Articles | Volume 25, issue 12
https://doi.org/10.5194/nhess-25-4843-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4843-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls over debris flow initiation in glacio-volcanic environments in the Southern Andes
Ivo Fustos-Toribio
Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Francisco Salazar #01145, Temuco, Chile
Daniel Basualto
CORRESPONDING AUTHOR
Departamento de Ingeniería Eléctrica, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Francisco Salazar #01145, Temuco, Chile
Ardy Gatica
Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Francisco Salazar #01145, Temuco, Chile
Alvaro Bravo-Alarcón
Programa de Magíster en Ciencias de La Ingeniería, Universidad de La Frontera, Temuco, Chile
Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Francisco Salazar #01145, Temuco, Chile
José-Luis Palma
Departamento Ciencias de la Tierra, Facultad de Ciencias Químicas, Universidad de Concepción, Víctor Lamas 1290, Concepción, Chile
Gabriel Fuentealba
Ministerio del Interior, Temuco, Chile
Programa de Magíster en Ciencias de La Ingeniería, Universidad de La Frontera, Temuco, Chile
Sergio A. Sepúlveda
Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
Department of Earth Sciences, Faculty of Science, Simon Fraser University, Burnaby, Canada
Related authors
Manuel Labbe, Millaray Curilem, Ivo Fustos-Toribio, and Mario Pooley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2764, https://doi.org/10.5194/egusphere-2025-2764, 2025
Short summary
Short summary
We investigated methods to improve the prediction of landslides triggered by heavy rainfall in southern Chile, utilising local soil and climate data. We tested different models and selected the most critical environmental factors. We improved the process for making forecasts in areas with limited monitoring. Our results help create faster and more reliable warnings and can guide safety planning in other mountain regions facing similar risks.
Ivo Fustos-Toribio, Nataly Manque-Roa, Daniel Vásquez Antipan, Mauricio Hermosilla Sotomayor, and Viviana Letelier Gonzalez
Nat. Hazards Earth Syst. Sci., 22, 2169–2183, https://doi.org/10.5194/nhess-22-2169-2022, https://doi.org/10.5194/nhess-22-2169-2022, 2022
Short summary
Short summary
We develop for the first time a rainfall-induced landslide early warning system for the south of Chile. We used forecast precipitation values at different scales using mesoscale models to evaluate the probability of landslides using statistical models. We showed the feasibility of implementing these models in future, supporting stakeholders and decision-makers.
Ivo Janos Fustos-Toribio, Bastian Morales-Vargas, Marcelo Somos-Valenzuela, Pablo Moreno-Yaeger, Ramiro Muñoz-Ramirez, Ines Rodriguez Araneda, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 21, 3015–3029, https://doi.org/10.5194/nhess-21-3015-2021, https://doi.org/10.5194/nhess-21-3015-2021, 2021
Short summary
Short summary
Links between debris flow and volcanic evolution are an open question in the southern Andes. We modelled the catastrophic debris flow using field data, a geotechnical approach and numerical modelling of the Petrohué event (Chile, 2017). Our results indicated new debris-flow-prone zones. Finally, we propose considering connections between volcanoes and debris flow in the southern Andes.
Manuel Labbe, Millaray Curilem, Ivo Fustos-Toribio, and Mario Pooley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2764, https://doi.org/10.5194/egusphere-2025-2764, 2025
Short summary
Short summary
We investigated methods to improve the prediction of landslides triggered by heavy rainfall in southern Chile, utilising local soil and climate data. We tested different models and selected the most critical environmental factors. We improved the process for making forecasts in areas with limited monitoring. Our results help create faster and more reliable warnings and can guide safety planning in other mountain regions facing similar risks.
Daniel Basualto, Andrés Tassara, Jonathan Lazo-Gil, Luis Franco-Marin, Carlos Cardona, Juan San Martín, Fernando Gil-Cruz, Marcela Calabi-Floddy, and Cristian Farías
Solid Earth, 14, 69–87, https://doi.org/10.5194/se-14-69-2023, https://doi.org/10.5194/se-14-69-2023, 2023
Short summary
Short summary
Infrequent eruptions of acidic magma are one of the most dangerous natural phenomena, but almost none of them have been witnessed by modern science. We present the first systematic characterization of seismicity recorded near an erupting acidic volcano (Cordón Caulle 2011). We define different phases of unrest and eruption, which combined with previous findings allows us to discuss the main processes associated with this type of violent eruption, with implications for their volcanic hazard.
