Articles | Volume 25, issue 11
https://doi.org/10.5194/nhess-25-4673-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4673-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extreme precipitation and flooding in Berlin under climate change and effects of selected grey and blue-green measures
Franziska Tügel
CORRESPONDING AUTHOR
Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Berlin, Germany
Department of Water Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
Multidisciplinary Water Management, Civil Engineering and Management, Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
Katrin M. Nissen
Institute for Meteorology, Freie Universität Berlin, Berlin, Germany
Lennart Steffen
Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Berlin, Germany
Yangwei Zhang
Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Berlin, Germany
Uwe Ulbrich
Institute for Meteorology, Freie Universität Berlin, Berlin, Germany
Reinhard Hinkelmann
Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Berlin, Germany
Related authors
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan F. Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
Nat. Hazards Earth Syst. Sci., 25, 4043–4051, https://doi.org/10.5194/nhess-25-4043-2025, https://doi.org/10.5194/nhess-25-4043-2025, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan F. Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
Nat. Hazards Earth Syst. Sci., 25, 4043–4051, https://doi.org/10.5194/nhess-25-4043-2025, https://doi.org/10.5194/nhess-25-4043-2025, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Andreas Trojand, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 25, 2331–2350, https://doi.org/10.5194/nhess-25-2331-2025, https://doi.org/10.5194/nhess-25-2331-2025, 2025
Short summary
Short summary
The study investigates how the intensity of previous windstorm events and the time between two events affect the vulnerability of residential buildings in Germany. By analyzing 23 years of data, it was found that higher intensity of previous events generally reduces vulnerability in subsequent storms, while shorter intervals between events increase vulnerability. The results emphasize the approach of considering vulnerability in risk assessments as temporally dynamic.
Rike Lorenz, Nico Becker, Barry Gardiner, Uwe Ulbrich, Marc Hanewinkel, and Benjamin Schmitz
Nat. Hazards Earth Syst. Sci., 25, 2179–2196, https://doi.org/10.5194/nhess-25-2179-2025, https://doi.org/10.5194/nhess-25-2179-2025, 2025
Short summary
Short summary
Tree fall events have an impact on forests and transport systems. Our study explored tree fall in relation to wind and other weather conditions. We used tree fall data along railway lines and ERA5 and radar meteorological data to build a logistic regression model. We found that high and prolonged wind speeds, wet conditions, and high air density increase tree fall risk. These factors might change in the changing climate, which in return will change risks for trees, forests and transport.
Subham Mukherjee, Kei Namba, Katrin M. Nissen, Ehsan Razipoor, Stefan Heiland, and Brigitta Schütt
EGUsphere, https://doi.org/10.5194/egusphere-2025-469, https://doi.org/10.5194/egusphere-2025-469, 2025
Short summary
Short summary
Berlin’s parks are vital for recreation, biodiversity, and climate resilience, yet they face growing challenges from socio-economic inequalities and climate change. Our review examines how factors like gentrification and extreme weather impact access to and sustainability of these parks. By analysing over 200 studies, we highlight the need for inclusive policies, community engagement, and climate-adaptive park designs to ensure that Berlin’s parks remain accessible, resilient, and socially just.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024, https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
Short summary
We present a novel stochastic weather generator conditioned on circulation patterns and regional temperature, accounting for dynamic and thermodynamic atmospheric changes. We extensively evaluate the model for the central European region. It statistically downscales precipitation for future periods, generating long, spatially and temporally consistent series. Results suggest an increase in extreme precipitation over the region, offering key benefits for hydrological impact studies.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Katrin M. Nissen, Martina Wilde, Thomas M. Kreuzer, Annika Wohlers, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 23, 2737–2748, https://doi.org/10.5194/nhess-23-2737-2023, https://doi.org/10.5194/nhess-23-2737-2023, 2023
Short summary
Short summary
The effect of climate change on rockfall probability in the German low mountain regions is investigated in observations and in 23 different climate scenario simulations. Under a pessimistic greenhouse gas scenario, the simulations suggest a decrease in rockfall probability. This reduction is mainly caused by a decrease in the number of freeze–thaw cycles due to higher atmospheric temperatures.
