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Abstract. In the field of precipitation nowcasting, deep
learning (DL) has emerged as an alternative to conventional
tracking and extrapolation techniques. However, DL strug-
gles to adequately predict heavy precipitation, which is es-
sential in early warning. By taking into account specific user
requirements, though, we can simplify the training task and
boost predictive skill. As an example, we predict the cumu-
lative precipitation of the next hour (instead of 5 min incre-
ments) and the exceedance of thresholds (instead of numeri-
cal values). A dialogue between developers and users should
identify the requirements to a nowcast and how to consider
these in model training.

1 Introduction

Precipitation nowcasting is the short-term prediction of
where and when precipitation will occur in the immediate fu-
ture, typically covering the next minutes to hours. As society
becomes increasingly exposed and vulnerable to heavy rain-
fall, nowcasting can contribute to anticipate rapidly evolving
precipitation phenomena in early warning contexts.

The standard nowcasting procedure is to track precipita-
tion features in a series of recent radar images and then to
extrapolate their motion into the imminent future by numer-
ical advection (Germann and Zawadzki, 2002). Skilful lead
times often do not exceed 1 h for moderate intensities and
even less for intense convective events (Imhoff et al., 2020;
Lin et al., 2024).

In recent years, deep learning (DL) has emerged as an
alternative to conventional tracking and extrapolation tech-
niques, starting with Shi et al. (2015), then, for exam-
ple, Agrawal et al. (2019), Ayzel et al. (2020), and Ravuri

et al. (2021), followed since then by a sheer wave of new
studies. The potential of DL in precipitation nowcasting lies
in its capacity to discern intricate relationships in the data,
without the intervention of specific feature engineering (as
required for classic machine learning) or an understanding of
governing processes (as required for physically based mod-
els). The availability of massive weather radar archives in
conjunction with open-source software libraries and the re-
quired computational resources (graphical and tensor pro-
cessing units) provides vast opportunities for progress.

Besides some of the general issues of DL (interpretabil-
ity, sensitivity to input data quality and quantity, scalabil-
ity, and robustness, to name a few), DL-based precipitation
nowcasting struggles with the prediction of heavy precip-
itation features and hence extreme precipitation accumula-
tions (e.g. Tran and Song, 2019; Ayzel et al., 2020). This is
particularly frustrating since early warning is a major appli-
cation scenario for nowcasting tools. Several improvements
have been suggested and tested, including new architectures
(Ravuri et al., 2021; Zhang et al., 2023), new types of pre-
dictive features (van Nooten et al., 2023; Leinonen et al.,
2023; Kim et al., 2024), and tuning of training parameters
(van Nooten et al., 2023; Franch et al., 2020). Yet it appears
to remain difficult to successfully learn precipitation dynam-
ics over a wide range of weather conditions, on top of the
fundamental challenge in predicting the spatio-temporal dy-
namics of convective events.

Our hypothesis is that DL models have difficulties in de-
tecting generalizable patterns in case they are trained to pre-
dict a wide range of precipitation intensities and depths. We
further hypothesize that this issue could be addressed by tai-
loring the training task and procedure more to the prediction
of whether any user-relevant precipitation threshold will be
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exceeded. It is surprising that this has been rarely attempted
so far (with the exception of Leinonen et al., 2023) – since
the possibility of training DL models to solve specific tasks
is one of their inherent strengths.

The aim of this paper is hence to demonstrate how the per-
formance of DL models might benefit from simplifying the
training task, by tailoring it more specifically to actual user
requirements. We exemplify such a simplification for two as-
pects:

1. Temporal resolution of the nowcast. Typically, nowcast-
ing models predict precipitation at temporal increments
of minutes (often 5 min). This is partly historically con-
ditioned, as the conventional numerical extrapolation
schemes required a high temporal resolution for pre-
dicting the displacement of rainfall features. But while
such a high resolution might be helpful for some ap-
plications, others might as well be content with antici-
pating the cumulative precipitation depth over the next
hour. For instance, the German Weather Service does
not specify warning levels at any duration shorter than
1 h. Given that, in turn, the limit of predictability for
convective heavy rainfall has repeatedly been shown not
to exceed 1 h, we set the prediction target to be the pre-
cipitation depth accumulated over the next hour.

