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Abstract. Real-time monitoring of volcano-seismic signals
is complex. Typically, automatic systems are built by learn-
ing from large seismic catalogs, where each instance has a la-
bel indicating its source mechanism. However, building com-
plete catalogs is difficult owing to the high cost of data la-
beling. Current machine learning techniques have achieved
great success in constructing predictive monitoring tools;
nevertheless, catalog-based learning can introduce bias into
the system. Here, we show that while monitoring systems
trained on annotated data from seismic catalogs achieve per-
formance of up to 90 % in event recognition, other infor-
mation describing volcanic behavior is not considered but is
either discarded. We found that weakly supervised learning
approaches have the remarkable capability of simultaneously
identifying unannotated seismic traces in the catalog and cor-
recting misannotated seismic traces. When a system trained
on a master dataset and catalog from Deception Island Vol-
cano (Antarctica) is used as a pseudo-labeler in other vol-
canic contexts, such as Popocatépetl (Mexico) and Tajogaite
(Canary Islands) volcanoes, within the framework of weakly
supervised learning, it can uncover and update valuable in-
formation related to volcanic dynamics. Our results offer the
potential for developing more sophisticated semi-supervised
models to increase the reliability of monitoring tools. For ex-
ample, the use of more sophisticated pseudo-labeling tech-
niques involving data from several catalogs could be tested.
Ultimately, there is potential to develop universal monitoring

tools that are able to consider unforeseen temporal changes
in monitored signals at any volcano.

1 Introduction

Understanding the dynamics of active volcanoes and, even
more so, carrying out early warning protocols for volcanic
eruptions require multiparametric observations focused on
accomplishing accurate and effective monitoring (Sparks,
2003). The objective of identifying precursors that warn of
a possible volcanic eruption involves the analysis of long
temporal series of data, characterizing and relating them to
source models associated with the internal dynamics of the
volcano (Witze, 2019; Palmer, 2020). Currently, the avail-
ability of multiparametric long-time data series, such as seis-
mology, deformation, measurements of volcanic gases and
fluids, space imaging, and other processes, is limited to a
few volcanoes around the world. For this reason, volcanic
seismology continues to be the backbone of the analysis,
both in real time and in data from previous eruptive episodes
(Chouet, 2003; McNutt and Roman, 2015). This is because
the installation and acquisition of seismic data continue to be
the most efficient procedure for volcanic monitoring, and the
existence of numerous open-access repositories allows the
scientific community to review consolidated databases to un-
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derstand what occurred in the past for modeling future erup-
tions.

In volcanic seismology, the presence of various seismic
signals – such as volcano-tectonic earthquake (VTE), long-
period event (LPE), ultra-long-period (ULP) event, hybrid
(HYB) event, explosion (EXP), and volcanic tremor (TR) –
indicates the existence of multiple seismic sources, which
can sometimes operate simultaneously and must be consid-
ered. Thus, models of brittle rock fracturing, conduit reso-
nance, pressure transients in fluids, bubbles, cracking in vis-
coelastic media, elastic energy transfer by fluid flow, debris
flows, and many others are used (Ibáñez et al., 2000; McNutt
and Roman, 2015; Minakami, 1974). Table 1 summarizes the
source models and the classification of events for different
authors. The complexity of seismic sources leads to varying
interpretations of volcanic dynamics, influenced by the pre-
dominant signal type and its spatio-temporal evolution. Com-
prehending the underlying physics of eruptions, and there-
fore why they occur, cannot be fully explained through signal
processing alone. It requires knowledge of the frequency of
occurrence and the types of seismic events that occur. This
understanding is primarily achieved through the construction
of seismic catalogs, which are then analyzed to infer volcanic
dynamics during future crises. However, building complete
catalogs presents significant challenges due to factors such
as noisy signals, human error, intense seismic activity, and
overlapping signals, all of which complicate the identifica-
tion and classification of seismic events.

