Iakubovskii, P.: Segmentation Models, GitHub [code],
https://github.com/qubvel/segmentation_models (last access: 2 January 2025), 2019. a
Imhoff, R. O., Brauer, C. C., Overeem, A., Weerts, A. H., and Uijlenhoet, R.: Spatial and Temporal Evaluation of Radar Rainfall Nowcasting Techniques on 1,533 Events, Water Resour. Res., 56, e2019WR026723,
https://doi.org/10.1029/2019WR026723,2020.
a
Kim, W., Jeong, C.-H., and Kim, S.: Improvements in deep learning-based precipitation nowcasting using major atmospheric factors with radar rain rate, Comput. Geosci., 184, 105529,
https://doi.org/10.1016/j.cageo.2024.105529, 2024.
a
Leinonen, J., Hamann, U., Sideris, I. V., and Germann, U.: Thunderstorm Nowcasting With Deep Learning: A Multi-Hazard Data Fusion Model, Geophys. Res. Lett., 50, e2022GL101626,
https://doi.org/10.1029/2022GL101626, 2023.
a,
b
Lengfeld, K., Walawender, E., Winterrath, T., and Becker, A.: CatRaRE: A Catalogue of radar-based heavy rainfall events in Germany derived from 20 years of data, Meteorol. Z., 30, 469–487,
https://doi.org/10.1127/metz/2021/1088, 2021a.
a,
b
Lengfeld, K., Walawender, E., Winterrath, T., Weigl, E., and Becker, A.: Heavy precipitation events Version 2021.01 exceeding DWD warning level 3 for severe weather based on RADKLIM-RW Version 2017.002, DWD [data set],
https://doi.org/10.5676/DWD/CatRaRE_W3_Eta_v2021.01, 2021b.
a,
b,
c
Lin, G.-S., Imhoff, R., Schleiss, M., and Uijlenhoet, R.: Nowcasting of High-Intensity Rainfall for Urban Applications in the Netherlands, J. Hydrometeorol., 25, 653–672,
https://doi.org/10.1175/JHM-D-23-0194.1, 2024.
a,
b
Pulkkinen, S., Nerini, D., Pérez Hortal, A. A., Velasco-Forero, C., Seed, A., Germann, U., and Foresti, L.: Pysteps: an open-source Python library for probabilistic precipitation nowcasting (v1.0), Geosci. Model Dev., 12, 4185–4219,
https://doi.org/10.5194/gmd-12-4185-2019, 2019.
a
Rahman, M. A. and Wang, Y.: Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation, in: Advances in Visual Computing, edited by: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Porikli, F., Skaff, S., Entezari, A., Min, J., Iwai, D., Sadagic, A., Scheidegger, C., and Isenberg, T., Springer International Publishing, Cham, 234–244, ISBN 978-3-319-50835-1, 2016. a
Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., and Mohamed, S.: Skilful precipitation nowcasting using deep generative models of radar, Nature, 597, 672–677,
https://doi.org/10.1038/s41586-021-03854-z, 2021.
a,
b
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-C.: Convolutional LSTM Network: a machine learning approach for precipitation nowcasting, in: Proceedings of the 28th International Conference on Neural Information Processing Systems – Volume 1, NIPS'15, MIT Press, Cambridge, MA, USA, 802–810, ISBN 9781510825024, 2015. a
Tran, Q.-K. and Song, S.-k.: Computer Vision in Precipitation Nowcasting: Applying Image Quality Assessment Metrics for Training Deep Neural Networks, Atmosphere, 10, 244,
https://doi.org/10.3390/atmos10050244, 2019.
a
van Nooten, C. C., Schreurs, K., Wijnands, J. S., Leijnse, H., Schmeits, M., Whan, K., and Shapovalova, Y.: Improving Precipitation Nowcasting for High-Intensity Events Using Deep Generative Models with Balanced Loss and Temperature Data: A Case Study in the Netherlands, Artif. Intel. Earth Syst., 2, e230017,
https://doi.org/10.1175/AIES-D-23-0017.1, 2023.
a,
b
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A., Lengfeld, K., Walawender, E., Weigl, E., and Becker, A.: Reprocessed quasi gauge-adjusted radar data, 5-minute precipitation sums (YW), DWD [data set],
https://doi.org/10.5676/DWD/RADKLIM_YW_V2017.002, 2018a.
a,
b,
c
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A., Walawender, E., Weigl, E., and Becker, A.: Erstellung einer radargestützten hochaufgelösten Niederschlagsklimatologie für Deutschland zur Auswertung der rezenten Änderungen des Extremverhaltens von Niederschlag, Freie Universität Berlin,
https://doi.org/10.17169/refubium-25153, 2018b.
a
Zhang, Y., Long, M., Chen, K., Xing, L., Jin, R., Jordan, M. I., and Wang, J.: Skilful nowcasting of extreme precipitation with NowcastNet, Nature, 619, 526–532,
https://doi.org/10.1038/s41586-023-06184-4, 2023.
a