring that each landslide lo-
cation receives rainfall values derived from the spatially
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weighted contributions of all nearby gauge stations. R12
and D7 values for each landslide are calculated using
Egs. (7) and (8).

2. Data preparation: The dataset is divided into five equal
parts for cross-validation, with each part serving as a
test set while the remaining four serve as the training
set.

3. Initial threshold setting: An initial threshold for RC12
is set based on the minimum value in the training set.

4. Threshold evaluation: For each fold, the RC12 thresh-
old is compared with the R12 value of samples in the
test set. If RC12 < R12, the prediction is considered a
failure. Prediction accuracy is calculated for each RC12
threshold, adjusting in 0.001 increments until the high-
est prediction accuracy is achieved.

5. Optimal RCI12 threshold determination: The RC12
threshold with the highest prediction accuracy is se-
lected for each fold. The final RC12 threshold is deter-
mined by averaging the optimal thresholds from all five
folds.

3.2.5 Spatial distribution of optimal threshold

According to the optimal ratio coefficient threshold deter-
mined in Sect. 3.2.4 and the long-term and short-term rain-
fall parameters obtained through interpolation, the threshold
spatial distribution for the study area can be derived. Taking
H12/D7 as an example, the process is as follows:

First, by dividing the H12 values of each landslide point
by the optimal ratio coefficient RC12, the corresponding D7
thresholds for each landslide point can be calculated. These
D7 thresholds serve as a basis for applying the Kriging inter-
polation method to obtain the spatial distribution map of the
D7 thresholds across the entire study area.

Next, by multiplying the D7 values of each landslide point
by the ratio coefficient RC12, the corresponding H12 thresh-
olds for each landslide point can be determined. Subse-
quently, utilizing these H12 thresholds, the Kriging interpo-
lation method is applied once more to generate the spatial
distribution map of the H12 thresholds for the entire study
area.

3.3 Typhoon-specific rainfall-induced landslide
warning system

In order to effectively prevent typhoon-specific rainfall-
induced landslide hazards, constructing a comprehensive
landslide warning system is crucial. This system integrates
LSP with critical rainfall thresholds, combining spatial prob-
ability and temporal probability to predict the risk of land-
slide occurrence and the timing of potential events.

Nat. Hazards Earth Syst. Sci., 26, 611-629, 2026
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Construction of the landslide warning system

Using the natural breaks point method, the LSP is catego-
rized into five levels of spatial probability: very low (S1), low
(S2), moderate (S3), high (S4), and very high (S5). These
levels represent varying degrees of susceptibility to land-
slides in different regions, forming the basis for assessing
landslide risks when combined with rainfall data. Paralleling
the LSP categorization, rainfall thresholds are also divided
into five levels using the natural breaks point method, repre-
senting temporal probability: very low (T1), low (T2), mod-
erate (T3), high (T4), and very high (T5). A lower rainfall
threshold indicates a higher likelihood of typhoon-induced
landslides, thus signaling a greater risk of landslide events.
The matrix-based integration of LSP results and rainfall
thresholds, as presented in Table 2 (Segoni et al., 2015), high-
lights the correlation between landslide susceptibility and
rainfall intensity. As the levels of landslide hazard warnings
escalate from the 1st level, indicating no warning, to the 5th
level, which signifies the highest alert, the likelihood of land-
slide occurrences correspondingly increases. Areas catego-
rized in higher hazard zones correspond to regions with a
heightened risk of landslides. This hazard warning system
provides a spatial framework for risk assessment and early
warning, generating hazard zonation maps that can be in-
tegrated into operational landslide monitoring and warning
protocols. This underscores the importance of implementing
more effective geological disaster prevention strategies, as
thoroughly discussed in the literature by Huang et al. (2022).

4 Landslide susceptibility prediction using machine
learning models

4.1 Statistical analysis of conditioning factors

The statistical analysis reveals distinct patterns of land-
slide susceptibility across all conditioning factors (Table S1
in the Supplement). Topographic factors demonstrate clear
elevation-dependent behavior, with maximum susceptibil-
ity occurring at intermediate elevations (545-782m, FR =
1.637, IV =0.389), suggesting optimal conditions where
weathering processes and slope instability converge. Slope
gradient exhibits peak susceptibility in the moderate range
(7.87-15.06°, FR = 1.522, IV = 0.343), indicating insuffi-
cient driving forces at gentler slopes and potential debris re-
moval at steeper gradients. South-facing aspects show en-
hanced susceptibility (FR =1.299, IV = 0.230), likely at-
tributable to intensified weathering from solar radiation and
moisture cycles.