Ivo Fustos-Toribio, Nataly Manque-Roa, Daniel Vásquez Antipan, Mauricio Hermosilla Sotomayor, and Viviana Letelier Gonzalez
Nat. Hazards Earth Syst. Sci., 22, 2169–2183, https://doi.org/10.5194/nhess-22-2169-2022, https://doi.org/10.5194/nhess-22-2169-2022, 2022
Short summary
Short summary
We develop for the first time a rainfall-induced landslide early warning system for the south of Chile. We used forecast precipitation values at different scales using mesoscale models to evaluate the probability of landslides using statistical models. We showed the feasibility of implementing these models in future, supporting stakeholders and decision-makers.
Ivo Janos Fustos-Toribio, Bastian Morales-Vargas, Marcelo Somos-Valenzuela, Pablo Moreno-Yaeger, Ramiro Muñoz-Ramirez, Ines Rodriguez Araneda, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 21, 3015–3029, https://doi.org/10.5194/nhess-21-3015-2021, https://doi.org/10.5194/nhess-21-3015-2021, 2021
Short summary
Short summary
Links between debris flow and volcanic evolution are an open question in the southern Andes. We modelled the catastrophic debris flow using field data, a geotechnical approach and numerical modelling of the Petrohué event (Chile, 2017). Our results indicated new debris-flow-prone zones. Finally, we propose considering connections between volcanoes and debris flow in the southern Andes.
Cited articles
Bekaert, D. P. S., Walters, R. J., Wright, T. J., Hooper, A. J., and Parker, D. J.: Statistical comparison of InSAR tropospheric correction techniques, Remote Sens. Environ., 170, 40–47, https://doi.org/10.1016/j.rse.2015.08.035, 2015.
Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrology to pore pressure, WIREs Water, 3, 439–459, https://doi.org/10.1002/wat2.1126, 2015.
Bordoni, M., Vivaldi, V., Ciabatta, L., Brocca, L., and Meisina, C.: Temporal prediction of shallow landslides exploiting soil saturation degree derived by ERA5-Land products, B. Eng. Geol. Environ., 82, https://doi.org/10.1007/s10064-023-03304-2, 2023.
Bovis, M. J. and Jakob, M.: The role of debris supply conditions in predicting debris flow activity, Earth Surf. Proc. Land., 24, 1039–1054, https://doi.org/10.1002/(SICI)1096-9837(199910)24:11<1039::AID-ESP29>3.0.CO;2-U, 1999.
Bucher, J., del Papa, C., Hernando, I. R., and Almada, G.: Upper-flow-regime deposits related to glacio-volcanic interactions in Patagonia: Insights from the Pleistocene record in Southern Andes, Sedimentology, 71, 2314–2334, https://doi.org/10.1111/sed.13216, 2024.
Carrasco, F. and Ramírez, P.: Caracterización de remociones en masa del 31 de mayo de 2021, en la ribera sur del Lago Calafquén, sobre la Ruta CH-201, Comuna de Panguipulli, Región de Los Ríos, Informe inédito, INF-LOS RÍOS-09.2021, Subdirección Nacional De Geología, Sernageomin, Stgo, Chile, 23 pp., 2021.
Chang, J.-M., Chen, H., Jou, B. J.-D., Tsou, N.-C., and Lin, G.-W.: Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan, Engineering Geology, 231, 81–87, https://doi.org/10.1016/j.enggeo.2017.10.006, 2017.
Chang, J.-M., Yang, C.-M., Chao, W.-A., Ku, C.-S., Huang, M.-W., Hsieh, T.-C., and Hung, C.-Y.: Unraveling landslide failure mechanisms with seismic signal analysis for enhanced pre-survey understanding, Nat. Hazards Earth Syst. Sci., 25, 451–466, https://doi.org/10.5194/nhess-25-451-2025, 2025.
Chen, Y., Lin, H., Cao, R., and Zhang, C.: Slope Stability Analysis Considering Different Contributions of Shear Strength Parameters, Int. J. Geomech., 21, https://doi.org/10.1061/(asce)gm.1943-5622.0001937, 2021.