Historically, seismic catalogs have been manually created
by experts, with the classification of seismic signals based
on time-frequency characteristics and wave field properties.
The process relies heavily on expert knowledge, which, while
essential, can introduce potential bias. These biases can arise
from factors like the scientific knowledge at the time of label-
ing, intense seismic activity where only the strongest events
are focused on due to time limits, or cases where overlap-
ping signals are grouped as one event, mixing different types
of signals under a single label. This issue was notably ob-
served during the 2011 eruption on the island of El Hierro,
where continuous VTE events resulted in a high-frequency
signal resembling volcanic tremor due to the overlap of hun-
dreds of VTEs per hour (Ibáñez et al., 2012; Díaz-Moreno
et al., 2015). Despite the efforts made, such challenges re-
main widespread across seismic databases worldwide, high-
lighting the need for improved methods of signal classifica-
tion and event labeling.

The introduction of automatic recognition procedures for
earthquake-volcanic signals almost two decades ago (e.g.,
Ohrnberger (2001); Scarpetta et al. (2005); Alasonati et al.
(2006); Benítez et al. (2007); Ibáñez et al. (2009); Curilem
et al. (2009); Bhatti et al. (2016); Canario et al. (2020);
Cortés et al. (2021); Rodriguez et al. (2021); Rodríguez et al.
(2021); Martínez et al. (2021); Titos et al. (2018a, b, 2023);
Bicego et al. (2023)) has made the process of identifying and
characterizing signals more efficient, faster, and comprehen-

sive, allowing progress in both building robust catalogs and
real-time monitoring of active volcanoes. However, the re-
sults obtained have begun to reveal potential problems: mon-
itoring systems lose effectiveness when recognizing events
over time, which biases the construction of seismic catalogs
and, in turn, affects experts’ ability to analyze and understand
volcanic dynamics (Titos et al., 2018b, 2024).

These outcomes raise open questions that should be effi-
ciently addressed to adequately comprehend and solve such
problems: (a) Why do monitoring systems lose effective-
ness? Could it be because volcanoes do not behave uniformly
over time, displaying different unrest patterns from eruption
to eruption and from one volcano to another? (b) Could it
be that automatic monitoring systems show weakness due to
seismic catalog-induced bias in their development? That is,
is the database used during the development process prop-
erly labeled? Are the signal names or labels accurately iden-
tified? Could upgrades and updates to seismic instrumen-
tation over the decades complicate the review of historical
seismicity, given that the digital signals may not share a con-
sistent framework? (c) Finally, how do seismic attenuation
processes or source radiation patterns influence changes in
the appearance of a signal, thus confounding the associated
source models? How could background seismic noise affect
the identification of seismic events?

For the last open question, it is well-known that seismic
waves carry information not only about volcanic activity but
also about the intricate internal structure of the volcanic ed-
ifice, which influences the seismic wave field and compli-
cates its interpretation (Titos et al., 2018b). At many volca-
noes, rugged and pronounced topography introduces addi-
tional complexities, such as wave interference, high attenu-
ation, and path alterations for direct seismic waves. Conse-
quently, even for the same volcano and the same originat-
ing seismic source, recordings vary in shape and wave field
characteristics depending on seismometer placement. Fur-
thermore, even at the same seismic station, similar sources
may produce different signal patterns due to variations in the
source’s energy radiation. These effects are broadly catego-
rized into path-related (attenuation) and source-related (en-
ergy and radiation pattern) influences (Titos et al., 2018b).
As a potential solution, experts propose using a network of
multiple seismic stations for signal recognition and defining
rules or conditions to identify signals simultaneously.

The first and second open questions may potentially be
more difficult to resolve. Volcanic behavior is highly vari-
able, exhibiting different signs of unrest between eruptions
and between volcanoes. Environmental and geological fac-
tors, such as geology, magma composition, and the volcanic
edifice, influence how seismic signals propagate and are rec-
ognized. This variability poses a challenge for automatic
recognition systems, which are typically built by learning
from large seismic catalogs, where each instance has a la-
bel indicating its source mechanism. The more diverse the
data, the better the system’s adaptability. However, construct-
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Table 1. Representative volcano-seismic scientific labels and associated source models proposed by Ibáñez et al. (2000) and followed in this
work. Other labels and associated source models proposed by different authors are included for comparison.

Ibáñez et al. (2000) McNutt and Roman (2015) Minakami (1974) Frequency [Hz] Example source models

Volcano Tectonic Earthq. (VTE)
Tectonic Short Period Earthq.

