Articles | Volume 25, issue 10
https://doi.org/10.5194/nhess-25-3977-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3977-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Review article: Rethinking preparedness for coastal compound flooding: insights from a systematic review
Dina Vanessa Gomez Rave
CORRESPONDING AUTHOR
IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, 390011, Spain
Anna Scolobig
Institute for Environmental Sciences, University of Geneva, Geneva, 1211, Switzerland
Manuel del Jesus
IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, 390011, Spain
Related authors
Manuel del Jesus, Diego Urrea Méndez, and Dina Vanessa Gomez Rave
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-334, https://doi.org/10.5194/hess-2024-334, 2024
Manuscript not accepted for further review
Short summary
Short summary
The research explores how multiple environmental factors, specifically compound events such as climate extremes, interact to amplify risks. By integrating statistical, mathematical, and machine learning techniques, the study aims to provide practical solutions for accurately modeling complex scenarios involving joint return periods. This approach enhances both precision and efficiency, offering a significant improvement over traditional methods for assessing environmental risks.
Diego Urrea Méndez, Manuel del Jesus, and Dina Vanessa Gomez Rave
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-335, https://doi.org/10.5194/hess-2024-335, 2024
Revised manuscript not accepted
Short summary
Short summary
This study explores how heavy rainfall events can interact across different locations, leading to more severe flooding. By using advanced models, we improve the prediction of these complex events, which are becoming more frequent due to climate change. Our approach helps understand how rain patterns vary in time and space, offering better tools for managing water resources and reducing flood risks. This research provides a new way to assess the impact of extreme weather on vulnerable areas.
Manuel del Jesus, Diego Urrea Méndez, and Dina Vanessa Gomez Rave
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-334, https://doi.org/10.5194/hess-2024-334, 2024
Manuscript not accepted for further review
Short summary
Short summary
The research explores how multiple environmental factors, specifically compound events such as climate extremes, interact to amplify risks. By integrating statistical, mathematical, and machine learning techniques, the study aims to provide practical solutions for accurately modeling complex scenarios involving joint return periods. This approach enhances both precision and efficiency, offering a significant improvement over traditional methods for assessing environmental risks.
Diego Urrea Méndez, Manuel del Jesus, and Dina Vanessa Gomez Rave
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-335, https://doi.org/10.5194/hess-2024-335, 2024
Revised manuscript not accepted
Short summary
Short summary
This study explores how heavy rainfall events can interact across different locations, leading to more severe flooding. By using advanced models, we improve the prediction of these complex events, which are becoming more frequent due to climate change. Our approach helps understand how rain patterns vary in time and space, offering better tools for managing water resources and reducing flood risks. This research provides a new way to assess the impact of extreme weather on vulnerable areas.
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Giuliano Di Baldassarre, Elena Mondino, Maria Rusca, Emanuele Del Giudice, Johanna Mård, Elena Ridolfi, Anna Scolobig, and Elena Raffetti
Nat. Hazards Earth Syst. Sci., 21, 3439–3447, https://doi.org/10.5194/nhess-21-3439-2021, https://doi.org/10.5194/nhess-21-3439-2021, 2021
Short summary
Short summary
COVID-19 has affected humankind in an unprecedented way, and it has changed how people perceive multiple risks. In this paper, we compare public risk perceptions in Italy and Sweden in two different phases of the pandemic. We found that people are more worried about risks related to recently experienced events. This finding is in line with the availability heuristic: individuals assess the risk associated with a given hazard based on how easily it comes to their mind.
Elena Mondino, Anna Scolobig, Marco Borga, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2811–2828, https://doi.org/10.5194/nhess-21-2811-2021, https://doi.org/10.5194/nhess-21-2811-2021, 2021
Short summary
Short summary
Survey data collected over time can provide new insights on how different people respond to floods and can be used in models to study the complex coevolution of human–water systems. We present two methods to collect such data, and we compare the respective results. Risk awareness decreases only for women, while preparedness takes different trajectories depending on the damage suffered. These results support a more diverse representation of society in flood risk modelling and risk management.
Philippe Weyrich, Anna Scolobig, Florian Walther, and Anthony Patt
Nat. Hazards Earth Syst. Sci., 20, 2811–2821, https://doi.org/10.5194/nhess-20-2811-2020, https://doi.org/10.5194/nhess-20-2811-2020, 2020
Cited articles
AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H., Papalexiou, S. M., Ragno, E., and Sadegh, M.: Climate Extremes and Compound Hazards in a Warming World, Annu. Rev. Earth Planet. Sci., 48, 519–548, https://doi.org/10.1146/annurev-earth-071719-055228, 2020.