Morphological indices reveal significant correlations with
landslide occurrence. Profile curvature demonstrates highest
susceptibility in convex areas (0.17-0.59, FR = 1.480, IV =
0.480), where stress concentration promotes slope failure.
TWI shows strong positive correlation with wetness, peaking
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at high values (8.69-13.62, FR = 1.799, IV = 0.444), con-
firming the critical role of water accumulation in slope desta-
bilization. SPI indicates maximum susceptibility in moderate
stream power ranges (1.27-2.39, FR = 1.298, IV = 0.229),
reflecting optimal erosional conditions.

Proximity factors exhibit contrasting patterns based on in-
frastructure type. Distance to roads shows strong inverse cor-
relation with landslide occurrence (0-800m, FR = 1.499,
IV =0.333), indicating anthropogenic disturbance effects.
Conversely, distance to faults reveals a bimodal pattern with
peak susceptibility at intermediate distances (7-12km, FR =
1.439, IV = 0.305), suggesting regional structural influence
rather than localized fault-induced instability. Environmental
factors demonstrate vegetation’s protective role, with mod-
erate NDVI values (0.64-0.76) showing elevated suscepti-
bility (FR = 1.854, IV = 0.015), representing the transition
zone between bare soil vulnerability and established vegeta-
tion stability. Lithological analysis reveals pronounced ma-
terial control, with rhyolite (FR = 1.546, IV = 0.353) and
granite (FR = 1.247, IV = 0.198) showing enhanced suscep-
tibility due to intensive weathering and joint development,
while sedimentary rocks (slate, shale, limestone, sandstone)
exhibit strong resistance (FR < 0.21) owing to their struc-
tural integrity and lower weathering susceptibility.

4.2 Landslide susceptibility modeling in Zixing City

Prior to model development, multicollinearity analysis was
conducted using variance inflation factor (VIF) to ensure sta-
tistical reliability of the conditioning factors. The analysis re-
vealed method-specific multicollinearity patterns: IV and CF
methods showed no significant multicollinearity issues (all
VIF < 10), while the FR method exhibited multicollinearity
in four variables (SPI, Aspect, Plan curvature, and Distance
to rivers with VIF > 10), which were subsequently excluded
from FR-based modeling (Table S2). Following this prepro-
cessing, landslide susceptibility prediction was performed
using SVM and LightGBM models with the three distinct
weighting methods (IV, CF, and FR). Susceptibility levels
were categorized into five classes using the natural breaks
classification method, with non-landslide samples strategi-
cally selected by excluding buffer zones of varying distances
(0.1, 0.5, 1.0, 2.0, and 5.0 km) around documented landslide
locations to optimize model performance and reduce spatial
bias.

4.2.1 IV-based modeling performance

The I'V-derived susceptibility maps (Fig. 4) revealed distinct
spatial patterns between the two models across varying buffer
distances. At smaller scales, the SVM model demonstrated
more detailed classification, with a higher degree of overlap
between high susceptibility areas and actual landslide loca-
tions. The LightGBM model’s classification was smoother,
with a lower degree of overlap between high susceptibility ar-
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eas and actual landslide locations. Notably, this performance
discrepancy diminished progressively with increasing buffer
distances.

4.2.2 CF-based modeling performance

In CF-based modeling (Fig. 5), the SVM model’s high and
very high landslide susceptibility areas at smaller scales were
more extensive than in the IV mode, with actual landslide
locations more frequently distributed within these high-risk
areas. As the scale increased, the high susceptibility areas
gradually decreased. The LightGBM model also showed a
relatively smooth distribution, with some high susceptibility
areas identified at smaller scales gradually integrating as the
scale increased, following a similar trend to the SVM model.