High Frequency (HF) A-Type > 5 Shear failure or slip
along faults, usually
as swarms within the
volcanic edifice

Long Period Event (LPE)
Volcanic Long Coda Event
Tornillo

Low Frequency (LF) B-Type 1–5 Fluid driven cracks,
pressurization processes
(bubbles), and attenuated
waves

Hybrid Event (HYB)
Medium Frequency

Mixed Frequency (MX) – 1–12 Mixture of processes
(e.g., cracks and fluids,
frictional melting)

Explosion (EXP)
Volcanic Explosion

Explosion Quake (EXP) Explosion Quake > 10 Accelerated emissions
of gas and debris to the
atmosphere

Volcanic Tremor (TRE)
Harmonic Tremor

Volcanic Tremor (TRE) Volcanic Tremor 1–12 Pressure disturbance,
gas emissions, debris
processes, and pyroclastic
flows

ing complete catalogs is challenging because of the high
cost of data labeling, which often leads to inaccuracies or
mislabeling in seismic catalogs. Such inaccurate or misla-
beled seismic catalogs could bias the effectiveness of the sys-
tems, meaning that their performance may be influenced not
only by changes in volcanic dynamics but also by inadequate
modeling of those dynamics.

In this work, we propose a comprehensive analysis of seis-
mic catalog-induced bias when developing automatic recog-
nition systems. We evaluated the ability of several monitor-
ing systems trained using a master seismic catalog from De-
ception Island volcano (referred to as the “Master database”)
to adapt to new volcanic environments from Popocatépetl
(Mexico) and Tajogaite (Canary Islands, Spain) volcanoes.
We hypothesize that, often, automatic recognition systems
are not capable of modeling the spatio-temporal evolution
of seismic events. Instead, they learn to recognize the prob-
abilistic pattern-matching observed in their training data.
In other words, rather than simply learning to characterize
volcanic dynamics by describing the latent physical model,
catalog-induced learning biases the system’s performance as
it learns the description of the data annotated in the catalog,
potentially discarding useful data that describes volcanic dy-
namics. Therefore, we conclude that using systems trained
with a master database (complete and large) as a pseudo-
labeler could help create less biased catalogs from which the
systems can be retrained and adapted to different volcanic
environments.

To test this hypothesis, we conducted three independent
experiments using three different automatic monitoring sys-
tems.

– In the first experiment, we aimed to demonstrate that
any state-of-the-art machine learning model can effec-
tively learn from the information in a seismic catalog.
To achieve this, we built monitoring systems within
the transfer learning framework (Weiss et al., 2016).
In this approach, systems previously trained on data
from Deception Island volcano were retrained using a
seismic catalog from the Popocatépetl volcano. Once
trained, the models were evaluated for performance and
thoroughly analyzed. The results highlighted a key is-
sue: when the catalog is not carefully constructed and
events are inaccurately annotated – such as when multi-
ple events are combined under a single label – the sys-
tems fail to recognize each individual event. This results
in the loss of valuable data that could describe volcanic
dynamics.

– In the second experiment, rather than retraining pre-
existing models using a catalog, we used the pre-trained
systems as a foundational seed (pseudo-labeler) to label
the new data and construct new catalogs. Using these
newly generated catalogs as training data, we then re-
trained the systems. The results showed that signifi-
cantly more events were recognized than in the original
catalog, offering a new perspective on volcanic dynam-
ics.

– Finally, we conducted a third experiment using data
from the 2021 eruption of Tajogaite volcano, for which
only an earthquake catalog is available. This experiment
demonstrates that automatic seismo-volcanic monitor-
ing systems, based on weakly supervised techniques,
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Table 2. MASTER-DEC summary (Benítez et al., 2007). The table reflects statistics on the duration of the signals and the number of events
for each class. Seismic categories: background seismic noise (BGN), volcanic tremor (TRE), long period event (LPE), volcano-tectonic
earthquake (VTE), and hybrid event (HYB). Duration is in seconds (s).