Albulescu, A.-C. and Armaș, I.: An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania, Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, 2024.
Armaș, I., Albulescu, A.-C., and Dobre, D.: Towards managing vulnerability. A new model of systemic vulnerability, Int. J. Disaster Risk Reduct., 121, 105378, https://doi.org/10.1016/j.ijdrr.2025.105378, 2025.
Azad, M. A. K., Haque, C. E., and Choudhury, M.-U.-I.: Social learning-based disaster resilience: collective action in flash flood-prone Sunamganj communities in Bangladesh, Environ. Hazards, 21, 309–333, https://doi.org/10.1080/17477891.2021.1976096, 2022.
Bark, R. H., Martin-Ortega, J., and Waylen, K. A.: Stakeholders' views on natural flood management: Implications for the nature-based solutions paradigm shift?, Environ. Sci. Policy, 115, 91–98, https://doi.org/10.1016/j.envsci.2020.10.018, 2021.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Binh, P. T., Zhu, X., Groeneveld, R. A., and Van Ierland, E. C.: Risk communication, women's participation and flood mitigation in Vietnam: An experimental study, Land Use Policy, 95, 104436, https://doi.org/10.1016/j.landusepol.2019.104436, 2020.
Brett, L., White, C. J., Domeisen, D. I. V., van den Hurk, B., Ward, P., and Zscheischler, J.: Review article: The growth in compound weather and climate event research in the decade since SREX, Nat. Hazards Earth Syst. Sci., 25, 2591–2611, https://doi.org/10.5194/nhess-25-2591-2025, 2025.
Burch, S., Sheppard, S. R. J., Shaw, A., and Flanders, D.: Planning for climate change in a flood-prone community: municipal barriers to policy action and the use of visualizations as decision-support tools, J. Flood Risk Manag., 3, 126–139, https://doi.org/10.1111/j.1753-318X.2010.01062.x, 2010.
Casse, T., Milhøj, A., and Nguyen, T. P.: Vulnerability in north-central Vietnam: do natural hazards matter for everybody?, Nat. Hazards, 79, 2145–2162, https://doi.org/10.1007/s11069-015-1952-y, 2015.
Catto, J. L. and Dowdy, A.: Understanding compound hazards from a weather system perspective, Weather Clim. Extrem., 32, 100313, https://doi.org/10.1016/j.wace.2021.100313, 2021.
Cegan, J. C., Golan, M. S., Joyner, M. D., and Linkov, I.: The importance of compounding threats to hurricane evacuation modelling, Npj Urban Sustain., 2, https://doi.org/10.1038/s42949-021-00045-7, 2022.
Chan, F. K. S., Wang, Z., Chen, J., Lu, X., Nafea, T., Montz, B., Adekola, O., Pezzoli, A., Griffiths, J., Peng, Y., Li, P., and Wang, J.: Selected global flood preparation and response lessons: implications for more resilient Chinese Cities, Nat. Hazards, 118, 1767–1796, https://doi.org/10.1007/s11069-023-06102-x, 2023.
Chan, F. K. S., Lu, X., Li, J., Lai, Y., Luo, M., Chen, Y. D., Wang, D., Li, N., Chen, W.-Q., Zhu, Y.-G., and Chan, H. K.: Compound flood effects, challenges and solutions: Lessons toward climate-resilient Chinese coastal cities, Ocean Coast. Manag., 249, 107015, https://doi.org/10.1016/j.ocecoaman.2023.107015, 2024.
Chang, S. E., Yip, J. Z. K., Conger, T., Oulahen, G., Gray, E., and Marteleira, M.: Explaining communities' adaptation strategies for coastal flood risk: Vulnerability and institutional factors, J. Flood Risk Manag., 13, e12646, https://doi.org/10.1111/jfr3.12646, 2020.
Cheung, W., Houston, D., Schubert, J. E., Basolo, V., Feldman, D., Matthew, R., Sanders, B. F., Karlin, B., Goodrich, K. A., Contreras, S. L., and Luke, A.: Integrating resident digital sketch maps with expert knowledge to assess spatial knowledge of flood risk: A case study of participatory mapping in Newport Beach, California, Appl. Geogr., 74, 56–64, https://doi.org/10.1016/j.apgeog.2016.07.006, 2016.
Coletta, V. R., Pagano, A., Zimmermann, N., Davies, M., Butler, A., Fratino, U., Giordano, R., and Pluchinotta, I.: Socio-hydrological modelling using participatory System Dynamics modelling for enhancing urban flood resilience through Blue-Green Infrastructure, J. Hydrol., 636, 131248, https://doi.org/10.1016/j.jhydrol.2024.131248, 2024.
