Articles | Volume 25, issue 10
https://doi.org/10.5194/nhess-25-3827-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3827-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Could seismo-volcanic catalogs be improved or created using weakly supervised approaches with pre-trained systems?
Department of Signal processing, Telematics and Communications, University of Granada, Granada, 18014, Spain
Research Center on Information and Communication Technologies of the University of Granada (CITIC-UGR), Granada, Spain
Carmen Benítez
Department of Signal processing, Telematics and Communications, University of Granada, Granada, 18014, Spain
Research Center on Information and Communication Technologies of the University of Granada (CITIC-UGR), Granada, Spain
Luca D'Auria
Volcanological Institute of the Canary Islands, Tenerife, 38400, Spain
Milad Kowsari
University of Iceland, Faculty of Civil and Environmental Engineering, Reykjavík, 102, Iceland
Jesús Miguel Ibáñez
Instituto Andaluz de Geofísica, University of Granada, Granada, 18071, Spain
Department of Theoretical Physics and the Cosmos, University of Granada, Granada, 18071, Spain
Related authors
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Cited articles
Alasonati, P., Wassermann, J., and Ohrnberger, M.: Signal classification by wavelet-based hidden Markov models: application to seismic signals of volcanic origin, Geophysical Journal International, 165, 452–466, https://doi.org/10.1111/j.1365-246X.2006.02878.x, 2006. a, b
Arango-Galván, C., Martin-Del Pozzo, A. L., Flores-Márquez, E. L., González-Morán, T., Vidal-Amaro, M., and Ruiz-Aguilar, D.: Unraveling the complex structure of Popocatépetl volcano (Central Mexico): new evidence for collapse features and active faulting inferred from geophysical data, Journal of Volcanology and Geothermal Research, 407, 107091, https://doi.org/10.1016/j.jvolgeores.2020.107091, 2020. a, b
Barra, F.: Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico. edited by: Alaniz-Alvarez, S. A. and Nieto-Samaniego, A. F., Geological Society of America, Special Paper 422, 465 pp., Boulder, Colorado, 2007, ISBN 13-978-0-8137-2422-5, Economic Geology, 103, 653–654, https://ui.adsabs.harvard.edu/abs/2008EcGeo.103..653B/abstract (last access: 29 September 2025), 2008. a
Benítez, M. C., Ramírez, J., Segura, J. C., Ibanez, J. M., Almendros, J., García-Yeguas, A., and Cortes, G.: Continuous HMM-based seismic-event classification at Deception Island, Antarctica, IEEE Transactions on Geoscience and Remote Sensing, 45, 138–146, https://doi.org/10.1109/TGRS.2006.882264, 2007. a, b, c
Bhatti, S. M., Khan, M. S., Wuth, J., Huenupan, F., Curilem, M., Franco, L., and Yoma, N. B.: Automatic detection of volcano-seismic events by modeling state and event duration in hidden Markov models, Journal of Volcanology and Geothermal Research, 324, 134–143, https://doi.org/10.1016/j.jvolgeores.2016.01.002, 2016. a, b
Bicego, M., Rossetto, A., Olivieri, M., Londoño-Bonilla, J. M., and Orozco-Alzate, M.: Advanced KNN approaches for explainable seismic-volcanic signal classification, Mathematical Geosciences, 55, 59–80, https://doi.org/10.1007/s11004-022-10026-w, 2023. a, b
Canario, J. P., Mello, R., Curilem, M., Huenupan, F., and Rios, R.: In-depth comparison of deyep artificial neural network architectures on seismic events classification, Journal of Volcanology and Geothermal Research, 401, 106881, https://doi.org/10.1016/j.jvolgeores.2020.106881, 2020. a, b
Carmona, E., Almendros, J., Serrano, I., Stich, D., and Ibáñez, J. M.: Results of seismic monitoring surveys of Deception Island volcano, Antarctica, from 1999–2011, Antarctic Science, 24, 485–499, https://doi.org/10.1017/S0954102012000314, 2012. a, b
Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., Cui, X., Witbrock, M., Hasegawa-Johnson, M. A., and Huang, T. S.: Dilated recurrent neural networks, Advances in Neural Information Processing Systems, 30, https://proceedings.neurips.cc/paper_files/paper/2017/file/32bb90e8976aab5298d5da10fe66f21d-Paper.pdf (last access: 29 September 2025), 2017. a