2. Regression versus segmentation. In rainfall early warn-
ing, users are not necessarily interested in the exact rain-
fall depth but often rather in the exceedance of spe-
cific thresholds. The German Weather Service, for in-
stance, uses three warning thresholds for hourly precip-
itation depths (15, 25, and 40 mm). Yet the values of
such thresholds can be highly context dependent. So in-
stead of defining the training task as a regression (which
aims to predict a continuous numerical variable), we set
a segmentation task in which we predict where the tar-
get variable exceeds a specific threshold.

The starting point of our study is the U-Net-based regres-
sion model RainNet (Ayzel et al., 2020, which we will re-
fer to here as RainNet2020). RainNet2020 was shown to be
superior to conventional benchmark models with regard to
the prediction of low to moderate precipitation intensities;
however, it even fell short in predicting rainfall intensities of
more than 5 mm h−1. In order to provide a more competi-
tive regression model and hence a fair experimental setup in
the present study context, RainNet2020 was revised substan-
tially: we restricted the training data to heavy rainfall events,
optimized the data splitting strategy, reduced the size of the
model domain, and applied some architectural improvements
(see Sect. 2.3.2 for details). The resulting RainNet2024 re-
gression model is now used as a benchmark against a set of
segmentation models that operate on the same domain, with
the same training and testing data and with the same archi-
tectural design – but with the training tasks set to predict the

exceedance of precipitation thresholds over the next hour (in-
stead of continuous intensities at 5 min resolution).

2 Data and methods

2.1 Precipitation data (RADKLIM)

We use the RADKLIM_YW_2017.002 dataset (Winterrath
et al., 2018a, b), which is available on the open data
repository of Germany’s national meteorological service
(Deutscher Wetterdienst; DWD hereafter). For 2001 to 2022,
the dataset provides a national radar-based precipitation com-
posite at an extent of 1100 km × 900 km and a resolution of
1 km in space and 5 min in time. RADKLIM constitutes a
consistent and homogeneous reanalysis of DWD’s radar data
archive and covers comprehensive steps of quality control
and corrections, including the final step of adjustment by an
extended set of rain gauges.

2.2 Catalogue of heavy rainfall events (CatRaRE)

In order to focus the model training on heavy rainfall,
we used the “Catalogue of Radar-based Heavy Rainfall
Events” (CatRaRE v.2021.01; Lengfeld et al., 2021a), which
is openly available (Lengfeld et al., 2021b). To create this
catalogue, spatially and temporally coherent heavy rainfall
events were extracted from more than 20 years of RADKLIM
data (see Sect. 2.1). The corresponding methodological de-
tails can be found in Lengfeld et al. (2021a).

2.3 Nowcasting models

2.3.1 RainNet2020

Being one of the first deep convolutional neural networks
for radar-based precipitation nowcasting, RainNet2020 was
originally published under the name “RainNet” (Ayzel et al.,
2020). Its design was inspired by deep learning models from
the U-Net and SegNet families. RainNet had been trained as
a regression model that predicts continuous precipitation in-
tensities on a spatial domain of 928 × 928 grid cells with a
resolution of 1 km× 1 km, using the summer months of 2006
to 2013 as a training period. The actual target variable is the
precipitation intensity at a lead time of 5 min. Nowcasts be-
yond that lead time are obtained in a recursive approach. In
the context of this study, we use the pre-trained model exactly
as it was published in 2020. It merely serves as a reference
for its successor, RainNet2024.

2.3.2 RainNet2024

As already pointed out in Sect. 1, we aimed to introduce a
more competitive regression-type DL model which would
then be consistently trained and tested together with the
segmentation-type models in the context of this study. All
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features described in Sect. 2.3.1 for RainNet2020 also apply
to RainNet2024, except for the following adjustments:

– Spatial domain. The model is trained and applied on a
spatial domain of 256 km × 256 km.