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Curtis, S., Mukherji, A., Kruse, J., Helgeson, J., Ghosh, A., and Adeniji, N.: Perceptions of risk to compound coastal water events: A case study in eastern North Carolina, USA, Prog. Disaster Sci., 16, 100266, https://doi.org/10.1016/j.pdisas.2022.100266, 2022.
De Boer, J., Botzen, W. J. W., and Terpstra, T.: Flood risk and climate change in the Rotterdam area, The Netherlands: enhancing citizen's climate risk perceptions and prevention responses despite skepticism, Reg. Environ. Change, 16, 1613–1622, https://doi.org/10.1007/s10113-015-0900-4, 2016.
De Koning, K., Filatova, T., Need, A., and Bin, O.: Avoiding or mitigating flooding: Bottom-up drivers of urban resilience to climate change in the USA, Glob. Environ. Change, 59, 101981, https://doi.org/10.1016/j.gloenvcha.2019.101981, 2019.
De Silva, A., Amaratunga, D., and Haigh, R.: Green and Blue Infrastructure as Nature-Based Better Preparedness Solutions for Disaster Risk Reduction: Key Policy Aspects, Sustainability, 14, 16155, https://doi.org/10.3390/su142316155, 2022.
Du, S., Scussolini, P., Ward, P. J., Zhang, M., Wen, J., Wang, L., Koks, E., Diaz-Loaiza, A., Gao, J., Ke, Q., and Aerts, J. C. J. H.: Hard or soft flood adaptation? Advantages of a hybrid strategy for Shanghai, Glob. Environ. Change, 61, 102037, https://doi.org/10.1016/j.gloenvcha.2020.102037, 2020.
Eilander, D., Couasnon, A., Leijnse, T., Ikeuchi, H., Yamazaki, D., Muis, S., Dullaart, J., Haag, A., Winsemius, H. C., and Ward, P. J.: A globally applicable framework for compound flood hazard modeling, Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, 2023.
Eze, E. and Siegmund, A.: Exploring factors of disaster preparedness in UNESCO-designated heritage sites, Geogr. Sustain., 5, 392–404, https://doi.org/10.1016/j.geosus.2024.04.001, 2024.
Faruk, M. O. and Maharjan, K. L.: The Determinants of Farmers' Perceived Flood Risk and Their Flood Adaptation Assessments: A Study in a Char-Land Area of Bangladesh, Sustainability, 15, 13727, https://doi.org/10.3390/su151813727, 2023.
Fox-Rogers, L., Devitt, C., O'Neill, E., Brereton, F., and Clinch, J. P.: Is there really “nothing you can do”? Pathways to enhanced flood-risk preparedness, J. Hydrol., 543, 330–343, https://doi.org/10.1016/j.jhydrol.2016.10.009, 2016.
Freire, P., Tavares, A. O., Sá, L., Oliveira, A., Fortunato, A. B., Dos Santos, P. P., Rilo, A., Gomes, J. L., Rogeiro, J., Pablo, R., and Pinto, P. J.: A local-scale approach to estuarine flood risk management, Nat. Hazards, 84, 1705–1739, https://doi.org/10.1007/s11069-016-2510-y, 2016.
Gerritsen, H.: What happened in 1953? The Big Flood in the Netherlands in retrospect, Philos. Trans. R. Soc. Math. Phys. Eng. Sci., 363, 1271–1291, https://doi.org/10.1098/rsta.2005.1568, 2005.
Girons Lopez, M., Di Baldassarre, G., and Seibert, J.: Impact of social preparedness on flood early warning systems, Water Resour. Res., 53, 522–534, https://doi.org/10.1002/2016WR019387, 2017.
Gomez, D. V., Scolobig, A., and del Jesus, M.: Interactive Figure 7 – rethinking preparedness for coastal compound flooding, Zenodo [data set], https://doi.org/10.5281/zenodo.15848424, 2025.
Green, J., Haigh, I. D., Quinn, N., Neal, J., Wahl, T., Wood, M., Eilander, D., De Ruiter, M., Ward, P., and Camus, P.: Review article: A comprehensive review of compound flooding literature with a focus on coastal and estuarine regions, Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, 2025.
Guo, X., Cheng, J., Yin, C., Li, Q., Chen, R., and Fang, J.: The extraordinary Zhengzhou flood of 7/20, 2021: How extreme weather and human response compounding to the disaster, Cities, 134, 104168, https://doi.org/10.1016/j.cities.2022.104168, 2023.