4.2.3 FR-based modeling performance

Regarding the FR input (Fig. 6), the SVM model identified
a significant number of high and very high landslide suscep-
tibility areas at smaller scales compared to the IV and CF
inputs, which closely matched the actual locations of land-
slides. As the buffer scale expanded, these high-risk areas
generally diminished and the distribution became smoother.
Conversely, the LightGBM model delivered more uniform
results, offering broader moderate-risk distributions, with a
small number of high susceptibility areas that did not align
with the actual landslide locations. As the scale increased, the
high susceptibility areas identified by the LightGBM model
gradually diminished, showing greater consistency with the
SVM model results at the higher scale.

4.3 Uncertainty analysis of LSP results

4.3.1 LSP accuracy evaluation and comparative
performance

Table S2 demonstrates contrasting performance character-
istics between the two machine learning approaches across
different spatial scales and input configurations. LightGBM
consistently achieved high AUC values (0.915-0.921) and
maintained stable F1-scores (0.838—0.850) across all buffer
distances and input methods, indicating robust generaliza-
tion capability. In contrast, SVM exhibited pronounced sen-
sitivity to parameter combinations, with performance vary-
ing significantly across different buffer distances (F1-scores
ranging from 0.681 to 0.859) and input methods, particularly
showing notable degradation with FR input at extreme spatial
scales (0.1 and 5.0 km).

Two configurations emerged as comprehensively supe-
rior: SVM with FR input at 0.5 and 2.0 km buffer distances,
both achieving Fl-scores of 0.859. These optimal configu-
rations not only maintained competitive AUC values (0.914
and 0.913 respectively) but demonstrated superior precision-
recall balance compared to corresponding LightGBM con-
figurations (F1-scores: 0.854 and 0.856). The high recall val-
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Figure 4. Landslide susceptibility map based on SVM and LightGBM models using the IV input.
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Figure 5. Landslide susceptibility map based on SVM and LightGBM models using the CF input.

ues (0.845 and 0.851) coupled with robust precision (0.873
and 0.867) indicate enhanced sensitivity to landslide-prone
areas while minimizing false positive predictions. This bi-
modal performance pattern suggests that intermediate buffer
distances effectively capture fault-related geomorphological
processes influencing slope stability.

Independent validation on the test set confirmed the ro-
bustness of these optimal configurations, with SVM-FR
models at 0.5 and 2.0km buffer distances achieving FI1-
scores of 0.847 and 0.852 respectively, representing minimal
performance degradation from training results. The consis-
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tent AUC values (0.909 and 0.908) on the test set further val-
idate the models’ discriminative capability and indicate ab-
sence of overfitting, confirming the reliability of these con-
figurations for practical landslide susceptibility assessment
applications.

4.3.2 LSP distribution characteristics across conditions
In addition to the performance metrics, the distribution char-
acteristics of landslide susceptibility predictions revealed

fundamental differences between the models (Figs. S1-S3
in the Supplement). LightGBM generated smoother, more
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Figure 6. Landslide susceptibility map based on SVM and LightGBM models using the FR input.

symmetrical distributions with lower mean susceptibility val-
ues (0.196-0.320) and smaller standard deviations (0.099—
0.187), indicating stable and uniform predictions. In contrast,
SVM exhibited greater variability, with irregular distribu-
tions, higher mean values (0.303-0.515), and larger standard
deviations (0.112-0.214). Notably, SVM’s mean susceptibil-
ity under FR input rose sharply (0.446-0.515), while Light-
GBM maintained lower means despite moderately broader
deviations (0.160-0.187).

Therefore, SVM is preferable for FR-based modeling at
0.5 and 2.0 km buffers, where spatial precision is prioritized
over prediction uniformity. The SVM model achieved its
highest accuracy at the 0.5 km buffer, classifying 86.4 % of
recorded landslides in high and very high susceptibility zones
(Fig. 6b). At the 2.0 km buffer (Fig. 6d), it still correctly clas-
sified 82.1 % of landslides in these zones. As a result, Fig. 6b
is selected as the final landslide susceptibility map.