Class Events Min (s) Mean (s) Max (s) Total (s) SD (s)

BGN 1222 0.3 15.4 128.2 18 835.2 11.8
TRE 77 10.4 93.3 150.0 7184.2 43.63
HYB 54 7.8 29.4 136.8 1587.1 18.9
VTE 75 5.4 19.1 89.9 1434.5 12.88
LPE 765 2.4 9.8 30.7 7469.8 3.81

can provide an effective alternative for both construct-
ing and revising seismic catalogs.

The rest of this paper is organized as follows. Section 2 de-
scribes the seismic dataset and signals used in this study. Sec-
tion 3 provides the experimental framework and describes
how weakly supervised techniques can be used for devel-
oping automatic volcano-seismic recognition systems. Sec-
tions 4 and 5 present the results and discussion. Section 6
concludes this paper.

2 Seismic data and catalogs

This study will use three datasets from three volcanoes of dif-
ferent natures: Deception Island (Antarctica), Popocatépetl
(Mexico), and Tajogaite (Canary Islands, Spain). Due to
the extensive expertise and in-depth knowledge our research
group has on Deception Island volcano, which has provided
a comprehensive understanding of its structure and dynamics
through numerous campaigns conducted since 1994 (Ibáñez
et al., 2000; Martınez-Arévalo et al., 2003; Zandomeneghi
et al., 2009; Carmona et al., 2012; Ibáñez et al., 2017), we
will consider the dataset associated with this volcano as the
reference or “master” dataset. Therefore, to corroborate the
performance of the weakly supervised approach proposed
in this work, we will use the Popocatépetl and Tajogaite
databases as benchmarks.

2.1 Deception Island volcano

Deception Island (62°59′ S, 60°41′W) is a horseshoe-shaped
volcanic island that emerged during the Quaternary period.
It is located within a marginal basin-spreading center of
the Bransfield Strait, where the South Shetland Islands and
the Antarctic Peninsula are separating (Smellie, 1988; Martí
et al., 2013; Carmona et al., 2012). The Deception Island
dataset (hereafter referred to as MASTER-DEC) was cre-
ated using seismic data collected during the 1994–1995 cam-
paign organized by the Andalusian Institute of Geophysics
(IAG) with a short-period array of eight channels. The ar-
ray consisted of a three-component Mark L4C seismometer
with a lower frequency band of 1 Hz and five Mark L25 sen-
sors with a vertical component frequency of 4.5 Hz, electron-

ically extended to 1 Hz. After analyzing the eight channels,
the one with the highest signal-to-noise ratio (SNR) was se-
lected (Ibáñez et al., 2000). The data were sampled at a fre-
quency of 100 Hz. Since this sampling frequency allows for
the analysis of frequencies up to 50 Hz and our parameteriza-
tion workflow primarily operates within the 1–20 Hz range,
the data were filtered within this range. This filtering mini-
mizes the influence of the sensors used for signal recording
and ensures the comparability of the data recorded by differ-
ent sensors over various time periods or at different volca-
noes (it does not fully eliminate variations related to the tem-
poral evolution of the volcanic system nor those stemming
from differences in volcanic processes or path properties be-
tween the source and the sensor).

By integrating our understanding of the structural, source,
and dynamic models of Deception Island volcano with ad-
vancements in signal processing and machine learning (ML),
MASTER-DEC has played a crucial role in the development
of automatic seismo-volcanic recognition systems. It has also
served as the foundation for studies involving hidden Markov
models, artificial neural networks, parameter reduction algo-
rithms, and more (e.g., Rodriguez et al. (2021); Titos et al.
(2018a, b, 2019, 2022); Cortés et al. (2021). Therefore, we
can confidently assert that this database is both highly reli-
able and ideally suited for our intended purpose. While it is
true that not all types of signals are represented in MASTER-
DEC – especially those associated with ongoing eruptive
processes – its primary objective aligns with our application,
which focuses on understanding pre-eruptive processes (set
of geological, geophysical, and geochemical phenomena oc-
curring before an eruption).