Heldens, S., Sclocco, A., Dreuning, H., Van Werkhoven, B., Hijma, P., Maassen, J., and Van Nieuwpoort, R. V.: litstudy: A Python package for literature reviews, SoftwareX, 20, 101207, https://doi.org/10.1016/j.softx.2022.101207, 2022.
Hendry, Alistair: Compound Flooding in the UK: Past, Present and Future Co-occurring Extreme Flooding Hazard Sources, PhD thesis, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK, http://eprints.soton.ac.uk/id/eprint/452419 (last access: 6 October 2025), 2021.
Hill, J. E., Harris, C., and Clegg, A.: Methods for using Bing's AI-powered search engine for data extraction for a systematic review, Res. Synth. Methods, 15, 347–353, https://doi.org/10.1002/jrsm.1689, 2024.
Intergovernmental Panel On Climate Change (IPCC): Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed., Cambridge University Press, https://doi.org/10.1017/9781009325844, 2023.
Ioannidis, J. P. A., Klavans, R., and Boyack, K. W.: Thousands of scientists publish a paper every five days, Nature, 561, 167–169, https://doi.org/10.1038/d41586-018-06185-8, 2018.
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, 582 pp., ISBN 978-1-107-02506-6, 2012.
Jeuken, A., Haasnoot, M., Reeder, T., and Ward, P.: Lessons learnt from adaptation planning in four deltas and coastal cities, J. Water Clim. Change, 6, 711–728, https://doi.org/10.2166/wcc.2014.141, 2015.
Johns, R. A., Dixon, B., and Pontes, R.: Tale of two neighbourhoods: biophysical and socio-economic vulnerability to climate change in Pinellas County, Florida, Local Environ., 25, 697–724, https://doi.org/10.1080/13549839.2020.1825356, 2020.
King, B., Yurco, K., Young, K. R., Crews, K. A., Shinn, J. E., and Eisenhart, A. C.: Livelihood Dynamics Across a Variable Flooding Regime, Hum. Ecol., 46, 865–874, https://doi.org/10.1007/s10745-018-0039-2, 2018.
Koks, E. E., Jongman, B., Husby, T. G., and Botzen, W. J. W.: Combining hazard, exposure and social vulnerability to provide lessons for flood risk management, Environ. Sci. Policy, 47, 42–52, https://doi.org/10.1016/j.envsci.2014.10.013, 2015.
Konami, T., Koga, H., and Kawatsura, A.: Role of pre-disaster discussions on preparedness on consensus-making of integrated flood management (IFM) after a flood disaster, based on a case in the Abukuma River Basin, Fukushima, Japan, Int. J. Disaster Risk Reduct., 53, 102012, https://doi.org/10.1016/j.ijdrr.2020.102012, 2021.
Kruczkiewicz, A., Klopp, J., Fisher, J., Mason, S., McClain, S., Sheekh, N. M., Moss, R., Parks, R. M., and Braneon, C.: Compound risks and complex emergencies require new approaches to preparedness, Proc. Natl. Acad. Sci., 118, e2106795118, https://doi.org/10.1073/pnas.2106795118, 2021.
Kuhlicke, C., Madruga De Brito, M., Bartkowski, B., Botzen, W., Doğulu, C., Han, S., Hudson, P., Nuray Karanci, A., Klassert, C. J., Otto, D., Scolobig, A., Moreno Soares, T., and Rufat, S.: Spinning in circles? A systematic review on the role of theory in social vulnerability, resilience and adaptation research, Glob. Environ. Change, 80, 102672, https://doi.org/10.1016/j.gloenvcha.2023.102672, 2023.
Lechowska, E.: Approaches in research on flood risk perception and their importance in flood risk management: a review, Nat. Hazards, 111, 2343–2378, https://doi.org/10.1007/s11069-021-05140-7, 2022.
Lemée, C., Fleury-Bahi, G., and Navarro, O.: Impact of Place Identity, Self-Efficacy and Anxiety State on the Relationship Between Coastal Flooding Risk Perception and the Willingness to Cope, Front. Psychol., 10, 499, https://doi.org/10.3389/fpsyg.2019.00499, 2019.
Lemée, C., Navarro, O., Guillard, M., Krien, N., Chadenas, C., Chauveau, E., Desse, M., Coquet, M., Lamarre, M., and Fleury-Bahi, G.: Impact of risk experience and personal exposure on coastal flooding and coastal erosion risk perception and coping strategies, J. Risk Res., 25, 681–696, https://doi.org/10.1080/13669877.2021.1962952, 2022.