– Architectural adjustments. We used the segmentation
models’ library (Iakubovskii, 2019) as a source of
model architecture. The decoder branch in the origi-
nal U-Net design was substituted by the EfficientNetB4
model, which balances fewer parameters with higher ef-
ficiency (see further details in Sect. S1.1).

– Loss function. We used the mean squared error (MSE)
as it showed higher efficiency compared to LogCosh
loss used in RainNet2020 in a number of preliminary
tests.

– Training data preprocessing. Instead of data normaliza-
tion by taking the natural logarithm (as implemented in
RainNet2020 training), we used a standard linear scal-
ing approach by dividing input data by 400 mm h−1

(which is close to the registered maximum intensity in
the RADKLIM dataset).

Model training, validation, and testing are the same as for
the segmentation models (Sect. 2.3.3) and are described in
Sect. 2.4.

2.3.3 RainNet2024-S

For predicting the exceedance of hourly precipitation thresh-
olds, we use the very same architecture as for RainNet2024
(Sect. 2.3.2). Yet by changing the activation function of the
last linear layer from linear to sigmoid, we set it up as a seg-
mentation task (see further details in Sect. S1.2). Accord-
ingly, we refer to the resulting models as RainNet2024-S.
Strictly speaking, the training for each precipitation thresh-
old results into a different RainNet2024-S model. As thresh-
olds of precipitation in the next hour, we used 5, 10, 15, 20,
25, 30, and 40 mm. The thresholds of 15, 25, and 40 mm cor-
respond to warning levels 2 to 4 in DWD’s warning protocols
(DWD, 2024, in German) and should hence serve as exam-
ples of a user-specific precipitation threshold (note that warn-
ing level 1 does not exist). For RainNet2024-S training, we
used the Jaccard loss function (Rahman and Wang, 2016),
also referred to as Intersection over Union (IoU). Jaccard loss
is a relaxed and differentiable modification of the critical suc-
cess index (CSI), which is a widely used metric in the field
of precipitation nowcasting (Sect. 2.4).

2.3.4 Conventional benchmark models

We used two conventional benchmark models: the trivial
“persistence” benchmark assumes that the precipitation in-
tensities at forecast time just persist over the prediction lead
time (in this case 1 h). Considering its simplicity, though, the

assumption of persistence can turn out as quite skilful. As
a much more competitive benchmark, we selected PySTEPS
(Pulkkinen et al., 2019). PySTEPS is a powerful open-source
software tool that received a lot of attention in the recent
years and is also applied in operational contexts. It applies
optical flow techniques for field tracking and then extrapo-
lates the detected motion into the future. In addition, PyS-
TEPS allows for ensemble nowcasts that also take into ac-
count the development of the rainfall field at different scales.
Here, we used PySTEPS in a straightforward deterministic
way by using the Lucas–Kanade local feature tracking mod-
ule to obtain the velocity field, which is then used to advect
the latest radar image.

2.4 Design of benchmark experiment

The overall workflow of the benchmark experiment is sum-
marized in Fig. 1. For model training and testing, we se-
lected, from the CatRaRE catalogue (Sect.2.2), events be-
tween 2001 and 2020, which were most extreme at a dura-
tion of 6 h or less (this information is part of the catalogue
and is based on an analysis of the weather extremity index;
see Müller and Kaspar, 2014). That way, we created a partic-
ularly challenging benchmark environment, since we focus
our analysis not only on extreme precipitation events, but
specifically on events with a relatively short duration. This
increases the proportion of convective events which are, on
the one hand, specifically hard to predict but, on the other
hand, constitute the kind of events that actually motivate
nowcasting applications in early warning contexts.