Chouet, B.: Volcano seismology, Pure and Applied Geophysics, 160, 739–788, 2003. a
Cortés, G., Carniel, R., Lesage, P., Mendoza, M. Á., and Della Lucia, I.: Practical volcano-independent recognition of seismic events: VULCAN. ears project, Frontiers in Earth Science, 8, 616676, https://doi.org/10.3389/feart.2020.616676, 2021. a, b
Curilem, G., Vergara, J., Fuentealba, G., Acuña, G., and Chacón, M.: Classification of seismic signals at Villarrica volcano (Chile) using neural networks and genetic algorithms, Journal of Volcanology and Geothermal Research, 180, 1–8, https://doi.org/10.1016/j.jvolgeores.2008.11.008, 2009. a
Díaz-Moreno, A., Ibáñez, J., De Angelis, S., García-Yeguas, A., Prudencio, J., Morales, J., Tuvè, T., and García, L.: Seismic hydraulic fracture migration originated by successive deep magma pulses: The 2011–2013 seismic series associated to the volcanic activity of El Hierro Island, Journal of Geophysical Research: Solid Earth, 120, 7749–7770, https://doi.org/10.1002/2015JB012249, 2015. a
D'Auria, L., Koulakov, I., Prudencio, J., Cabrera-Pérez, I., Ibáñez, J. M., Barrancos, J., García-Hernández, R., Martínez van Dorth, D., Padilla, G. D., Przeor, M., Ortega, V., Hernández, P., and Peréz, N. M.: Rapid magma ascent beneath La Palma revealed by seismic tomography, Scientific Reports, 12, 17654, https://doi.org/10.1038/s41598-022-21818-9, 2022. a
Farahani, A., Voghoei, S., Rasheed, K., and Arabnia, H. R.: A brief review of domain adaptation, Advances in Data Science and Information Engineering: Proceedings from ICDATA 2020 and IKE 2020, 877–894, https://doi.org/10.1007/978-3-030-71704-9_65, 2021. a
Hibert, C., Provost, F., Malet, J.-P., Maggi, A., Stumpf, A., and Ferrazzini, V.: Automatic identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm, Journal of Volcanology and Geothermal Research, 340, 130–142, https://doi.org/10.1016/j.jvolgeores.2017.06.003, 2017. a
Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural Computation, 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997. a
Ibáñez, J., De Angelis, S., Díaz-Moreno, A., Hernández, P., Alguacil, G., Posadas, A., and Pérez, N.: Insights into the 2011–2012 submarine eruption off the coast of El Hierro (Canary Islands, Spain) from statistical analyses of earthquake activity, Geophysical Journal International, 191, 659–670, https://doi.org/10.1111/j.1365-246X.2012.05609.x, 2012. a
Ibáñez, J. M., Pezzo, E. D., Almendros, J., La Rocca, M., Alguacil, G., Ortiz, R., and García, A.: Seismovolcanic signals at Deception Island volcano, Antarctica: Wave field analysis and source modeling, Journal of Geophysical Research: Solid Earth, 105, 13905–13931, https://doi.org/10.1029/2000JB900124, 2000. a, b, c, d, e, f, g, h
Ibáñez, J. M., Benítez, C., Gutiérrez, L. A., Cortés, G., García-Yeguas, A., and Alguacil, G.: The classification of seismo-volcanic signals using Hidden Markov Models as applied to the Stromboli and Etna volcanoes, Journal of Volcanology and Geothermal Research, 187, 218–226, https://doi.org/10.1016/j.jvolgeores.2009.08.008, 2009. a
Ibáñez, J. M., Díaz-Moreno, A., Prudencio, J., Zandomeneghi, D., Wilcock, W., Barclay, A., Almendros, J., Benítez, C., García-Yeguas, A., and Alguacil, G.: Database of multi-parametric geophysical data from the TOMO-DEC experiment on Deception Island, Antarctica, Scientific Data, 4, 1–18, https://doi.org/10.1038/sdata.2017.20, 2017. a
Köhler, A., Ohrnberger, M., and Scherbaum, F.: Unsupervised pattern recognition in continuous seismic wavefield records using self-organizing maps, Geophysical Journal International, 182, 1619–1630, https://doi.org/10.1111/j.1365-246X.2010.04754.x, 2010. a
Kouw, W. M. and Loog, M.: A review of domain adaptation without target labels, IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 766–785, https://doi.org/10.1109/TPAMI.2019.2945942, 2019. a