Leonard, M., Westra, S., Phatak, A., Lambert, M., Van Den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound event framework for understanding extreme impacts, WIREs Clim. Change, 5, 113–128, https://doi.org/10.1002/wcc.252, 2014.
Liang, Y., Jiang, C., Ma, L., Liu, L., Chen, W., and Liu, L.: Government support, social capital and adaptation to urban flooding by residents in the Pearl River Delta area, China, Habitat Int., 59, 21–31, https://doi.org/10.1016/j.habitatint.2016.11.008, 2017.
Lieberum, J.-L., Toews, M., Metzendorf, M.-I., Heilmeyer, F., Siemens, W., Haverkamp, C., Böhringer, D., Meerpohl, J. J., and Eisele-Metzger, A.: Large language models for conducting systematic reviews: on the rise, but not yet ready for use – a scoping review, J. Clin. Epidemiol., 181, 111746, https://doi.org/10.1016/j.jclinepi.2025.111746, 2025.
Lopes, C. L., Sousa, M. C., Ribeiro, A., Pereira, H., Pinheiro, J. P., Vaz, L., and Dias, J. M.: Evaluation of future estuarine floods in a sea level rise context, Sci. Rep., 12, 8083, https://doi.org/10.1038/s41598-022-12122-7, 2022.
Lucey, J. T. D. and Gallien, T. W.: Characterizing multivariate coastal flooding events in a semi-arid region: the implications of copula choice, sampling, and infrastructure, Nat. Hazards Earth Syst. Sci., 22, 2145–2167, https://doi.org/10.5194/nhess-22-2145-2022, 2022.
Lwin, K. K., Pal, I., Shrestha, S., and Warnitchai, P.: Assessing social resilience of flood-vulnerable communities in Ayeyarwady Delta, Myanmar, Int. J. Disaster Risk Reduct., 51, 101745, https://doi.org/10.1016/j.ijdrr.2020.101745, 2020.
Maidl, E. and Buchecker, M.: Raising risk preparedness by flood risk communication, Nat. Hazards Earth Syst. Sci., 15, 1577–1595, https://doi.org/10.5194/nhess-15-1577-2015, 2015.
Martinez, G., Armaroli, C., Costas, S., Harley, M. D., and Paolisso, M.: Experiences and results from interdisciplinary collaboration: Utilizing qualitative information to formulate disaster risk reduction measures for coastal regions, Coast. Eng., 134, 62–72, https://doi.org/10.1016/j.coastaleng.2017.09.010, 2018.
Maryati, S., Eraku, S., and Kasim, M.: Perceptions and adaptation strategies of the community against flood risk at the estuary riverbank of Bone River, Gorontalo Province, IOP Conf. Ser. Earth Environ. Sci., 235, 012052, https://doi.org/10.1088/1755-1315/235/1/012052, 2019.
Matczak, P. and Hegger, D.: Improving flood resilience through governance strategies: Gauging the state of the art, WIREs Water, 8, https://doi.org/10.1002/wat2.1532, 2021.
Matos, J. P., Ferreira, F., Mendes, D., and Matos, J. S.: Evaluating Compound Flooding Risks in Coastal Cities under Climate Change – The Maputo Case Study, in Mozambique, Sustainability, 15, 14497, https://doi.org/10.3390/su151914497, 2023.
McElwee, P., Nghiem, T., Le, H., and Vu, H.: Flood vulnerability among rural households in the Red River Delta of Vietnam: implications for future climate change risk and adaptation, Nat. Hazards, 86, 465–492, https://doi.org/10.1007/s11069-016-2701-6, 2017.
Michael, T. O.: Adapting to climate change-induced flooding: insights from women traders in the riverine areas of Nigeria – a qualitative study, Front. Sustain., 5, 1385513, https://doi.org/10.3389/frsus.2024.1385513, 2024.
Mishra, A., Mukherjee, S., Merz, B., Singh, V. P., Wright, D. B., Villarini, G., Paul, S., Kumar, D. N., Khedun, C. P., Niyogi, D., Schumann, G., and Stedinger, J. R.: An Overview of Flood Concepts, Challenges, and Future Directions, J. Hydrol. Eng., 27, 03122001, https://doi.org/10.1061/(ASCE)HE.1943-5584.0002164, 2022.
Modrakowski, L.-Ch., Su, J., and Nielsen, A. B.: The Precautionary Principles of the Potential Risks of Compound Events in Danish Municipalities, Front. Clim., 3, 772629, https://doi.org/10.3389/fclim.2021.772629, 2022.