For the current study, we extracted a subset of data, con-
sisting of 2193 seismic events. These data were categorized
into five classes, which align with the volcano-seismic sci-
entific labels and the accompanying source models proposed
by Ibáñez et al. (2000) (Table 1). Table 2 presents a detailed
summary of the seismic events and their distribution. Fig-
ure 1 depicts an example of each type of event corresponding
to the prototypes in the database. Figure 2 illustrates the Uni-
form Manifold Approximation and Projection (UMAP) rep-
resentation (McInnes et al., 2018), showing the distribution
of the five MASTER-DEC event types within the feature rep-
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Figure 1. Amplitude and spectrograms of the main four prototypes of volcano-seismic events recorded at Deception Island volcano. (a) Long
period event (LPE), (b) volcano-tectonic earthquake (VTE), (c) volcanic tremor (TRE), and (d) hybrid event (HYB).

resentation space. The representation space aligns with a log
frequency scale filter bank, which captures the energy dis-
tribution of each event across various frequency bands. For
a more detailed explanation of how the workflow constructs
the feature vectors, please review Titos et al. (2024). This
visualization highlights how different seismic events occupy
unique but sometimes overlapping regions, revealing poten-
tial challenges in distinguishing between event categories.
The projection provides an intuitive view of the clustering
tendencies and the proximity of events with shared charac-
teristics, underscoring the inherent variability and possible
misclassification risk in automatic seismic event recognition
systems even in thoroughly analyzed and refined datasets.

2.2 Popocatépetl volcano

Popocatépetl volcano (19°1′ N, 98°37′W) is placed within
a different geodynamic framework and exhibits a different
eruptive style compared to Deception Island: a subduction
setting in contrast to a rift environment. Popocatépetl is a
large dacitic–andesitic stratovolcano covering > 500 km2 of
the eastern Trans-Mexican Volcanic Belt (Barra, 2008; Siebe
et al., 2017). It is surrounded by a densely populated area
with around 25 million inhabitants (Arango-Galván et al.,

2020). The volcano is highly active, with the current ac-
tive period beginning in December 1994 (Arango-Galván
et al., 2020). The dataset used in this study (hereinafter
called POPO2002) was collected during a seismic experi-
ment conducted between November and December 2002, us-
ing short-period seismic stations. There is no detailed in-
formation regarding the type or specifications of the sen-
sors used to record the seismic signals. Data labeling was
manually performed by a group of geophysicists with ex-
tensive knowledge and experience of the volcano’s dynam-
ics. It consists of 4883 events, divided into similar classes as
the MASTER-DEC catalog (again aligning with the volcano-
seismic scientific labels and accompanying source models
proposed by Ibáñez et al. (2000)). Additionally, the catalog
includes noisy events (labeled as GAR) (2739 events), and
due to Popocatépetl’s activity, there is a category for explo-
sion (EXP). Along with the event catalog, we have continu-
ous seismograms from this period that will be used for seg-
mentation and identification processes. Table 3 summarizes
the POPO2002 dataset. With the aim of minimizing the in-
fluence of the sensors used for signal recording and ensuring
data comparability, the signals were first filtered to match the
frequency range of MASTER-DEC (1–50 Hz), followed by
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Figure 2. Uniform Manifold Approximation and Projection (UMAP) representation obtained for the input vector forming the original data
of the MASTER-DEC dataset. Different seismic categories (e.g., BGN-TRE or VTE-LPE) may have elements located in overlapping areas
of the representation space, where they share similar projected features.

Table 3. POPO2002 dataset. The table reflects statistics on the duration of the signals and the number of events for each class. Seismic
categories: explosion (EXP), garbage (GAR), hybrid event (HYB), long period event (LPE), volcano-tectonic earthquake (VTE), background
seismic noise (BGN), and volcanic tremor (TRE). Duration is in seconds (s).

Class n Events Min (s) Max (s) Total (s) Mean (s) SD (s)

BGN 340 0.63 5048.09 311 359.63 915.76 995.18
TRE 273 10.14 357.17 8798.0 97 506.93 880.23
HYB 1 32.63 32.63 32.63 32.63 0.0
VTE 371 6.33 1202.7 25 363.44 66.82 94.40
LPE 1155 8.95 1227.99 72 866.73 63.09 43.88
EXP 4 76.82 240.59 551.86 137.97 61.52
GAR 2739 0.78 14 228.95 2 747 967.0 1003.27 1705.2

a subsampling process to adjust the sampling frequency ac-
cordingly.