Lara, F., Lara-Cueva, R., Larco, J. C., Carrera, E. V., and Leon, R.: A deep learning approach for automatic recognition of seismo-volcanic events at the Cotopaxi volcano, Journal of Volcanology and Geothermal Research, 409, 107142, https://doi.org/10.1016/j.jvolgeores.2020.107142, 2021. a
Lea, C., Flynn, M. D., Vidal, R., Reiter, A., and Hager, G. D.: Temporal convolutional networks for action segmentation and detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 156–165, https://doi.org/10.1109/CVPR.2017.74, 2017. a
Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., and Zhang, G.: Learning under concept drift: A review, IEEE Transactions on Knowledge and Data Engineering, 31, 2346–2363, https://doi.org/10.1109/TKDE.2018.2876857, 2018. a
Malfante, M., Dalla Mura, M., Métaxian, J.-P., Mars, J. I., Macedo, O., and Inza, A.: Machine learning for volcano-seismic signals: Challenges and perspectives, IEEE Signal Processing Magazine, 35, 20–30, https://doi.org/10.1109/MSP.2017.2779166, 2018. a
Manuel Marcelino Titos Luzon: mmtitos/ML-DIGIVOLCAN: ML-DIGIVOLCAN V1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.17235276, 2025. a
Martí, J., Geyer, A., and Aguirre-Diaz, G.: Origin and evolution of the Deception Island caldera (South Shetland Islands, Antarctica), Bull. Volcanol., 75, 732, https://doi.org/10.1007/s00445-013-0732-3, 2013. a
Martínez, V. L., Titos, M., Benítez, C., Badi, G., Casas, J. A., Craig, V. H. O., and Ibáñez, J. M.: Advanced signal recognition methods applied to seismo-volcanic events from Planchon Peteroa Volcanic Complex: Deep Neural Network classifier, Journal of South American Earth Sciences, 107, 103115, https://doi.org/10.1016/j.jsames.2020.103115, 2021. a
Martınez-Arévalo, C., Bianco, F., Ibáñez, J. M., and Del Pezzo, E.: Shallow seismic attenuation and shear-wave splitting in the short period range of Deception Island volcano (Antarctica), Journal of Volcanology and Geothermal Research, 128, 89–113, https://doi.org/10.1016/S0377-0273(03)00248-8, 2003. a
McInnes, L., Healy, J., and Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction, arXiv preprint arXiv:1802.03426, https://doi.org/10.48550/arXiv.1802.03426, 2018. a
McNutt, S. R. and Roman, D. C.: Volcanic seismicity, in: The encyclopedia of volcanoes, Elsevier, 1011–1034, https://doi.org/10.1007/PL00012556, 2015. a, b
Minakami, T.: Prediction of volcanic eruptions, in: Developments in Solid Earth Geophysics, vol. 6, Elsevier, 313–333, https://doi.org/10.1016/B978-0-444-41141-9.50020-6, 1974. a
Ohrnberger, M.: Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, Java, Indonesia, PhD thesis, Univ., Diss., Potsdam, 2001. a
Palmer, J.: The new science of volcanoes harnesses AI, satellites and gas sensors to forecast eruptions, Nature, 581, 256–260, https://doi.org/10.1038/d41586-020-01445-y, 2020. a
Rodriguez, A. B., Benitez, C., Zuccarello, L., De Angelis, S., and Ibanez, J. M.: Bayesian monitoring of seismo-volcanic dynamics, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14, https://doi.org/10.1109/TGRS.2021.3076012, 2021. a, b, c
Rodríguez, Á. B., Balestriero, R., De Angelis, S., Benítez, M. C., Zuccarello, L., Baraniuk, R., Ibanez, J. M., and de Hoop, M. V.: Recurrent scattering network detects metastable behavior in polyphonic seismo-volcanic signals for volcano eruption forecasting, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–23, https://doi.org/10.1109/TGRS.2021.3134198, 2021. a
Scarpetta, S., Giudicepietro, F., Ezin, E. C., Petrosino, S., Del Pezzo, E., Martini, M., and Marinaro, M.: Automatic classification of seismic signals at Mt. Vesuvius volcano, Italy, using neural networks, Bulletin of the Seismological Society of America, 95, 185–196, https://doi.org/10.1785/0120030075, 2005. a
Schmidhuber, J.: Deep learning in neural networks: An overview, Neural Networks, 61, 85–117, https://doi.org/10.1016/j.neunet.2014.09.003, 2015. a