Chen, Y.-W., Shyu, J. B. H., and Chang, C.-P.: Neotectonic characteristics along the eastern flank of the Central Range in the active Taiwan orogen inferred from fluvial channel morphology, Tectonics, 34, 2249–2270, https://doi.org/10.1002/2014tc003795, 2015.
Cheung, D. J. and Giardino, J. R.: Debris flow occurrence under changing climate and wildfire regimes: A southern California perspective, Geomorphology, 422, 108538, https://doi.org/10.1016/j.geomorph.2022.108538, 2023.
Cui, P., Zhu, Y., Han, Y., Chen, X., and Zhuang, J.: The 12 May Wenchuan earthquake-induced landslide lakes: distribution and preliminary risk evaluation, Landslides, 6, 209–223, https://doi.org/10.1007/s10346-009-0160-9, 2009.
Dahal, R. K. und Hasegawa, S.: Representative rainfall thresholds for landslides in the Nepal Himalaya, Geomorphology, 100, 429–443, https://doi.org/10.1016/j.geomorph.2008.01.014, 2008.
Dahal, R. K., Hasegawa, S., Yamanaka, M., and Bhandary, N. P.: Rainfall-induced landslides in the residual soil of andesitic terrain, western Japan, Journal of Nepal Geological Society, 42, 137–152, https://doi.org/10.3126/jngs.v42i0.31461, 2011.
Dane, J. H. and Clarke Topp, G. (Eds.): Methods of Soil Analysis, SSSA Book Series, https://doi.org/10.2136/sssabookser5.4, 2002.
Davies, B. J., Darvill, C. M., Lovell, H., Bendle, J. M., Dowdeswell, J. A., Fabel, D., García, J.-L., Geiger, A., Glasser, N. F., Gheorghiu, D. M., Harrison, S., Hein, A. S., Kaplan, M. R., Martin, J. R. V., Mendelova, M., Palmer, A., Pelto, M., Rodés, Á., Sagredo, E. A., Smedley, R. K., Smellie, J. L., and Thorndycraft, V. R.: The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE), Earth-Sci. Rev., 204, 103152, https://doi.org/10.1016/j.earscirev.2020.103152, 2020.
Deng, Y., Cai, C., Xia, D., Ding, S., Chen, J., and Wang, T.: Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China, Solid Earth, 8, 499–513, https://doi.org/10.5194/se-8-499-2017, 2017.
De Pue, J., Rezaei, M., Van Meirvenne, M., and Cornelis, W. M.: The relevance of measuring saturated hydraulic conductivity: Sensitivity analysis and functional evaluation, J. Hydrol., 576, 628–638, https://doi.org/10.1016/j.jhydrol.2019.06.079, 2019.
Dey, N. und Sengupta, A.: Effect of rainfall on the triggering of the devastating slope failure at Malin, India, Nat. Hazards, 94, 1391–1413, https://doi.org/10.1007/s11069-018-3483-9, 2018.
Dinamarca, D. I., Galleguillos, M., Seguel, O., and Faúndez Urbina, C.: CLSoilMaps: A national soil gridded database of physical and hydraulic soil properties for Chile, Sci. Data, 10, https://doi.org/10.1038/s41597-023-02536-x, 2023.
Ferretti, A., Prati, C., and Rocca, F.: Permanent scatterers in SAR interferometry, IEEE T. Geosci. Remote, 39, 8–20, https://doi.org/10.1109/36.898661, 2001.
Fiantis, D., Ginting, F., Gusnidar, Nelson, M., and Minasny, B.: Volcanic Ash, Insecurity for the People but Securing Fertile Soil for the Future, Sustainability, 11, 3072, https://doi.org/10.3390/su11113072, 2019.
Fontaine, C. M., Siani, G., Delpech, G., Michel, E., Villarosa, G., Manssouri, F., and Nouet, J.: Post–glacial tephrochronology record off the Chilean continental margin (∼ 41° S), Quaternary Sci. Rev., 261, 106928, https://doi.org/10.1016/j.quascirev.2021.106928, 2021.
Foumelis, M., Delgado Blasco, J. M., Desnos, Y.-L., Engdahl, M., Fernandez, D., Veci, L., Lu, J., and Wong, C.: Esa Snap - Stamps Integrated Processing for Sentinel-1 Persistent Scatterer Interferometry, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, https://doi.org/10.1109/igarss.2018.8519545, 2018.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes, Sci Data, 2, https://doi.org/10.1038/sdata.2015.66, 2015.