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023, https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
Short summary
Arctic sea ice loss might impact the atmospheric circulation outside the Arctic and therefore extremes over mid-latitudes. Here, we analyze model experiments to initially assess the influence of sea ice loss on occurrence frequencies of large-scale circulation patterns. Some of these detected circulation changes can be linked to changes in occurrences of European temperature extremes. Compared to future global temperature increases, the sea-ice-related impacts are however of secondary relevance.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Katrin M. Nissen, Stefan Rupp, Thomas M. Kreuzer, Björn Guse, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 22, 2117–2130, https://doi.org/10.5194/nhess-22-2117-2022, https://doi.org/10.5194/nhess-22-2117-2022, 2022
Short summary
Short summary
A statistical model is introduced which quantifies the influence of individual potential triggering factors and their interactions on rockfall probability in central Europe. The most important factor is daily precipitation, which is most effective if sub-surface moisture levels are high. Freeze–thaw cycles in the preceding days can further increase the rockfall hazard. The model can be applied to climate simulations in order to investigate the effect of climate change on rockfall probability.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Alexander Pasternack, Jens Grieger, Henning W. Rust, and Uwe Ulbrich
Geosci. Model Dev., 14, 4335–4355, https://doi.org/10.5194/gmd-14-4335-2021, https://doi.org/10.5194/gmd-14-4335-2021, 2021
Short summary
Short summary
Decadal climate ensemble forecasts are increasingly being used to guide adaptation measures. To ensure the applicability of these probabilistic predictions, inherent systematic errors of the prediction system must be adjusted. Since it is not clear which statistical model is optimal for this purpose, we propose a recalibration strategy with a systematic model selection based on non-homogeneous boosting for identifying the most relevant features for both ensemble mean and ensemble spread.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Cited articles
AMAREX: https://www.amarex-projekt.de/de (last access: 11 September 2025), 2025. a
Apel, H., Benisch, J., Helm, B., Vorogushyn, S., and Merz, B.: Fast urban inundation simulation with RIM2D for flood risk assessment and forecasting, Frontiers in Water, 6, https://doi.org/10.3389/frwa.2024.1310182, 2024. a
Berliner-Zeitung: How will climate change impact Berlin?, https://www.berliner-zeitung.de/en/how-will-climate-change-impact-berlin-li.172154 (last access: 13 September 2024), 2024. a
BKG: Land Nordrhein-Westfalen, Hinweiskarte Starkregengefahren, https://geoportal.de/Info/tk_04-starkregengefahrenhinweise-nrw (last access: 29 January 2025), 2021. a
BKG: Erfolgreicher Auftakt: Bundesweite Kartierung über die Gefahren durch Starkregen gestartet, https://www.geoportal.de/map.html?map=tk_04-hinweiskarte-starkregengefahren-be-bb (last access: 29 September 2025), 2025. a
BMBF: NUKLEUS – Nutzbare Lokale Klimainformationen für Deutschland, https://www.fona.de/de/massnahmen/foerdermassnahmen/RegIKlim/nukleus.php (last access: 17 September 2024), 2024. a
Döring, A. and Neuweiler, I.: Generation of Stormwater Drainage Networks Using Spatial Data, in: New Trends in Urban Drainage Modelling, edited by: Mannina, G., Springer International Publishing, Cham, 576–581, ISBN 978-3-319-99867-1, 2019. a
DWA: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall: Arbeitsblatt DWA-A 118 Hydraulische Bemessung und Nachweis von Entwässerungssystemen, DWA-Bundesgeschäftsstelle, Berlin, Germany, ISBN 9783939057154, 2006. a
Deutscher Wetterdienst (DWD): Index of/climate_environment/CDC/observations_germany/climate/, Open Data Portal [data set], https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/ (last access 1 September 2025), 2025. a