Altogether, 19 613 events were selected from CatRaRE.
Using, for each event, a 1 h buffer around the start and
end time together with the spatial bounding box, data cubes
with grid dimensions of 256 km × 256 km were extracted
from the RADKLIM dataset. Stacked together, these data
cubes constituted the data available for training (2001–2015),
validation (2016–2018), and testing (2019–2020). For each
data split and precipitation threshold (5, 10, 15, 20, 25, 30,
40 mm), we evaluated the corresponding CatRaRE events
and created an index that points out the event’s ID and the
specific time step of the data cube when the hourly rainfall is
equal to or exceeds the threshold. For RainNet2024-S train-
ing and validation, we used only data relevant to the particu-
lar threshold exceedance, while for threshold-agnostic Rain-
Net2024, we used the full index as obtained from a threshold
exceedance of 5 mm. All models were tested on the same
data with regard to the particular thresholds.

For training the RainNet2024-S and RainNet2024 mod-
els, we utilized the Adam optimizer with a standard set of
parameters. Both models were trained for 20 epochs. If the
validation loss did not decrease for two consecutive epochs,
we reduced the learning rate by a factor of 0.1 to refine the
optimization procedure. The final models were saved in a for-
mat that preserves their configuration details (architecture)
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Figure 1. The figure outlines the overall experimental setup, in-
cluding the data to select events for training and testing (the
CatRaRE catalogue version v2021.01; Lengfeld et al., 2021b), the
actual radar-based rainfall data (YW product in RADKLIM ver-
sion v2017.002, Winterrath et al., 2018a), and the data splitting for
training, validation, and testing.

and weights, ensuring transferability and reproducibility of
results.

For model testing, we used two different community-
approved verification metrics (both are documented in Ayzel
et al., 2020): (1) the critical success index (CSI) measures the
rate of correctly forecast events relative to all forecasts ex-
cept majority class hits, adjusted for random hits, and (2) the
fractions skill score (FSS) compares forecast and observed
fractions that exceed a threshold for increasingly large neigh-
bourhoods around a pixel and hence provides a measure of
how the skill changes if an increasing level of displacement
error becomes acceptable.

In the testing data, 4.27 % of the grid cells exceeded the
5 mm threshold. This percentage further decreased with in-
creasing threshold values (10 mm: 1.26 %, 15 mm: 0.44 %,
20 mm: 0.19 %, 25 mm: 0.09 %, 30 mm: 0.04 %, 40 mm:
0.01 %). This is a highly challenging prediction task, and
with such low percentages of threshold exceedance, the CSI
will penalize any excessive tendency of a model to score
by means of overprediction (i.e. at the cost of increasing
false alarms). Still, we separately report probability of de-

Figure 2. Skill of the models (in terms of the mean CSI over all test
data) in predicting the exceedance of increasingly high thresholds of
precipitation depth (x axis) that accumulate over a period of 1 h after
forecast time. The vertical black lines represent the DWD warning
levels for hourly precipitation. All shown CSI values are signifi-
cantly different (except for persistence and PySTEPS at a threshold
of 20 mm h−1; see Sect. S3 with Table S3 for details about the boot-
strapping procedure to evaluate significance).

tection (POD) and false alarm rate (FAR) for the different
models and thresholds in Sect. S2.

3 Results and discussion

Figure 2 presents the key results of this study. It shows the
skill of the models in predicting the exceedance of increas-
ingly high thresholds of precipitation depth that accumulated
over a period of 1 h after forecast time. The model skill is
quantified in terms of the critical success index (CSI). Re-
member that the models RainNet2020, RainNet2024, PyS-
TEPS, and persistence predict continuous values of precipi-
tation intensities at 5 min resolution, while the RainNet2024-
S models were separately trained to predict threshold ex-
ceedance.

The first and, maybe, unedifying impression from Fig. 2
is that the predictive skill is moderate at best for all models
and that it strongly deteriorates with increasing precipitation
thresholds (essentially no skill left at a threshold of 40 mm).
Unedifying as it may be, this fact is unsurprising and well
in line with the existing body of literature: high hourly pre-
cipitation depths are typically caused by convective events
which are, in turn, characterized by low predictability in
terms of initiation, motion, and intensity dynamics. By test-
ing the models on such events, we created an exceptionally
challenging benchmark arena.