Fustos, I., Remy, D., Abarca-Del-Rio, R., and Muñoz, A.: Slow movements observed within situand remote-sensing techniques in the central zone of Chile, Int. J. Remote Sens., 38, 7514–7530, https://doi.org/10.1080/01431161.2017.1317944, 2017.
Fustos, I., Abarca-del-Rio, R., Moreno-Yaeger, P., and Somos-Valenzuela, M.: Rainfall-Induced Landslides forecast using local precipitation and global climate indexes, Nat. Hazards, 102, 115–131, https://doi.org/10.1007/s11069-020-03913-0, 2020a.
Fustos, I., Abarca-del-Río, R., Mardones, M., González, L., and Araya, L. R.: Rainfall-induced landslide identification using numerical modelling: A southern Chile case, J. S. Am. Earth Sci., 101, 102587, https://doi.org/10.1016/j.jsames.2020.102587, 2020b.
Fustos-Toribio, I. J., Morales-Vargas, B., Somos-Valenzuela, M., Moreno-Yaeger, P., Muñoz-Ramirez, R., Rodriguez Araneda, I., and Chen, N.: Debris flow event on Osorno volcano, Chile, during summer 2017: new interpretations for chain processes in the southern Andes, Nat. Hazards Earth Syst. Sci., 21, 3015–3029, https://doi.org/10.5194/nhess-21-3015-2021, 2021.
Fustos-Toribio, I., Manque-Roa, N., Vásquez Antipan, D., Hermosilla Sotomayor, M., and Letelier Gonzalez, V.: Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes, Nat. Hazards Earth Syst. Sci., 22, 2169–2183, https://doi.org/10.5194/nhess-22-2169-2022, 2022.
Galetto, F., Pritchard, M. E., Hornby, A. J., Gazel, E., and Mahowald, N. M.: Spatial and Temporal Quantification of Subaerial Volcanism From 1980 to 2019: Solid Products, Masses, and Average Eruptive Rates, Rev. Geophys., 61, https://doi.org/10.1029/2022rg000783, 2023.
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate, Earth-Sci. Rev., 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011, 2016.
Garreaud, R. D., Boisier, J. P., Rondanelli, R., Montecinos, A., Sepúlveda, H. H., and Veloso-Aguila, D.: The Central Chile Mega Drought (2010–2018): A climate dynamics perspective, Int. J. Climatol., 40, 421–439, https://doi.org/10.1002/joc.6219, 2019.
Gregoretti, C.: The initiation of debris flow at high slopes: experimental results, J. Hydraul. Res., 38, 83–88, https://doi.org/10.1080/00221680009498343, 2000.
Hooper, A.: A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008gl034654, 2008.
Hooper, A., Segall, P., and Zebker, H.: Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos, J. Geophys. Res., 112, https://doi.org/10.1029/2006jb004763, 2007.
Hooper, A., Bekaert, D., Spaans, K., and Arıkan, M.: Recent advances in SAR interferometry time series analysis for measuring crustal deformation, Tectonophysics, 514–517, 1–13, https://doi.org/10.1016/j.tecto.2011.10.013, 2012.
Höser, T.: Analysing the capabilities and limitations of InSAR using Sentinel-1 data for landslide detection and monitoring, PhD diss., University of Bonn, 2018.
Huang, A.-B., Lee, J.-T., Ho, Y.-T., Chiu, Y.-F., and Cheng, S.-Y.: Stability monitoring of rainfall-induced deep landslides through pore pressure profile measurements, Soils and Foundations, 52, 737–747, https://doi.org/10.1016/j.sandf.2012.07.013, 2012.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167–194, https://doi.org/10.1007/s10346-013-0436-y, 2014.
Iverson, R., Logan, M., LaHusen, R., and Berti, M.: The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res.-Atmos., 115, F03005, https://doi.org/10.1029/2009jf001514, 2010.
Jakob, M. und Lambert, S.: Climate change effects on landslides along the southwest coast of British Columbia, Geomorphology, 107, 275–284, https://doi.org/10.1016/j.geomorph.2008.12.009, 2009.