2.3 Tajogaite volcano

Tajogaite volcano (28°40′ N, 17°52′ E) is located on the is-
land of La Palma in the Canary Islands, Spain. The erup-
tive activity started on 19 September 2021, following a pe-
riod of seismic activity, marked by several VTE swarms and
then carried out by continuous volcanic tremor, becoming the
first eruption on La Palma since 1971. The eruption started
with the opening of a fracture in the southwest part of the is-
land, and the emission of material persisted for nearly three

months, generating extensive lava flows and pyroclastic de-
posits (D’Auria et al., 2022). This event significantly affected
the surrounding environment, infrastructure, and regional air
traffic. The volcanic process yielded comprehensive seismic
and geochemical data, providing valuable insights into vol-
canic behavior in the Canary Islands and serving as a key ref-
erence for improvements in volcanic monitoring and hazard
assessment. The seismic catalog for this volcano (from this
point forward referred to as LAPALMA2021) differs from
previous seismic catalogs in that it only includes annotations
of the occurrence of VTE-type events. That is, the catalog
consists solely of a series of entries describing the date of
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the event’s occurrence, along with its magnitude and depth.
There is no detailed information regarding the type or spec-
ifications of the sensors used to record the seismic signals.
Given the nature of this catalog and database, analyzing it
could provide valuable insight into the ability of the proposed
approach to improve a catalog from scratch. Again, to mini-
mize the impact of sensor differences and ensure data com-
parability, the signals were first filtered to match MASTER-
DEC’s frequency range (1–50 Hz) and then adjusted to the
same sampling frequency.

Finally, it is important to mention that an interesting use
case to be evaluated would be the “temporal transferability”
of the system for Deception Island volcano across different
analysis periods. Given that some of our previous studies
(Titos et al., 2018b, 2024) have examined the transferabil-
ity of the baseline systems to different periods, including the
2016 campaign, and demonstrated a high degree of transfer-
ability, we conclude that the algorithm’s performance, if ap-
plied, is justified since the core of the proposed algorithm
relies on prototype event recognition. Therefore, this study
would benefit more from focusing on use cases involving vol-
canoes with diverse characteristics.

3 Methodology and experimental framework

This section outlines the methodology and experiments con-
ducted in this work. The proposed algorithm will be de-
scribed, followed by a detailed explanation of the three ex-
periments conducted. The results of these experiments will
be presented in the results section.

3.1 Methodology

Transfer learning (TL) algorithms facilitate the adaptation of
a pre-trained model from a source domain to a target domain
(Weiss et al., 2016). In their most direct formulation, this pro-
cess necessitates the availability of a labeled dataset to per-
form fine-tuning, enabling the optimization of the model’s
parameters to align with the statistical properties of the target
domain. However, in many practical applications, the lack of
labeled data, such as restricted access to a database catalog,
poses a major challenge for effective domain adaptation, of-
ten requiring alternative strategies. In this work, we propose
a weakly supervised transfer learning approach to generate
new seismic catalogs, allowing systems to be retrained with
minimal human supervision. Our method uses pre-trained
systems as a starting point (pseudo-labeler) to weakly label
the new database and construct updated catalogs. These cata-
logs then serve as training data, enabling the systems to adapt
to a new volcanic environment.

Weakly supervised learning is a branch of machine learn-
ing that covers the construction of predictive models with
minimal or indirect supervision (Zhou, 2018). Such tech-
niques focus on learning with incomplete, inexact, and/or in-

accurate information derived from noisy, limited, or impre-
cise supervision processes. The objective is to automatically
provide supervision for labeling large amounts of data us-
ing labeling functions derived from domain knowledge. This
approach replaces the costly and impractical hand-labeled
process with inexpensive weak labels, understanding that al-
though imperfect, they can be used to create a strong predic-
tive model. In our framework, the source domain (denoted as
DS) is the MASTER-DEC dataset (based on refined physi-
cal models and a strong revision process). The target domain
(denoted as DT) is a new given dataset POPO2002 or LA-
PALMA2021 (whose available seismic catalog will not be
considered). The goal is to address a domain adaptation task
(Kouw and Loog, 2019; Farahani et al., 2021) to reduce the
cost of developing a reliable seismic catalog and database
for a new dataset with minimal initial human supervision.
That is, automatically provide supervision for labeling large
amounts of data from DT using labeling functions derived
from domain knowledge DS.