Leaving this first impression behind, though, we observe
clear differences between the models. For the record, we
can establish that the revision of RainNet2020 towards Rain-
Net2024 caused a substantial boost in model skill across all
precipitation thresholds so that we can now consider Rain-
Net2024 a competitive benchmark: it outperforms the con-
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ventional benchmark models, PySTEPS and persistence, up
to a precipitation depth of 15 mm in 1 h (which is referred to
as “warning level 2” by the DWD). For 20 mm h−1 and more,
both RainNet2024 and PySTEPS fall behind persistence, al-
though it should be noted that the differences are as marginal
as the remaining model skill at these precipitation thresholds.
Additional verification metrics (POD and FAR) are reported
and briefly discussed in Sect. S2.

Based on Fig. 2, we can maintain that the RainNet2024-
S models clearly outperform all competitors across all pre-
cipitation thresholds. The gain in the CSI metric, as com-
pared to the corresponding second best model, is consistently
around 0.06. Given the loss of skill with increasing thresh-
olds, the relative gain in skill substantially increases with pre-
cipitation thresholds.

These results are in line with our hypothesis that making
the training task more specific pays off with a higher predic-
tive skill. One might argue that this result is unsurprising. In
our view, though, it is by no means self-evident that the seg-
mentation models could actually capitalize on a more specific
training task.

Figure 3 extends the view on model skill by showing how
it depends on the size of a spatial neighbourhood window
around any target grid cell. It is well known that, particularly
in convective situations, nowcasting models struggle to pro-
vide skilful forecasts at kilometre resolution. The fractions
skill score (FSS) quantifies the model skill when we relax this
requirement, i.e. when we allow an increasing level of dis-
placement error. Accordingly, Fig. 3 shows that the skill in-
creases with window size for all models. The RainNet2024-S
model family, however, outperforms RainNet2024 and PyS-
TEPS at all window sizes and rainfall thresholds. The perfor-
mance gap (i.e. the FSS difference between RainNet2024-S
and its competitors) even increases with window size in most
of the cases (and never decreases).

Altogether, the RainNet2024-S model family substan-
tially outperforms all competing models at all considered
thresholds, metrics, and neighbourhood window sizes. The
FSS demonstrates an additional dimension along which the
training task for precipitation nowcasts could be relaxed in
case users do not require a kilometre resolution. Although
RainNet2024-S is already superior at all spatial window
sizes, its skill might well be pushed further if directly trained
for a specific spatial resolution or target geometry or, in other
words, if the displacement error acceptable by the user were
directly considered in model training (e.g. see Lin et al.,
2024, regarding the effects of the size of urban areas on pre-
dictive skill).

4 Conclusions

This study was motivated by the fact that DL-based models
for precipitation nowcasting are still challenged by the pre-
diction of heavy precipitation. Our hypothesis was that they

Figure 3. Fractions skill score (FSS) with increasing thresholds and
neighbourhood window sizes for different models.

have difficulties in detecting generalizable patterns in case
they are trained to predict a wide range of precipitation in-
tensities and depths. We further hypothesized that this issue
could be addressed by tailoring the training task and proce-
dure more to target variables that are actually user-relevant.
That way, the training task could be simplified so that the
model may develop additional skill in solving it. We exem-
plified such a simplification by relaxing two requirements:
(i) instead of predicting rainfall intensities in 5 min incre-
ments over the next hour (as typically done in the nowcast-
ing community), we set the target variable directly as the cu-
mulative precipitation depth over the next hour; (ii) instead
of predicting continuous precipitation values, we trained to
predict the exceedance of specific thresholds (exemplified by
DWD warning levels but could take any other value as re-
quired by users).

To demonstrate the validity of our hypothesis, we set up a
benchmark experiment in which we compared a regression-
type DL model (RainNet2024, successor of the original
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RainNet model published by Ayzel et al., 2020) to its
segmentation-type counterparts (RainNet2024-S). The latter
were individually trained to predict the exceedance of 5, 10,
15, 20, 25, 30, and 40 mm of precipitation in the hour af-
ter forecast time. The RainNet2024-S models outperformed
RainNet2024 and the other benchmark models (PySTEPS,
persistence) for all investigated thresholds and verification
metrics. While the superiority of RainNet2024-S may seem
unsurprising, it was by no means self-evident that the seg-
mentation models would actually be able to capitalize on the
more specific training task.