Mol, J. M., Botzen, W. J. W., Blasch, J. E., and De Moel, H.: Insights into Flood Risk Misperceptions of Homeowners in the Dutch River Delta, Risk Anal., 40, 1450–1468, https://doi.org/10.1111/risa.13479, 2020.
Monteil, C., Foulquier, P., Defossez, S., Péroche, M., and Vinet, F.: Rethinking the share of responsibilities in disaster preparedness to encourage individual preparedness for flash floods in urban areas, Int. J. Disaster Risk Reduct., 67, 102663, https://doi.org/10.1016/j.ijdrr.2021.102663, 2022.
Motsholapheko, M. R., Kgathi, D. L., and Vanderpost, C.: Rural livelihoods and household adaptation to extreme flooding in the Okavango Delta, Botswana, Phys. Chem. Earth Parts ABC, 36, 984–995, https://doi.org/10.1016/j.pce.2011.08.004, 2011.
Motsholapheko, M. R., Kgathi, D. L., and Vanderpost, C.: An assessment of adaptation planning for flood variability in the Okavango Delta, Botswana, Mitig. Adapt. Strateg. Glob. Change, 20, 221–239, https://doi.org/10.1007/s11027-013-9488-5, 2015.
Ngo, C. C., Poortvliet, P. M., and Feindt, P. H.: Drivers of flood and climate change risk perceptions and intention to adapt: an explorative survey in coastal and delta Vietnam, J. Risk Res., 23, 424–446, https://doi.org/10.1080/13669877.2019.1591484, 2020.
Nolet, E.: “Are you prepared?” Representations and management of floods in Lomanikoro, Rewa (Fiji), Disasters, 40, 720–739, https://doi.org/10.1111/disa.12175, 2016.
Nordbeck, R., Seher, W., Grüneis, H., Herrnegger, M., and Junger, L.: Conflicting and complementary policy goals as sectoral integration challenge: an analysis of sectoral interplay in flood risk management, Policy Sci., 56, 595–612, https://doi.org/10.1007/s11077-023-09503-8, 2023.
Oukes, C., Leendertse, W., and Arts, J.: Enhancing the Use of Flood Resilient Spatial Planning in Dutch Water Management, A Study of Barriers and Opportunities in Practice, Plan. Theory Pract., 23, 212–232, https://doi.org/10.1080/14649357.2022.2034921, 2022.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., and Moher, D.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ, n71, https://doi.org/10.1136/bmj.n71, 2021.
Pereira Santos, A., Rodriguez-Lopez, J. M., Chiarel, C., and Scheffran, J.: Unequal Landscapes: Vulnerability Traps in Informal Settlements of the Jacuí River Delta (Brazil), Urban Sci., 6, 76, https://doi.org/10.3390/urbansci6040076, 2022.
Priem, J., Piwowar, H., and Orr, R.: OpenAlex: A fully-open index of scholarly works, authors, venues, institutions, and concepts, arXiv [preprint], https://doi.org/10.48550/arxiv.2205.01833, 2022.
Raaijmakers, R., Krywkow, J., and Van Der Veen, A.: Flood risk perceptions and spatial multi-criteria analysis: an exploratory research for hazard mitigation, Nat. Hazards, 46, 307–322, https://doi.org/10.1007/s11069-007-9189-z, 2008.
Rambonilaza, T., Joalland, O., and Brahic, E.: Landowner's perception of flood risk and preventive actions in estuarine environment: An empirical investigation, J. Environ. Manage., 180, 272–279, https://doi.org/10.1016/j.jenvman.2016.05.037, 2016.
Richmond, L. and Kunkel, K.: Living in the “Blue Zone” of a sea-level rise inundation map: Community perceptions of coastal flooding in King Salmon, California, Clim. Risk Manag., 44, 100596, https://doi.org/10.1016/j.crm.2024.100596, 2024.
Sacchi, S., Faccenda, G., and De Michele, C.: Risk perception and behavioral intentions in facing compound climate-related hazards, iScience, 26, 105787, https://doi.org/10.1016/j.isci.2022.105787, 2023.
Šakić Trogrlić, R. and Hochrainer-Stigler, S.: Navigating multi-hazard risks: building resilience in a systemic risk landscape, Int. Inst. Appl. Syst. Anal., https://iiasa.ac.at/blog/oct-2024/navigating-multi-hazard-risks-building-resilience-in-systemic-risk-landscape (last access: 6 October 2025), 2024.