5 Landslide risk assessment in Zixing City

5.1 Critical rainfall thresholds for landslides in Zixing
City

We evaluated four rainfall threshold models (H1-D7, H12-
D7, H24-D7, and H72-D7) through 5-fold cross-validation,
with their optimal ratio coefficient (RC) thresholds and pre-
diction accuracies summarized in Table 3. The H24-D7
model, coupling 24 h rainfall during landfall with 7d an-
tecedent moisture, achieved the highest accuracy (71.8 %) by
effectively capturing both cumulative saturation and abrupt
triggering by typhoon rainfall bursts. Notably, the H24-D7
model exhibited stable performance across all folds, with ac-
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curacy ranging narrowly between 68.8 % (Fold 1) and 74.6 %
(Fold 4), reflecting robust generalizability.

In contrast, the H1-D7 and H12-D7 models displayed
marked instability: H1-D7 accuracy fluctuated between
29.7 % (Fold 2) and 56.5 % (Fold 1), while H12-D7 thresh-
olds (RC12: 0.077-0.267) corresponded to accuracies of
45.3 %—48.3 %. The H72-D7 model showed moderate per-
formance variability (accuracy: 51.4 %—63.1 %) despite con-
sistently high RC72 thresholds (> 0.78).

These results highlight the critical role of temporal rainfall
parameter selection. The superior performance of the H24-
D7 model (24 h short-term rainfall and 7 d antecedent rain-
fall) suggests that a 24 h duration optimally captures both
immediate landslide triggers and cumulative hydrological ef-
fects, balancing sensitivity and stability. Shorter (H1/H12) or
longer (H72) durations either overemphasize transient rain-
fall spikes or dilute critical triggering signals.

5.2 Spatio-temporal distribution of rainfall thresholds

Figure 7 illustrates the spatial distribution of rainfall-
triggered landslide thresholds derived from four models
(RC1, RC12, RC24, and RC72) across multiple temporal
scales (1 h, 12h, 24 h, 72 h, and 7 d) within the study area.

5.2.1 Short-term predictions (1 to 12 h scales)

At the 1h scale (Fig. 7a), the RC1 model generated thresh-
olds ranging from 7 to 50 mm, with 65.2 % of landslides oc-
curring in moderate threshold zones (20-30 mm). This in-
dicates the model’s effectiveness in detecting slope failures
under short-duration rainfall. In contrast, the RC12 model on
the 12 h scale (Fig. 7b) showed a wider threshold range (25—
200 mm), with 62.9 % of landslides in mid-to-high threshold

Nat. Hazards Earth Syst. Sci., 26, 611-629, 2026



622

A

Rainfall /mm

r 4
Rainfall /

I o0

o Landslide o Landslide
= Water body
10 212 n

100 i 100

o Landslide - 200 o Landslide
= Water body - Wa}tg,r b<2>0dy
10 20 25 10 20

= Water body
10 20
—

W. Xiao et al.: From typhoon rainfall to slope failure

Rainfall /mm
400

65

Rainfall /mm

I 0

o Landslide

o Landslide
= Water body
10 20°

= Water body
010" 20°

78

Rainfall /mm¢
- 900 o Landslide
= Water b%ly

—

250

Figure 7. Distribution of typhoon rainfall thresholds under various optimal RC ratios: (a) 1 h RC1-based, (b) 12h RC12-based, (¢) 24h
RC24-based, (d) 72h RC72-based, (e) 7d RC1-based, (f) 7d RC12-based, (g) 7d RC24-based, and (h) 7d RC72-based.

regions (80—130 mm). This mismatch suggests that the 12h
cumulative data may underestimate rainfall impacts in spe-
cific topographic settings.

5.2.2 Mid-term predictions (24 to 72 h scales)

The RC24 model at the 24h scale (Fig. 7c) displayed a
threshold range of 65—400 mm, with 87.1 % of landslides
occurring within moderate thresholds (100-250 mm) and
12.3 % in higher thresholds (> 250 mm). This indicates a
more accurate capture of rainfall intensity effects. At the
72h scale (Fig. 7d), the RC72 model produced thresholds
between 78—700 mm, with 59.2 % of landslides in mid-to-
high threshold regions (200-500 mm). Although the RC72
model demonstrated reasonable sensitivity to prolonged rain-
fall, its upper threshold (700 mm) may result in conservative
risk predictions for some geological settings.