For all models and thresholds, though, the predictive skill
is still moderate to low. This is, however, also a result of
the challenging benchmark environment that was created by
focusing on short-duration heavy rainfall events for train-
ing and testing. Furthermore, we could show a substan-
tial increase in skill for all models (but particularly for
RainNet2024-S) at neighbourhoods larger than the original
kilometre resolution.

We are confident that there are, among the many new DL-
based nowcasting models that were recently proposed, quite
a number of models that would outperform RainNet2024 and
probably also our RainNet2024-S model family. These mod-
els employ advanced architectures, in combination with new
predictive features such as digital elevation models, polari-
metric radar moments, or fields from numerical weather pre-
diction models. At this point, we would like to reiterate that
the aim of our study was not to introduce superior DL archi-
tectures or model structures but to demonstrate how a simpli-
fication of the training task can help to improve model skill
and to boost the usefulness for specific user groups. In our
view, this approach should be systematically explored also
for recently proposed DL models.

There are various conceivable dimensions along which
user preferences might find their way into model training
(e.g. by specifying precipitation thresholds, spatial and tem-
poral resolution, or preferences towards deterministic ver-
sus probabilistic forecasts). Our main message is hence that
model developers and users need to start a dialogue of what
users actually require from a nowcast and how this informa-
tion could be effectively considered in model training.
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https://doi.org/10.5281/zenodo.12547127 (Ayzel, 2024).

Data availability. All data used in this study are openly
available on DWD’s open data server, namely the
radar-based precipitation data reanalysis RADKLIM
(https://doi.org/10.5676/DWD/RADKLIM_YW_V2017.002,
Winterrath et al., 2018a) and the CatRaRE catalogue of radar-based
heavy rainfall events (Lengfeld et al., 2021b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-25-41-2025-supplement.

Author contributions. GA and MH conceptualized the study.
GA carried out the model development and benchmark experiment.
GA and MH prepared the figures, and MH wrote the manuscript
with contributions of GA.

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Financial support. This research has been supported by the Bun-
desministerium für Bildung und Forschung via the project “In-
novative Instrumente zum Management des Urbanen Starkregen-
risikos (InnoMAUS)” (grant no. 02WEE1632A) in the funding pro-
gramme “WaX – Wasserextremereignisse”.

Review statement. This paper was edited by Vassiliki Kotroni and
reviewed by Remko Uijlenhoet and two anonymous referees.

References

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen,
C., and Hickey, J.: Machine Learning for Precipita-
tion Nowcasting from Radar Images, arXiv [preprint],
https://doi.org/10.48550/arXiv.1912.12132, 2019.

Ayzel, G.: The RainNet2024 family of mod-
els for precipitation nowcasting, Zenodo [code],
https://doi.org/10.5281/zenodo.12547127, 2024.

Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0:
a convolutional neural network for radar-based precipi-
tation nowcasting, Geosci. Model Dev., 13, 2631–2644,
https://doi.org/10.5194/gmd-13-2631-2020, 2020.

DWD: Warnkriterien für Starkregen, https://www.dwd.de/DE/
wetter/warnungen_aktuell/kriterien/warnkriterien.html?nn=
508722#doc453962bodyText3 (last access: 2 January 2025),
2024.

Franch, G., Nerini, D., Pendesini, M., Coviello, L., Jurman,
G., and Furlanello, C.: Precipitation Nowcasting with Oro-
graphic Enhanced Stacked Generalization: Improving Deep
Learning Predictions on Extreme Events, Atmosphere, 11, 267,
https://doi.org/10.3390/atmos11030267, 2020.

Germann, U. and Zawadzki, I.: Scale-Dependence of the
Predictability of Precipitation from Continental Radar
Images. Part I: Description of the Methodology, Mon.