Siebe, C., Salinas, S., Arana-Salinas, L., Macías, J. L., Gardner, J., and Bonasia, R.: The~ 23,500 y 14C BP White Pumice Plinian eruption and associated debris avalanche and Tochimilco lava flow of Popocatépetl volcano, México, Journal of Volcanology and Geothermal Research, 333, 66–95, https://doi.org/10.1016/j.jvolgeores.2016.11.012, 2017. a
Smellie, J. L.: Recent observations on the volcanic history of Deception Island, South Shetland Islands, British Antarctic Survey Bulletin, 83–85, https://www.bas.ac.uk/data/our-data/publication/recent-observations-on-the-volcanic-history-of-deception-island-south/ (last access: 29 September 2025), 1988. a
Sparks, R. S. J.: Forecasting volcanic eruptions, Earth and Planetary Science Letters, 210, 1–15, https://doi.org/10.1016/S0012-821X(03)00124-9, 2003. a
Titos, M., Bueno, A., Garcia, L., and Benitez, C.: A deep neural networks approach to automatic recognition systems for volcano-seismic events, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1533–1544, https://doi.org/10.1109/JSTARS.2018.2803198, 2018a. a, b, c
Titos, M., Bueno, A., García, L., Benítez, M. C., and Ibañez, J.: Detection and classification of continuous volcano-seismic signals with recurrent neural networks, IEEE Transactions on Geoscience and Remote Sensing, 57, 1936–1948, https://doi.org/10.1109/TGRS.2018.2870202, 2018b. a, b, c, d, e, f, g, h
Titos, M., Bueno, A., García, L., Benítez, C., and Segura, J. C.: Classification of isolated volcano-seismic events based on inductive transfer learning, IEEE Geoscience and Remote Sensing Letters, 17, 869–873, https://doi.org/10.1109/LGRS.2019.2931063, 2019. a, b
Titos, M., Garcia, L., Kowsari, M., and Benitez, C.: Toward knowledge extraction in classification of volcano-seismic events: Visualizing hidden states in recurrent neural networks, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 2311–2325, https://doi.org/10.1109/JSTARS.2022.3155967, 2022. a, b, c, d
Titos, M., Gutiérrez, L., Benítez, C., Rey Devesa, P., Koulakov, I., and Ibáñez, J. M.: Multi-station volcano tectonic earthquake monitoring based on transfer learning, Frontiers in Earth Science, 11, 1204832, https://doi.org/10.3389/feart.2023.1204832, 2023. a
Titos, M., Carthy, J., García, L., Barnie, T., and Benítez, C.: Dilated-RNNs: A Deep Approach for Continuous Volcano-Seismic Events Recognition, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 11857–11865, https://doi.org/10.1109/JSTARS.2024.3421921, 2024. a, b, c, d, e
Weiss, K., Khoshgoftaar, T. M., and Wang, D.: A survey of transfer learning, Journal of Big Data, 3, 9, https://doi.org/10.1186/s40537-016-0043-6, 2016. a, b
Witze, A.: AI could help to predict eruptions, Nature, 567, 156–157, https://doi.org/10.1038/d41586-019-00752-3, 2019. a
Zandomeneghi, D., Barclay, A., Almendros, J., Ibañez Godoy, J. M., Wilcock, W. S., and Ben-Zvi, T.: Crustal structure of Deception Island volcano from P wave seismic tomography: Tectonic and volcanic implications, Journal of Geophysical Research: Solid Earth, 114, https://doi.org/10.1029/2008JB006119, 2009. a
Zhou, Z.-H.: A brief introduction to weakly supervised learning, National Science Review, 5, 44–53, https://doi.org/10.1093/nsr/nwx105, 2018. a
Zhu, W. and Beroza, G. C.: PhaseNet: a deep-neural-network-based seismic arrival-time picking method, Geophysical Journal International, 216, 261–273, https://doi.org/10.1093/gji/ggy423, 2019. a
Short summary
Developing seismo-volcanic monitoring tools is crucial for volcanic observatories. Our study reviews current methods using transfer learning techniques and finds that while these systems identify nearly 90 % of seismic events, they miss other important volcanic data due to the catalog-learning bias. We propose a weakly supervised technique to reduce bias and uncover new volcanic information. This method can improve existing databases and efficiently create new ones using machine learning.
Developing seismo-volcanic monitoring tools is crucial for volcanic observatories. Our study...
Altmetrics
Final-revised paper
Preprint