5.2.3 Long-term predictions (7 d scale)

At the 7 d scale, significant differences emerge across models
in terms of predicted rainfall thresholds and landslide points.
The RC1 model (Fig. 7e) shows a threshold range of 100-
700 mm, with landslide points predominantly concentrated
in the lower rainfall ranges. While these low-threshold land-

Nat. Hazards Earth Syst. Sci., 26, 611-629, 2026

slides may indicate localized risks, the model’s conservative
threshold distribution fails to effectively capture landslides
triggered by higher rainfall amounts, potentially overlooking
more significant events.

The RC12 model (Fig. 7f), with a threshold range of 100—
800 mm, also shows a concentration of landslide points in
the lower rainfall ranges. Despite a wider threshold range,
the similarity to the RC1 model suggests that RC12 may also
underutilize its capacity to predict higher typhoon-induced
landslides, leading to under-prediction in areas experiencing
moderate to heavy precipitation.

In contrast, the RC24 model (Fig. 7g) exhibits a bal-
anced threshold range (250-900 mm) and effectively iden-
tifies landslide points in both moderate and high rainfall cat-
egories. This balance enables RC24 to capture the full spec-
trum of typhoon-induced landslides, accurately identifying
risks across different rainfall intensities.

The RC72 model (Fig. 7h) shows a concentration of land-
slide points in the higher rainfall range (175-1000 mm).
While it predicts landslides accurately under heavy rainfall
conditions, the model may overestimate risks in some regions
and neglect potential landslides associated with lower rainfall
thresholds.
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Based on the above analysis, the RC24 model is the op-
timal choice, which aligns with the findings in Sect. 5.1. Its
effectiveness is evident as it demonstrates superior stability
and accuracy in both the 24 h and 7 d timescales.The RC24
model’s balanced threshold range allows it to accurately as-
sess landslide risks across varying rainfall intensities. This
makes it the most reliable choice for practical landslide haz-
ard warning applications.

5.3 Landslide hazard warning system for Zixing City

Based on the optimal LSP results (Fig. 6b) and the validated
RC24 rainfall threshold model, a spatially explicit landslide
hazard warning system was established for Zixing City. The
integration of spatial probability (LSP) and temporal proba-
bility (rainfall thresholds) followed the matrix classification
outlined in Table 2.

Five susceptibility levels in the LSP map (Fig. 6b) were
replaced with five spatial probabilities (S1-S5) (Fig. 8a),
respectively. Simultaneously, the spatially interpolated 24 h
rainfall thresholds (H24) (Fig. 8b) and 7 d effective rainfall
thresholds (D7) (Fig. 8c) derived from the RC24 model were
classified into five temporal probability levels (T1-T5) us-
ing the natural breaks method. Spatial overlay analysis was
performed to combine the susceptibility levels (S1-S5) with
the rainfall threshold levels (T1-T5), generating two haz-
ard warning zone maps: H24-based (Fig. 8d) and D7-based
(Fig. 8e).

Quantitative assessment of both warning systems reveals
distinct performance characteristics. The 24 h threshold sys-
tem (Fig. 8d) demonstrates superior predictive efficiency,
with 71.4 % of historical landslides occurring within high to
very high warning zones (Levels 3-5) while covering only
34.2 % of the total area, resulting in an efficiency ratio of
2.09 and a risk density of 49.0 landslides per 1000 high-
risk grid cells. The spatial distribution shows concentrated
high-risk areas primarily in the central region, characterized
by steep slopes (> 21.80°), weathered granite lithology, and
road proximity (0-800m). This focused distribution indi-
cates effective identification of areas most sensitive to short-
term intense rainfall triggers.

The 7d threshold system (Fig. 8e) exhibits broader spa-
tial coverage, with high-risk zones encompassing 42.7 % of
the study area and capturing 68.7 % of historical landslides,
yielding a lower efficiency ratio of 1.61 and risk density of
37.8 landslides per 1000 grid cells. This system effectively
identifies extended vulnerable areas in northern and eastern
regions, reflecting cumulative rainfall effects on slope stabil-
ity. The expanded coverage captures zones where prolonged
antecedent moisture interacts with moderate-to-high suscep-
tibility conditions.