Nat. Hazards Earth Syst. Sci., 25, 41–47, 2025 https://doi.org/10.5194/nhess-25-41-2025

https://doi.org/10.5281/zenodo.12547127
https://doi.org/10.5676/DWD/RADKLIM_YW_V2017.002
https://doi.org/10.5194/nhess-25-41-2025-supplement
https://doi.org/10.48550/arXiv.1912.12132
https://doi.org/10.5281/zenodo.12547127
https://doi.org/10.5194/gmd-13-2631-2020
https://www.dwd.de/DE/wetter/warnungen_aktuell/kriterien/warnkriterien.html?nn=508722#doc453962bodyText3
https://www.dwd.de/DE/wetter/warnungen_aktuell/kriterien/warnkriterien.html?nn=508722#doc453962bodyText3
https://www.dwd.de/DE/wetter/warnungen_aktuell/kriterien/warnkriterien.html?nn=508722#doc453962bodyText3
https://doi.org/10.3390/atmos11030267


G. Ayzel and M. Heistermann: AI-based nowcasting should take into account user requirements 47

Weather Rev., 130, 2859–2873, https://doi.org/10.1175/1520-
0493(2002)130<2859:SDOTPO>2.0.CO;2, 2002.

Iakubovskii, P.: Segmentation Models, GitHub [code], https://
github.com/qubvel/segmentation_models (last access: 2 Jan-
uary 2025), 2019.

Imhoff, R. O., Brauer, C. C., Overeem, A., Weerts,
A. H., and Uijlenhoet, R.: Spatial and Temporal Eval-
uation of Radar Rainfall Nowcasting Techniques on
1,533 Events, Water Resour. Res., 56, e2019WR026723,
https://doi.org/10.1029/2019WR026723,2020.

Kim, W., Jeong, C.-H., and Kim, S.: Improvements in deep
learning-based precipitation nowcasting using major atmo-
spheric factors with radar rain rate, Comput. Geosci., 184,
105529, https://doi.org/10.1016/j.cageo.2024.105529, 2024.

Leinonen, J., Hamann, U., Sideris, I. V., and Germann, U.: Thun-
derstorm Nowcasting With Deep Learning: A Multi-Hazard
Data Fusion Model, Geophys. Res. Lett., 50, e2022GL101626,
https://doi.org/10.1029/2022GL101626, 2023.

Lengfeld, K., Walawender, E., Winterrath, T., and Becker, A.:
CatRaRE: A Catalogue of radar-based heavy rainfall events in
Germany derived from 20 years of data, Meteorol. Z., 30, 469–
487, https://doi.org/10.1127/metz/2021/1088, 2021a.

Lengfeld, K., Walawender, E., Winterrath, T., Weigl, E., and
Becker, A.: Heavy precipitation events Version 2021.01 ex-
ceeding DWD warning level 3 for severe weather based
on RADKLIM-RW Version 2017.002, DWD [data set],
https://doi.org/10.5676/DWD/CatRaRE_W3_Eta_v2021.01,
2021b.

Lin, G.-S., Imhoff, R., Schleiss, M., and Uijlenhoet, R.:
Nowcasting of High-Intensity Rainfall for Urban Applica-
tions in the Netherlands, J. Hydrometeorol., 25, 653–672,
https://doi.org/10.1175/JHM-D-23-0194.1, 2024.

Müller, M. and Kaspar, M.: Event-adjusted evaluation of weather
and climate extremes, Nat. Hazards Earth Syst. Sci., 14, 473–
483, https://doi.org/10.5194/nhess-14-473-2014, 2014.

Pulkkinen, S., Nerini, D., Pérez Hortal, A. A., Velasco-
Forero, C., Seed, A., Germann, U., and Foresti, L.: Pys-
teps: an open-source Python library for probabilistic precipi-
tation nowcasting (v1.0), Geosci. Model Dev., 12, 4185–4219,
https://doi.org/10.5194/gmd-12-4185-2019, 2019.