Kameda, J., Kamiya, H., Masumoto, H., Morisaki, T., Hiratsuka, T., and Inaoi, C.: Fluidized landslides triggered by the liquefaction of subsurface volcanic deposits during the 2018 Iburi–Tobu earthquake, Hokkaido, Sci. Rep., 9, https://doi.org/10.1038/s41598-019-48820-y, 2019.
Kang, D., Nam, D., Lee, S., Yang, W., You, K., and Kim, B.: Comparison of impact forces generated by debris flows using numerical analysis models, WIT Trans. Ecol. Env., 220, 195–203, https://doi.org/10.2495/wrm170191, 2017.
Kinde, M., Getahun, E., and Jothimani, M.: Geotechnical and slope stability analysis in the landslide-prone area: A case study in Sawla – Laska road sector, Southern Ethiopia, Scientific African, 23, e02071, https://doi.org/10.1016/j.sciaf.2024.e02071, 2024.
Korup, O., Seidemann, J., and Mohr, C. H.: Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile, Nat. Geosci., 12, 284–289, https://doi.org/10.1038/s41561-019-0315-9, 2019.
Kuriakose, S. L., van Beek, L. P. H., and van Westen, C. J.: Parameterizing a physically based shallow landslide model in a data poor region, Earth Surf. Proc. Land., 34, 867–881, https://doi.org/10.1002/esp.1794, 2009.
Lee, C.-T.: Landslide trends under extreme climate events, Terr. Atmos. Ocean. Sci., 28, 33–42, https://doi.org/10.3319/tao.2016.05.28.01(cca), 2017.
Malet, J.-P., Laigle, D., Remaître, A., and Maquaire, O.: Triggering conditions and mobility of debris flows associated to complex earthflows, Geomorphology, 66, 215–235, https://doi.org/10.1016/j.geomorph.2004.09.014, 2005.
Maragaño-Carmona, G., Fustos Toribio, I. J., Descote, P.-Y., Robledo, L. F., Villalobos, D., and Gatica, G.: Rainfall-Induced Landslide Assessment under Different Precipitation Thresholds Using Remote Sensing Data: A Central Andes Case, Water, 15, 2514, https://doi.org/10.3390/w15142514, 2023.
Moreno-Yaeger, P., Singer, B. S., Edwards, B. R., Jicha, B. R., Nachlas, W. O., Kurz, M. D., E. Breunig, R., Fustos-Toribio, I., Antipán, D. V., and Piergrossi, E.: Pleistocene to recent evolution of Mocho-Choshuenco volcano during growth and retreat of the Patagonian Ice Sheet, Geological Society of America Bulletin, 136, 5262–5282, https://doi.org/10.1130/b37514.1, 2024.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Muratli, J. M., Chase, Z., McManus, J., and Mix, A.: Ice-sheet control of continental erosion in central and southern Chile (36°–41°S) over the last 30,000 years, Quaternary Sci. Rev., 29, 3230–3239, https://doi.org/10.1016/j.quascirev.2010.06.037, 2010.
Ochoa-Cornejo, F., Palma, S., Sepúlveda, S. A., Lara, M., Burgos, K., and Duhart, P.: Rock slides in paraglacial environments in South America: three-dimensional modeling of glacier retreat and landslide inducing the 2017 Santa Lucía disaster in the Chilean Patagonia, Landslides, 22, 1003–1025, https://doi.org/10.1007/s10346-024-02419-1, 2024.
Ontiveros-Ortega, A., Plaza, I., Calero, J., Moleon, J. A., and Ibañez, J. M.: High variability of interaction energy between volcanic particles: implications for deposit stability, Nat Hazards, 117, 3103–3122, https://doi.org/10.1007/s11069-023-05979-y, 2023.
Palazzolo, N., Peres, D. J., Creaco, E., and Cancelliere, A.: Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data, Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023, 2023.
Pavlova, I., Jomelli, V., Brunstein, D., Grancher, D., Martin, E., and Déqué, M.: Debris flow activity related to recent climate conditions in the French Alps: A regional investigation, Geomorphology, 219, 248–259, https://doi.org/10.1016/j.geomorph.2014.04.025, 2014.
Porchet, M. and Laferrere, H.: Détermination des caractéristiques hydrodynamiques des sols en place. Mémoire et notes techniques, Ann. Du Ministère de l'Agriculture, Tech. Rep. 2 (64), 1935.