Šakić Trogrlić, R., van den Homberg, M., Budimir, M., McQuistan, C., Sneddon, A., and Golding, B.: Early warning systems and their role in disaster risk reduction, in: Towards the “perfect” weather warning: Bridging disciplinary gaps through partnership and communication, edited by: Golding, B., Springer International Publishing, Cham, 11–46, https://doi.org/10.1007/978-3-030-98989-7_2, 2022.
Sánchez-García, C., Corvacho-Ganahín, Ó., Santasusagna Riu, A., and Francos, M.: Nature-Based Solutions (NbSs) to Improve Flood Preparedness in Barcelona Metropolitan Area (Northeastern Spain), Hydrology, 11, 213, https://doi.org/10.3390/hydrology11120213, 2024.
Sarmah, T., Ghosh, K., Chatterjee, R., and Shaw, R.: History of Risk Management Approach, in: All-Hazards Approach, edited by: Izumi, T., Abe, M., Fujita, K., and Shaw, R., Springer Nature Singapore, Singapore, 29–41, https://doi.org/10.1007/978-981-97-1860-3_3, 2024.
Scolobig, A., Prior, T., Schröter, D., Jörin, J., and Patt, A.: Towards people-centred approaches for effective disaster risk management: Balancing rhetoric with reality, Int. J. Disaster Risk Reduct., 12, 202–212, https://doi.org/10.1016/j.ijdrr.2015.01.006, 2015.
Serinaldi, F., Lombardo, F., and Kilsby, C. G.: Testing tests before testing data: an untold tale of compound events and binary dependence, Stoch. Environ. Res. Risk Assess., 36, 1373–1395, https://doi.org/10.1007/s00477-022-02190-6, 2022.
Shinn, J. E.: Toward anticipatory adaptation: Transforming social-ecological vulnerabilities in the Okavango Delta, Botswana, Geogr. J., 184, 179–191, https://doi.org/10.1111/geoj.12244, 2018.
Simpson, N. P., Williams, P. A., Mach, K. J., Berrang-Ford, L., Biesbroek, R., Haasnoot, M., Segnon, A. C., Campbell, D., Musah-Surugu, J. I., Joe, E. T., Nunbogu, A. M., Sabour, S., Meyer, A. L. S., Andrews, T. M., Singh, C., Siders, A. R., Lawrence, J., Van Aalst, M., and Trisos, C. H.: Adaptation to compound climate risks: A systematic global stocktake, iScience, 26, 105926, https://doi.org/10.1016/j.isci.2023.105926, 2023.
Slinger, J., Muller, M., and Hendriks, M.: Exploring local knowledge of the flooding risk of the Scheldt Estuary, Water Sci. Technol., 56, 79–86, https://doi.org/10.2166/wst.2007.539, 2007.
Sun, H., Zhang, X., Ruan, X., Jiang, H., and Shou, W.: Mapping Compound Flooding Risks for Urban Resilience in Coastal Zones: A Comprehensive Methodological Review, Remote Sens., 16, 350, https://doi.org/10.3390/rs16020350, 2024.
Thieken, A. H., Samprogna Mohor, G., Kreibich, H., and Müller, M.: Compound inland flood events: different pathways, different impacts and different coping options, Nat. Hazards Earth Syst. Sci., 22, 165–185, https://doi.org/10.5194/nhess-22-165-2022, 2022.
United Nations Office for Disaster Risk Reduction (UNDRR): Sendai Framework for Disaster Risk Reduction 2015–2030, https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 (last access: 6 October 2025), 2015.
United Nations Office for Disaster Risk Reduction (UNDRR): The Sendai Framework Terminology on Disaster Risk Reduction, https://www.undrr.org/drr-glossary/terminology (last access: 6 October 2025), 2017.
Van De Schoot, R., De Bruin, J., Schram, R., Zahedi, P., De Boer, J., Weijdema, F., Kramer, B., Huijts, M., Hoogerwerf, M., Ferdinands, G., Harkema, A., Willemsen, J., Ma, Y., Fang, Q., Hindriks, S., Tummers, L., and Oberski, D. L.: An open source machine learning framework for efficient and transparent systematic reviews, Nat. Mach. Intell., 3, 125–133, https://doi.org/10.1038/s42256-020-00287-7, 2021.
Van Den Hurk, B. J. J. M., White, C. J., Ramos, A. M., Ward, P. J., Martius, O., Olbert, I., Roscoe, K., Goulart, H. M. D., and Zscheischler, J.: Consideration of compound drivers and impacts in the disaster risk reduction cycle, iScience, 26, 106030, https://doi.org/10.1016/j.isci.2023.106030, 2023.