In a domain adaptation framework, typically DS and DT
have the same feature space X and label space Y but different
marginal and conditional distributions:

– The marginal distributions P(XS) and P(XT) may dif-
fer, meaning that the distribution of seismic events or
seismic signals in DS and DT domains may not be the
same.

– The conditional distributions P(Y |XS) and P(Y |XT)

may also differ, meaning that the relationship between
features derived from seismic signals and labels (seis-
mic categories) may vary between domains.

However, in this study, we make the following assump-
tions to enable pseudo-labeling:

– The feature spaces of DS and DT are the same: XS =

XT. This implies that the seismic signals in both do-
mains can be represented using a similar set of features.

– The label spaces of DS and DT may overlap but are
not necessarily identical: YS∩YT 6=∅. This means that
some seismic categories may be shared between do-
mains, while others may be unique to one domain.

These assumptions have important implications. While
the feature spaces are assumed to be similar, the marginal
and conditional distributions may differ between domains.
Specifically:

– If P(XS) 6= P(XT), the distribution of seismic signals
may vary between DS and DT, leading to a domain shift.

– If P(Y |XS) 6= P(Y |XT), the relationship between seis-
mic signals and event categories may differ between do-
mains, leading to a category shift.

This scenario aligns with the open set domain adapta-
tion paradigm, where the target domain may contain seismic
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events not present in the source domain. Therefore, the model
must be designed to handle both shared and novel categories
in the target domain.

By leveraging the probabilistic detection matrices gener-
ated by the system trained on DS, we can apply a weakly
supervised learning technique as a pseudo-labeler on DT to
construct a new dataset. This dataset can then be used to
train a new system in a supervised manner. Specifically, those
parts of the unlabeled dataset in DT with high per-class prob-
ability are selected and added to the new training set. This
approach implicitly assumes that, for high confidence predic-
tions, the conditional distributions P(Y |XS) and P(Y |XT )

are approximately similar, at least for the shared classes be-
tween domains (the model’s confidence reflects a degree of
similarity in the feature–label relationships). Although this
method is not perfect, it ensures that events exhibiting char-
acteristics similar to those annotated in the master catalog
(DS) are included in the new training dataset. As a result, af-
ter the retraining phase, the target catalog is both enlarged
and updated, improving the model’s ability to generalize to
the target domain. It is important to note that this experiment
does not aim to correct the catalog created by our colleagues
with utmost dedication and effort; it simply seeks to high-
light that a pseudo-labeler can be a valuable tool in construct-
ing and reviewing it with success and low time consumption.
However, our method has a significant limitation: the cata-
logs generated through weakly supervised learning will only
include the seismic categories present in the master database
used for training. Even if other classes exist in the new data,
the labeling process will always assign each analysis window
to one of the predefined categories. To develop a more uni-
versal pseudo-labeler, a master database containing a broader
range of seismic categories would need to be constructed. Al-
though our method only labels categories present in the mas-
ter catalog, potential novel classes in the target domain may
still be revealed through analysis of the probabilistic detec-
tion matrices, especially when combined with unsupervised
techniques for event discovery.

Taking these factors into account, our proposed approach
is outlined as follows and depicted in Fig. 3:

1. Recognition: According to Fig. 3a, the recognition
block analyzes a subset of data from the new dataset
using a pre-trained system. The data stream illustrates
continuous analysis (allowing near real-time process-
ing). While the literature offers a variety of accurate
machine learning architectures for uncovering descrip-
tive patterns in seismic signals (Alasonati et al., 2006;
Benítez et al., 2007; Köhler et al., 2010; Bhatti et al.,
2016; Hibert et al., 2017; Malfante et al., 2018; Titos
et al., 2018a, 2019; Canario et al., 2020; Lara et al.,
2021; Rodriguez et al., 2021; Titos et al., 2022; Bicego
et al., 2023), some of these methods may not be as effec-
tive for the specific challenges posed by continuous or
near real-time data processing. Given the inherent vari-