Rawson, H., Naranjo, J. A., Smith, V. C., Fontijn, K., Pyle, D. M., Mather, T. A., and Moreno, H.: The frequency and magnitude of post-glacial explosive eruptions at Volcán Mocho-Choshuenco, southern Chile, J. Volcanol. Geoth. Res., 299, 103–129, https://doi.org/10.1016/j.jvolgeores.2015.04.003, 2015.
Rodriguez, C., Perez, Y., Hugo Roa, Clayton, J., Antinao, J. L., & Duhart, P., Martin, M.: Geología del área de Panguipulli-Riñihue, Región de Los Lagos, Servicio Nacional de Geología y Minería, Mapas Geológicos No: 10, 1999.
Salazar, Á., Thatcher, M., Goubanova, K., Bernal, P., Gutiérrez, J., and Squeo, F.: CMIP6 precipitation and temperature projections for Chile, Clim. Dynam., 62, 2475–2498, https://doi.org/10.1007/s00382-023-07034-9, 2023.
Sanhueza, C., Palma, J., Valenzuela, P., Araneda, O., and Calderón, K.: Evaluación del comportamiento geotécnico de suelos volcánicos chilenos para su uso como material de filtro en la depuración de aguas residuales domésticas, Revista de la Construcción, 10, 66–81, https://doi.org/10.4067/s0718-915x2011000200007, 2011.
Savi, S., Schildgen, T. F., Tofelde, S., Wittmann, H., Scherler, D., Mey, J., Alonso, R. N., and Strecker, M. R.: Climatic controls on debris-flow activity and sediment aggradation: The Del Medio fan, NW Argentina, J. Geophys. Res.-Earth, 121, 2424–2445, https://doi.org/10.1002/2016jf003912, 2016.
Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R., and Schaub, T.: The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech. J., 38, 995–1024, https://doi.org/10.1139/t01-031, 2001.
Sepúlveda, S. A.: Large volume landslides in the central andes of chile and argentina (32°-34°s) and related hazards, Italian Journal of Engineering Geology and Environment, 287–294, https://doi.org/10.4408/IJEGE.2013-06.B-26, 2013.
Sepúlveda, S. A. und Padilla, C.: Rain-induced debris and mudflow triggering factors assessment in the Santiago cordilleran foothills, Central Chile, Nat. Hazards, 47, 201–215, https://doi.org/10.1007/s11069-007-9210-6, 2008.
Sepúlveda, S. A. and Petley, D. N.: Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean, Nat. Hazards Earth Syst. Sci., 15, 1821–1833, https://doi.org/10.5194/nhess-15-1821-2015, 2015.
Sepúlveda, S. A., Moreiras, S. M., Lara, M., and Alfaro, A.: Debris flows in the Andean ranges of central Chile and Argentina triggered by 2013 summer storms: characteristics and consequences, Landslides, 12, 115–133, https://doi.org/10.1007/s10346-014-0539-0, 2014.
Singer, B. S., Moreno-Yaeger, P., Townsend, M., Huber, C., Cuzzone, J., Edwards, B. R., Romero, M., Orellana-Salazar, Y., Marcott, S. A., Breunig, R. E., Ferrier, K. L., Scholz, K., Coonin, A. N., Alloway, B. V., Tremblay, M. M., Stevens, S., Fustos-Toribio, I., Moreno, P. I., Vera, F., and Amigo, Á.: New perspectives on ice forcing in continental arc magma plumbing systems, J. Volcanol. Geoth. Res., 455, 108187, https://doi.org/10.1016/j.jvolgeores.2024.108187, 2024.
Singh, K. und Kumar, V.: Rainfall Thresholds Triggering Landslides: A Review, Lecture Notes in Civil Engineering, 455–464, https://doi.org/10.1007/978-3-030-51354-2_42, 2020.
Somos-Valenzuela, M. A., Oyarzún-Ulloa, J. E., Fustos-Toribio, I. J., Garrido-Urzua, N., and Chen, N.: The mudflow disaster at Villa Santa Lucía in Chilean Patagonia: understandings and insights derived from numerical simulation and postevent field surveys, Nat. Hazards Earth Syst. Sci., 20, 2319–2333, https://doi.org/10.5194/nhess-20-2319-2020, 2020.
Stern, C. R.: Active Andean volcanism: its geologic and tectonic setting, Rev. Geol. Chile, 31, https://doi.org/10.4067/s0716-02082004000200001, 2004.