Statistical validation confirms the complementary nature
of both systems. The 24 h system achieves higher spatial ef-
ficiency (efficiency ratio 2.09 vs. 1.61) and landslide con-
centration (risk density 49.0 vs. 37.8), making it optimal
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for immediate typhoon response and targeted emergency re-
source allocation. Conversely, the 7 d system provides com-
prehensive coverage for prolonged rainfall scenarios, essen-
tial for early warning during extended typhoon events despite
its broader spatial distribution and lower concentration effi-
ciency. The combined application of both systems enables
dynamic hazard assessment, addressing both rapid-onset fail-
ures during typhoon landfall and delayed failures following
sustained precipitation.

6 Discussion
6.1 Model selection strategy and optimization of LSP

Our comparative analysis of SVM and LightGBM across dif-
ferent input methods (IV, CF, FR) and buffer distances shows
distinct performance patterns crucial for model selection in
typhoon-induced LSP. SVM exhibited marked sensitivity to
configuration parameters, with F1-scores varying from 0.681
to 0.859 depending on buffer distance and input method.
LightGBM maintained more stable performance (F1-scores:
0.838-0.850) across all configurations. These differences re-
flect fundamental algorithmic characteristics: SVM’s kernel-
based approach effectively captures localized patterns when
properly tuned, while LightGBM’s ensemble structure deliv-
ers consistent results across varying data conditions.

SVM’s superior performance at 0.5-2.0km buffer dis-
tances with FR weighting builds on findings by Kalantar et al.
(2018) and Bogaard and Greco (2018). This buffer range ap-
pears effective for capturing the spatial patterns of typhoon-
induced failures in our study area. FR weighting’s effective-
ness supports Reichenbach et al. (2018) and Yan et al. (2019),
who found that frequency-based methods excel at quantify-
ing terrain-landslide relationships. In typhoon conditions, FR
effectively weights critical factors including road proximity
and weathered granite lithology.

These performance patterns justify our dual-model ap-
proach. SVM, though requiring careful calibration, enables
precise delineation of high-risk zones essential for emer-
gency response, with SVM-FR at 0.5 km achieving peak ac-
curacy (F1 =0.859). LightGBM’s robustness suits opera-
tional contexts requiring consistent predictions under vari-
able conditions. Our results suggest that effective model se-
lection depends on matching algorithmic strengths to specific
application requirements rather than identifying a universally
superior algorithm.

6.2 Rainfall threshold modeling and typhoon-specific
mechanisms

The H24-D7 model achieved 71.8 % accuracy, outperform-
ing alternative temporal windows (Table 3). The optimal
RC24 value of 0.440 (with inter-fold variation of 0.414-
0.472) indicates that landslides typically occur when 24 h
rainfall constitutes approximately 44 % of the preceding
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7 d accumulation. This pattern is consistent with the multi-
temporal triggering framework proposed by Nolasco-Javier
and Kumar (2018) for typhoon contexts, where both an-
tecedent saturation and short-term intensity contribute to
slope failure. However, the specific hydrological mecha-
nisms underlying this ratio require verification through in-
situ soil moisture monitoring. The H1-D7 and H12-D7 mod-
els showed lower and more variable accuracy (44.6 % and
48.5 % respectively), suggesting that shorter accumulation
periods may inadequately represent the cumulative soil satu-
ration process relevant to this region’s geological conditions
(Kirschbaum and Stanley, 2018).

Spatial patterns in rainfall thresholds reveal systematic
variations across the study area. Southeastern regions exhibit
elevated H24 thresholds exceeding 250 mm (Fig. 7¢), while
northern areas show reduced thresholds of 100-150 mm.
These spatial variations align with findings by Lee et al.
(2018) and Cho et al. (2022) regarding topographic controls
on typhoon-induced landslides, though the specific mech-
anisms require further investigation with detailed meteoro-
logical analysis. The spatially distributed thresholds derived
through Kriging interpolation (Table 1) provide location-
specific values that improve upon uniform regional thresh-
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Table 1. Kriging interpolation accuracy assessment for rainfall pa-
rameters.

Parameter RMSE (mm) MAE (mm) R NSE
H1 4.2 3.1 076 0.71
H12 11.7 89 0.83 0.78
H24 16.3 126 0.87 0.82
H72 24.8 184 0.81 0.77
D7 29.6 227 078 0.73

olds typically employed in operational systems (Segoni et al.,
2018b).