EUR-Lex: DIRECTIVE 2007/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, https://eur-lex.europa.eu/eli/dir/2007/60/oj (last access: 5 November 2025), 2007. a
Fauer, F. S., Ulrich, J., Jurado, O. E., and Rust, H. W.: Flexible and consistent quantile estimation for intensity–duration–frequency curves, Hydrol. Earth Syst. Sci., 25, 6479–6494, https://doi.org/10.5194/hess-25-6479-2021, 2021. a
Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop1, S., Do, H. X., Guerreiro, S., Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C., Sharma, A., Villarini, G., Wasko, C., and Zhang, X.: Anthropogenic intensification of short-duration rainfall extremes, Nat Rev Earth Environ, 2, 107–122, https://doi.org/10.1038/s43017-020-00128-6, 2021. a
Geoportal Berlin: Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen, https://www.berlin.de/sen/sbw/stadtdaten/geoportal/ (last access: 11 September 2025), 2025. a
Haller, M., Brienen, S., Brauch, J., and Früh, B.: Historical simulation with COSMO-CLM5-0-16 version V2022.01, Downscaling of MIROC-MIROC5 data for Germany with 3 km grid spacing, Deutscher Wetterdienst (DWD) [data set], https://doi.org/10.5676/DWD/CPS_HIST_V2022.01, 2022a. a, b
Haller, M., Brienen, S., Brauch, J., and Früh, B.: Projection simulation with COSMO-CLM5-0-16 version V2022.01, Downscaling of MIROC-MIROC5 data for Germany with 3 km grid spacing, Deutscher Wetterdienst (DWD) [data set], https://doi.org/10.5676/DWD/CPS_SCEN_V2022.01, 2022b. a, b
Hua, P., Yang, W., Qi, X., Jiang, S., Xie, J., Gu, X., Li, H., Zhang, J., and Krebs, P.: Evaluating the effect of urban flooding reduction strategies in response to design rainfall and low impact development, Journal of Cleaner Production, 242, 118515, https://doi.org/10.1016/j.jclepro.2019.118515, 2020. a
Hundhausen, M., Feldmann, H., Kohlhepp, R., and Pinto, J. G.: Climate change signals of extreme precipitation return levels for Germany in a transient convection‐permitting simulation ensemble, International Journal of Climatology, 44, 1454–1471, https://doi.org/10.1002/joc.8393, 2024. a, b, c, d, e
InnoMAUS: https://www.uni-potsdam.de/de/inno-maus/ (last access: 11 September 2025), 2025. a
IPCC: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009157896, 2021. a, b
IPCC: Impacts of 1.5 °C Global Warming on Natural and Human Systems, Cambridge University Press, 175–312, https://doi.org/10.1017/9781009157940.005, 2022. a
Junghänel, T., Bär, F., Deutschländer, T., Haberlandt, U., Otte, I., Shehu, B., Stockel, H., Stricker, K., Thiele, L.-B., and Willems, W.: Methodische Untersuchungen zur Novellierung der Starkregenstatistik für Deutschland (MUNSTAR), Synthesebericht, German Weather Service (DWD), Offenbach, Germany, 95 pp., https://www.dwd.de/DE/leistungen/kostra_dwd_rasterwerte/download/Synthesebericht_MUNSTAR_pdf.pdf (last access: 5 November 2025), 2022. a
Koutsoyiannis, D., Kozonis, D., and Manetas, A.: A mathematical framework for studying rainfall intensity-duration-frequency relationships, Journal of Hydrology, 206, 118–135, https://doi.org/10.1016/S0022-1694(98)00097-3, 1998. a
Li, Y., Wang, P., Lou, Y., Chen, C., Shen, C., and Hu, T.: Assessing urban drainage pressure and impacts of future climate change based on shared socioeconomic pathways, Journal of Hydrology: Regional Studies, 53, 101760, https://doi.org/10.1016/j.ejrh.2024.101760, 2024. a, b
Liu, C., Xie, T., Yu, Q., Niu, C., Sun, Y., Xu, Y., Luo, Q., and Hu, C.: Study on the response analysis of LID hydrological process to rainfall pattern based on framework for dynamic simulation of urban floods, Journal of Environmental Management, 351, 119953, https://doi.org/10.1016/j.jenvman.2023.119953, 2024. a
Lucas-Picher, P., Argüeso, D., Brisson, E., Tramblay, Y., Berg, P., Lemonsu, A., Kotlarski, S., and Caillaud, C.: Convection-permitting modeling with regional climate models: Latest developments and next steps, WIREs Climate Change, 12, e731, https://doi.org/10.1002/wcc.731, 2021. a