Rahman, M. A. and Wang, Y.: Optimizing Intersection-Over-Union
in Deep Neural Networks for Image Segmentation, in: Advances
in Visual Computing, edited by: Bebis, G., Boyle, R., Parvin, B.,
Koracin, D., Porikli, F., Skaff, S., Entezari, A., Min, J., Iwai, D.,
Sadagic, A., Scheidegger, C., and Isenberg, T., Springer Inter-
national Publishing, Cham, 234–244, ISBN 978-3-319-50835-1,
2016.

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski,
P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge,
S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Si-
monyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas,
A., and Mohamed, S.: Skilful precipitation nowcasting us-
ing deep generative models of radar, Nature, 597, 672–677,
https://doi.org/10.1038/s41586-021-03854-z, 2021.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and
Woo, W.-C.: Convolutional LSTM Network: a machine learn-
ing approach for precipitation nowcasting, in: Proceedings of the
28th International Conference on Neural Information Process-
ing Systems – Volume 1, NIPS’15, MIT Press, Cambridge, MA,
USA, 802–810, ISBN 9781510825024, 2015.

Tran, Q.-K. and Song, S.-k.: Computer Vision in Precipita-
tion Nowcasting: Applying Image Quality Assessment Met-
rics for Training Deep Neural Networks, Atmosphere, 10, 244,
https://doi.org/10.3390/atmos10050244, 2019.

van Nooten, C. C., Schreurs, K., Wijnands, J. S., Leijnse, H.,
Schmeits, M., Whan, K., and Shapovalova, Y.: Improving Precip-
itation Nowcasting for High-Intensity Events Using Deep Gener-
ative Models with Balanced Loss and Temperature Data: A Case
Study in the Netherlands, Artif. Intel. Earth Syst., 2, e230017,
https://doi.org/10.1175/AIES-D-23-0017.1, 2023.

Winterrath, T., Brendel, C., Hafer, M., Junghänel, T.,
Klameth, A., Lengfeld, K., Walawender, E., Weigl, E.,
and Becker, A.: Reprocessed quasi gauge-adjusted radar
data, 5-minute precipitation sums (YW), DWD [data set],
https://doi.org/10.5676/DWD/RADKLIM_YW_V2017.002,
2018a.

Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth,
A., Walawender, E., Weigl, E., and Becker, A.: Erstellung
einer radargestützten hochaufgelösten Niederschlagsklimatolo-
gie für Deutschland zur Auswertung der rezenten Änderungen
des Extremverhaltens von Niederschlag, Freie Universität Berlin,
https://doi.org/10.17169/refubium-25153, 2018b.

Zhang, Y., Long, M., Chen, K., Xing, L., Jin, R., Jordan, M. I., and
Wang, J.: Skilful nowcasting of extreme precipitation with Now-
castNet, Nature, 619, 526–532, https://doi.org/10.1038/s41586-
023-06184-4, 2023.

https://doi.org/10.5194/nhess-25-41-2025 Nat. Hazards Earth Syst. Sci., 25, 41–47, 2025

https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
https://doi.org/10.1029/2019WR026723
https://doi.org/10.1016/j.cageo.2024.105529
https://doi.org/10.1029/2022GL101626
https://doi.org/10.1127/metz/2021/1088
https://doi.org/10.5676/DWD/CatRaRE_W3_Eta_v2021.01
https://doi.org/10.1175/JHM-D-23-0194.1
https://doi.org/10.5194/nhess-14-473-2014
https://doi.org/10.5194/gmd-12-4185-2019
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.3390/atmos10050244
https://doi.org/10.1175/AIES-D-23-0017.1
https://doi.org/10.5676/DWD/RADKLIM_YW_V2017.002
https://doi.org/10.17169/refubium-25153
https://doi.org/10.1038/s41586-023-06184-4
https://doi.org/10.1038/s41586-023-06184-4

	Abstract
	Introduction
	Data and methods
	Precipitation data (RADKLIM)
	Catalogue of heavy rainfall events (CatRaRE)
	Nowcasting models
	RainNet2020
	RainNet2024
	RainNet2024-S
	Conventional benchmark models

	Design of benchmark experiment

	Results and discussion
	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