The consistent performance across the five validation folds
(68.8 %0—74.6 % accuracy) demonstrates the model’s stability
when applied to different spatial subsets of the landslide in-
ventory. This suggests the H24-D7 relationship captures gen-
eralizable rainfall-slope response patterns rather than site-
specific anomalies, though validation with independent ty-
phoon events would further confirm model robustness.
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6.3 Integration of susceptibility and rainfall thresholds
for landslide warning

The integrated warning system combines static susceptibility
surfaces with spatially continuous rainfall thresholds follow-
ing the matrix framework in Table 2. The H24-based system
(Fig. 8d) captured 71.4 % of historical landslides within high
to very high warning zones (Levels 3-5) covering 34.2 % of
the study area, yielding an efficiency ratio of 2.09. The D7-
based system (Fig. 8e) identified 68.7 % of landslides across
42.7% of the area (efficiency ratio: 1.61). These focused
distributions contrast with the broader spatial coverage typ-
ically required by uniform regional thresholds (Guzzetti et
al., 2020; Nocentini et al., 2024), though direct comparative
validation would be needed to quantify the performance gain.

The dual-threshold configuration provides complementary
perspectives suited to different phases of typhoon evolution,
with D7 reflecting cumulative moisture conditions and H24
capturing immediate triggering rainfall. This combination
addresses the compound rainfall mechanisms documented
in typhoon-affected regions (Gariano et al., 2015; Nolasco-
Javier and Kumar, 2018), though the optimal application
strategy for operational warning would require integration
with real-time meteorological forecasting systems.

Spatially continuous thresholds (Fig. 8b and c) address
terrain-induced variability more effectively than point-based
approaches. The Kriging interpolation method provides
threshold estimates across the entire study area, accounting
for spatial autocorrelation in rainfall patterns (Table 1). How-
ever, threshold accuracy depends on rain gauge density and
may decline in areas distant from monitoring stations, as
indicated by the interpolation validation metrics (R: 0.76—
0.87, NSE: 0.71-0.82). The framework advances beyond ex-
isting point-based threshold systems (Segoni et al., 2018b;
Guzzetti et al., 2020) by providing spatially explicit hazard
assessment, though regional adaptation of threshold parame-
ters would be necessary for application in different geologi-
cal settings.

The modular design allows the framework to be adapted
for operational landslide early warning, though practical im-
plementation would require integration with meteorological
monitoring infrastructure, standardized protocols for warn-
ing dissemination, and post-event validation procedures to
maintain system reliability. These operational considerations
extend beyond the methodological scope of this study but
represent important directions for future development of
typhoon-specific landslide warning systems.

6.4 Limitations and future research directions

Despite promising advancements, this study has limitations
owing to the complexity of typhoon-induced landslides.
First, the model’s validation relies solely on landslides from
Typhoon Gaemi. While this single event provided a compre-
hensive dataset, validating against multiple, varied typhoons
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is crucial for model robustness. Typhoons differ significantly
in intensity, rainfall patterns, forward speed, and seasonal-
ity, all of which can influence threshold parameters. For in-
stance, a slow-moving typhoon with higher cumulative rain-
fall and lower peak intensity could alter the optimal H24-D7
ratios. Future research should incorporate landslide invento-
ries from typhoons with contrasting characteristics to assess
threshold transferability and develop adaptive parameteriza-
tion. The framework’s modular design readily facilitates this
by allowing recalibration of the RC24 coefficient for differ-
ent typhoon types.

Second, the current study primarily addresses rainfall-
induced landslides, overlooking other potential contributing
factors. Future work should explore integrating multiple trig-
gering mechanisms, including earthquakes, human-induced
slope modifications, and typhoon rainfall, for a more com-
prehensive hazard assessment.

Third, the study doesn’t explicitly address the potential
impacts of climate change on typhoon rainfall and landslide
occurrence. As climate change alters typhoon frequency, in-
tensity, and tracks, future studies should incorporate climate
projections specific to typhoon-prone regions. This will en-
able the development of forward-looking landslide warn-
ing systems that can adapt to the evolving threats posed by
typhoon-specific rainfall.