Stern, C. R.: Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes, B. Volcanol., 70, 435–454, https://doi.org/10.1007/s00445-007-0148-z, 2007.
Stoffel, M., Mendlik, T., Schneuwly-Bollschweiler, M., and Gobiet, A.: Possible impacts of climate change on debris-flow activity in the Swiss Alps, Climatic Change, 122, 141–155, https://doi.org/10.1007/s10584-013-0993-z, 2013.
Talebi, A., Uijlenhoet, R., and Troch, P. A.: Soil moisture storage and hillslope stability, Nat. Hazards Earth Syst. Sci., 7, 523–534, https://doi.org/10.5194/nhess-7-523-2007, 2007.
Thompson, P. I. J., Dugmore, A. J., Newton, A. J., Cutler, N. A., and Streeter, R. T.: The influence of burial rate on variability in tephra thickness and grain size distribution in Iceland, CATENA, 225, 107025, https://doi.org/10.1016/j.catena.2023.107025, 2023.
Valenzuela, R. A. and Garreaud, R. D.: Extreme Daily Rainfall in Central-Southern Chile and Its Relationship with Low-Level Horizontal Water Vapor Fluxes, J. Hydrometeorol., 20, 1829–1850, https://doi.org/10.1175/jhm-d-19-0036.1, 2019.
Vásquez-Antipán, D., Fustos-Toribio, I., Riffo-López, J., Cortez-Díaz, A., Bravo, Á., and Moreno-Yaeger, P.: Landslide processes related to recurrent explosive eruptions in the Southern Andes of Chile (39° S), J. S. Am. Earth Sci., 157, 105469, https://doi.org/10.1016/j.jsames.2025.105469, 2025.
Vega, J. A. and Hidalgo, C. A.: Quantitative risk assessment of landslides triggered by earthquakes and rainfall based on direct costs of urban buildings, Geomorphology, 273, 217–235, https://doi.org/10.1016/j.geomorph.2016.07.032, 2016.
Walding, N., Williams, R., Rowley, P., and Dowey, N.: Cohesional behaviours in pyroclastic material and the implications for deposit architecture, B. Volcanol., 85, https://doi.org/10.1007/s00445-023-01682-9, 2023.
Wang, H., Cui, P., Li, Y., Tang, J., Wei, R., Yang, A., Zhou, L., Bazai, N. A., and Zhang, G.: Rock and ice avalanche-generated catastrophic debris flow at Chamoli, 7 February 2021: New insights from the geomorphic perspective, Geomorphology, 452, 109110, https://doi.org/10.1016/j.geomorph.2024.109110, 2024.
Wang, J. and Yu, Y.: Debris Flow Hazard Zoning Based on Numerical Simulation in the Wenchuan Earthquake Meizoseismal Areas, Proceedings of the 5th International Conference on Civil Engineering and Transportation 2015, https://doi.org/10.2991/iccet-15.2015.81, 2015.
Xie, M., Zhao, W., Ju, N., He, C., Huang, H., and Cui, Q.: Landslide evolution assessment based on InSAR and real-time monitoring of a large, reactivated landslide, Wenchuan, China, Eng. Geol., 277, 105781, https://doi.org/10.1016/j.enggeo.2020.105781, 2020.
Yi, Z., Xingmin, M., Allesandro, N., Tom, D., Guan, C., Colm, J., Yuanxi, L., and Xiaojun, S.: Characterization of pre-failure deformation and evolution of a large earthflow using InSAR monitoring and optical image interpretation, Landslides, 19, 35–50, https://doi.org/10.1007/s10346-021-01744-z, 2021.
Yu, C., Li, Z., Penna, N. T., and Crippa, P.: Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations, J. Geophys. Res.-Sol. Ea., 123, 9202–9222, https://doi.org/10.1029/2017jb015305, 2018.
Short summary
We investigated how volcanic soils and heavy rainfall trigger dangerous debris flows in the southern Andes. Our findings show saturated volcanic-soils above less permeable glacial deposits create ideal conditions for slope failures. Monitoring soil moisture and surface changes helps predict these events. This knowledge aids in protecting communities from debris flow hazards, increasingly important under climate change.
We investigated how volcanic soils and heavy rainfall trigger dangerous debris flows in the...
Altmetrics
Final-revised paper
Preprint