Martínez-Gomariz, E., Gómez, M., and Russo, B.: Experimental study of the stability of pedestrians exposed to urban pluvial flooding, Nat. Hazards, 82, 1259–1278, https://doi.org/10.1007/s11069-016-2242-z, 2016. a, b
Meredith, E. P., Ulbrich, U., and Rust, H. W.: The Diurnal Nature of Future Extreme Precipitation Intensification, Geophysical Research Letters, 46, 7680–7689, https://doi.org/10.1029/2019GL082385, 2019. a
Neumann, J., Scheid, C., and Dittmer, U.: Potential of Decentral Nature-Based Solutions for Mitigation of Pluvial Floods in Urban Areas – A Simulation Study Based on 1D/2D Coupled Modeling, Water, 16, https://doi.org/10.3390/w16060811, 2024. a, b
Paton, E., Tügel, F., Eckmann, L., Joseph, B., and Hinkelmann, R.: Compilation method of a catalogue of reasonable worst-case rainfall series for flash flood simulations of short, convective rainstorms, Journal of Hydrology, 635, 131091, https://doi.org/10.1016/j.jhydrol.2024.131091, 2024. a, b
Rossman, L. and Huber, W.: Storm Water Management Model Reference Manual Volume I, Hydrology, Washington, DC, https://www.epa.gov/sites/default/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf (last access: 5 November 2025), 2015. a
Rybka, H., Haller, M., Brienen, S., Brauch, J., Früh, B., Junghänel, T., Lengfeld, K., Walter, A., and Winterrath, T.: Convection-permitting climate simulations with COSMO-CLM for Germany: Analysis of present and future daily and sub-daily extreme precipitation, Meteorologische Zeitschrift, 32, 91–111, https://doi.org/10.1127/metz/2022/1147, 2023. a, b, c
Simons, F.: A robust high-resolution hydrodynamic numerical model for surface water flow and transport processes within a flexible software framework, PhD thesis, https://doi.org/10.14279/depositonce-9589, 2020. a
Steffen, L. and Hinkelmann, R.: hms++: Open-source shallow water flow model with focus on investigating computational performance, SoftwareX, 22, 101397, https://doi.org/10.1016/j.softx.2023.101397, 2023. a
Tügel, F., Kronke, E., Nissen, K. M., Gronau, P., Steffen, L., Ulbrich, U., and Hinkelmann, R.: Hydrodynamische N-A-Ensemblesimulationen mit variablen räumlich-zeitlichen Verteilungen von Starkniederschlägen, in: Nachhaltiges Wassermanagement – Regionale und Globale Strategien, Beiträge zum Tag der Hydrologie am 22./23. März 2023 in Bochum Forum für Hydrologie und Wasserbewirtschaftung, Heft 44.23, edited by: Flörke, M and Mudersbach, C., https://doi.org/10.14617/for.hydrol.wasbew.44.23, 2023. a, b
Ulrich, J., Jurado, O. E., Peter, M., Scheibel, M., and Rust, H. W.: Estimating IDF Curves Consistently over Durations with Spatial Covariates, Water, 12, https://doi.org/10.3390/w12113119, 2020. a
Wartalska, K., Kaźmierczak, B., Nowakowska, M., and Kotowski, A.: Analysis of Hyetographs for Drainage System Modeling, Water, 12, https://doi.org/10.3390/w12010149, 2020. a, b
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011. a
Yang, W., Zhao, Z., Pan, L., Li, R., Wu, S., Hua, P., Wang, H., Schmalz, B., Krebs, P., and Zhang, J.: Integrated risk analysis for urban flooding under changing climates, Results in Engineering, 24, 103243, https://doi.org/10.1016/j.rineng.2024.103243, 2024. a
Zevenbergen, C., Fu, D., and Pathirana, A.: Transitioning to Sponge Cities: Challenges and Opportunities to Address Urban Water Problems in China, Water, 10, https://doi.org/10.3390/w10091230, 2018. a
Short summary
This study examines how extreme rainfall in Berlin, Germany, may intensify due to global warming and how that could worsen flooding in a selected part of the city. We assess the role of the drainage system, infiltration from unsealed surfaces, and a potential adaptation scenario with all roofs as retention roofs in reducing flooding under extreme rainfall. Combining climate and hydrodynamic simulations, we provide insights into future challenges and possible solutions for urban flood management.
This study examines how extreme rainfall in Berlin, Germany, may intensify due to global warming...
Altmetrics
Final-revised paper
Preprint