Fourth, while this study demonstrates the effectiveness of
ML approaches, further refinement is possible. Future re-
search should explore advanced deep learning techniques and
ensemble methods to better capture the complex, non-linear
relationships between typhoon-related variables (e.g., rain-
fall intensity, duration, antecedent moisture) and slope sta-
bility. These advanced methods may offer improved predic-
tive accuracy, more robust uncertainty quantification, and ul-
timately, more reliable hazard warnings.

Finally, climate projections for Southeast China show
a 15%-25% increase in peak typhoon rainfall by 2080
(RCP8.5), which could alter the H24-D7 landslide thresh-
olds from this study. Higher atmospheric moisture may lower
D7 thresholds, while greater rainfall intensity could require
new H24 parameters. Shifting typhoon tracks and seasonality
might also change which areas are vulnerable. Future work
must use downscaled climate data to create non-stationary
thresholds, ensuring the long-term reliability of warning sys-
tems in the region.

7 Conclusions

This study establishes a novel integrated framework combin-
ing optimized LSP with typhoon-specific rainfall threshold
modeling for comprehensive hazard assessment in mountain-
ous regions. Through systematic analysis of 705 landslides
triggered by Typhoon Gaemi in Zixing City, several key in-
sights emerge:
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Table 2. Classification of landslide hazard warning zones by integrating landslide susceptibility levels (S1-S5) with rainfall threshold levels

(T1-T5).

Landslide hazard T1

warning zones

T2

T3

T4

T5

S1 (very low)

No warning zone
(2nd level)

No warning zone
(1st level)

No warning zone
(1st level)

No warning zone
(1st level)

No warning zone
(1st level)

S2 (low)

3rd level warning
zone

No warning zone
(2nd level)

No warning zone
(2nd level)

No warning zone
(1st level)

No warning zone
(1st level)

S3 (moderate)

4th level warning
zone

3rd level warning
zone

3rd level warning
zone

No warning zone
(2nd level)

No warning zone
(Lst level)

S4 (high)

5th level warning
zone

4th level warning
zone

3rd level warning
zone

No warning zone
(2nd level)

No warning zone
(1st level)

S5 (very high)

5th level warning

5th level warning

4th level warning

3rd level warning

No warning zone

zone zone zone zone (2nd level)
Table 3. Optimal RC values and prediction accuracies (%) for each model across 5-fold cross validation.
Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
RC/Accuracy RC/Accuracy RC/Accuracy RC/Accuracy RC/Accuracy RC/Accuracy
H1-D7 0.032/56.5 0.062/29.7 0.076/35.5 0.022/53.6 0.040/47.8 0.047/44.6
H12-D7 0.077/54.2 0.167/46.6 0.243/48.3 0.267/47.7 0.154/45.3 0.182/48.5
H24-D7 0.472/68.8 0.436/72.3 0.422/73.1 0.459/74.6 0.414/70.2 0.440/71.8
H72-D7 0.789/56.5 0.776/59.4 0.781/63.1 0.802/51.4 0.783/60.1 0.787/58.1

1. Buffer distance optimization proves critical for
typhoon-induced landslide modeling, with SVM-FR
combinations at 0.5-2.0km distances achieving su-
perior performance (Fl-score: 0.859) compared to
conventional approaches. This spatial scale effectively
captures typhoon-induced moisture infiltration pat-
terns that differ fundamentally from other triggering
mechanisms.

2. The H24-D7 threshold model demonstrates exceptional
stability (71.8 % accuracy across 5-fold validation), suc-
cessfully characterizing the dual-phase failure mecha-
nism unique to typhoons: prolonged antecedent satura-
tion coupled with intense precipitation bursts during ty-
phoon passage.

3. Spatially distributed rainfall thresholds reveal signifi-
cant heterogeneity, reflecting complex interactions be-
tween typhoon structure and local topography that con-
tradict uniform regional threshold assumptions in exist-
ing operational systems.

4. The integrated warning system achieves operational
efficiency through dual-threshold configuration: H24
thresholds provide immediate response capability dur-
ing typhoon landfall, while D7 thresholds enable early
detection of vulnerable areas approaching saturation
conditions.
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5. This framework addresses three critical gaps in cur-
rent landslide prediction: systematic buffer optimization
for imbalanced datasets, effective integration of variable
weighting with machine learning algorithms, and devel-
opment of typhoon-specific spatially explicit thresholds.
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