Vanelli, F. M., Kobiyama, M., and de Brito, M. M.: To which extent are socio-hydrology studies truly integrative? The case of natural hazards and disaster research, Hydrol. Earth Syst. Sci., 26, 2301–2317, https://doi.org/10.5194/hess-26-2301-2022, 2022.
Ward, P. J., Daniell, J., Duncan, M., Dunne, A., Hananel, C., Hochrainer-Stigler, S., Tijssen, A., Torresan, S., Ciurean, R., Gill, J. C., Sillmann, J., Couasnon, A., Koks, E., Padrón-Fumero, N., Tatman, S., Tronstad Lund, M., Adesiyun, A., Aerts, J. C. J. H., Alabaster, A., Bulder, B., Campillo Torres, C., Critto, A., Hernández-Martín, R., Machado, M., Mysiak, J., Orth, R., Palomino Antolín, I., Petrescu, E.-C., Reichstein, M., Tiggeloven, T., Van Loon, A. F., Vuong Pham, H., and de Ruiter, M. C.: Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment, Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, 2022.
Watkins, N.: Compound Extremes and Bunched Black (or Grouped Grey) Swans, EGU General Assembly Conference Abstracts, EGU2013-5526, https://meetingorganizer.copernicus.org/EGU2013/EGU2013-5526.pdf (last access: 6 October 2025), 2013.
Weir, A. M., Wilson, T. M., Bebbington, M. S., Campbell-Smart, C., Williams, J. H., and Fairclough, R.: Quantifying systemic vulnerability of interdependent critical infrastructure networks: A case study for volcanic hazards, Int. J. Disaster Risk Reduct., 114, 104997, https://doi.org/10.1016/j.ijdrr.2024.104997, 2024.
Xie, L., Wang, Y., and Li, S.: How government-public collaboration affects individual mitigation responses to flooding: A case study in Yellow River Delta area, China, For. Soc., 7, 184–199, https://doi.org/10.24259/fs.v7i2.22601, 2023.
Xu, H., Ragno, E., Jonkman, S. N., Wang, J., Bricker, J. D., Tian, Z., and Sun, L.: Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai, Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024, 2024.
Xu, K., Zhuang, Y., Bin, L., Wang, C., and Tian, F.: Impact assessment of climate change on compound flooding in a coastal city, J. Hydrol., 617, 129166, https://doi.org/10.1016/j.jhydrol.2023.129166, 2023.
Yankson, P. W. K., Owusu, A. B., Owusu, G., Boakye-Danquah, J., and Tetteh, J. D.: Assessment of coastal communities' vulnerability to floods using indicator-based approach: a case study of Greater Accra Metropolitan Area, Ghana, Nat. Hazards, 89, 661–689, https://doi.org/10.1007/s11069-017-2985-1, 2017.
Yasuhara, K., Komine, H., Yokoki, H., Suzuki, T., Mimura, N., Tamura, M., and Chen, G.: Effects of climate change on coastal disasters: new methodologies and recent results, Sustain. Sci., 6, 219–232, https://doi.org/10.1007/s11625-011-0127-3, 2011.
Yu, Y., You, Q., Zuo, Z., Zhang, Y., Cai, Z., Li, W., Jiang, Z., Ullah, S., Tang, X., Zhang, R., Chen, D., Zhai, P., and Shrestha, S.: Compound climate extremes in China: Trends, causes, and projections, Atmospheric Res., 286, 106675, https://doi.org/10.1016/j.atmosres.2023.106675, 2023.
Zaalberg, R., Midden, C., Meijnders, A., and McCalley, T.: Prevention, Adaptation, and Threat Denial: Flooding Experiences in the Netherlands, Risk Anal., 29, 1759–1778, https://doi.org/10.1111/j.1539-6924.2009.01316.x, 2009.
Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between extreme rainfall and storm surge in the coastal zone, J. Hydrol., 505, 172–187, https://doi.org/10.1016/j.jhydrol.2013.09.054, 2013.
Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., Van Den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Short summary
Flood preparedness – how societies anticipate and act before floods – remains incomplete and reactive. This review examines preparedness in the context of compound flooding, floods induced by multiple interacting factors. The paper argues that effective preparation goes beyond risk analyses, flood maps, and infrastructures; it requires integrated planning, insights into human behaviour, and governance to enable swift and coordinated actions.
Flood preparedness – how societies anticipate and act before floods – remains incomplete and...
Altmetrics
Final-revised paper
Preprint