ability and complexity of these data, consisting of seis-
mic signal sequences containing multiple events, where
the goal is to detect and classify each individual event,
specialized approaches capable of adapting to these
conditions are required. More specifically, we will base
our experimental framework on the pre-trained systems
previously published in Titos et al. (2018b, 2022, 2024).
These systems correspond to the Recurrent and Dilated
Recurrent Neural Networks (Hochreiter and Schmid-
huber, 1997; Schmidhuber, 2015; Chang et al., 2017),
both with LSTM cells (henceforth referred to as RNN-
LSTM and Dilated-LSTM), along with Temporal Con-
volutional Networks (Lea et al., 2017) (referred to as
TCN). These models generate a probabilistic event de-
tection matrix with per-class membership outputs. To
carry out the recognition, the same algorithm of fea-
ture extraction used in the MASTER-DEC is applied.
Streaming or continuous signals are filtered between
1 and 20 Hz and split into frames or windows. For each
window, a feature engineering pipeline based on a loga-
rithmic scale filter bank is applied. This pipeline reduces
the dimensionality of the input vector associated with
each analysis window compared to raw signals. It facil-
itates the training and convergence of the systems, as it
increases the separability of the data based on a well-
studied feature space (see Titos et al. (2024) for a de-
tailed understanding of the parameterization pipeline).

2. Event detection and confidence analysis (concept drift
detection): The concept drift detection block analyzes
the confidence of each detected event using the previ-
ously obtained probabilistic event detection matrix with
per-class membership output. This step allows us to
quantify the severity of drift between datasets (usually
known as “concept drift”) (Lu et al., 2018). High or ex-
tremely high per-class recognition probabilities for each
event type indicate that the systems are well-fitted to
the master database. Low per-class probabilities indi-
cate a change in the description of the analyzed infor-
mation. Accurate and robust dissimilarity measurement
and statistical hypothesis evaluation are not strictly nec-
essary, given the well-known dissimilarity between vol-
canic environments. Here, we disregard the information
contained in the available seismic catalog.

3. Concept drift adaptation: An adaptive threshold mech-
anism selects events for the new database, considering
only those whose average per-class probability exceeds
the specified threshold. The system’s sensitivity is di-
rectly influenced by the chosen threshold: a lower value
increases sensitivity, allowing more events to be in-
cluded but potentially reducing specificity. Conversely,
a higher threshold enhances specificity by selecting only
the most confident detections, though at the risk of low-
ering sensitivity. The threshold value will be determined
by the user based on their needs when addressing the
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Figure 3. (a) Overview of the weakly supervised event selection algorithm developed. A subset of the dataset (in our case 40 % of the total)
is used as a training set by the reference pre-trained systems. The rest of the data are used as a test set. Only high per-class probability
recognized events are selected as new training instances. (b) Workflow structure and the specific pre-processing steps employed, which
rely on frequency analysis within the log frequency filter bank domain (Titos et al., 2022). (c) For each detected event, the confidence of
the detection is analyzed using a probabilistic event detection matrix with per-class probabilities output by the systems. (d) Drift adaptation
mechanism based on an adaptive threshold is then adopted. Those events whose average per-class probability is greater than a given threshold
are selected and included as new training instances.

problem. In our case, we have set it at 60 %, allowing
the inclusion of a greater number of events and better
adaptation to the new domain.

4. Retraining process: Finally, the pre-trained systems
used in step 1 are retrained using the selected instances
and labels obtained in step 3. This approach applies a
transfer learning strategy in which all model parameters
are fine-tuned, while experimenting with different learn-
ing rates and regularization techniques and employing
early stopping to prevent overfitting.

5. Iterative refinement: Repeat steps 2 through 4 itera-
tively until no further improvements are observed in the
catalog creation or until the user deems it appropriate.

3.2 Experimental framework

3.2.1 Developing automatic recognition systems
through a transfer learning approach leveraging
available catalogs

The standard procedure for developing an automatic
volcano-seismic recognition system from scratch using su-
pervised machine learning techniques involves having a suf-
ficiently representative seismic catalog (selecting and seg-
menting a large, reliable set of well-labeled seismic events
that cover the maximum possible range of events occurring
in the studied volcanic area). These events serve as the initial
seed for the training procedure. This training can be carried
out using different approaches, ranging from training the sys-
tem from scratch to using transfer learning techniques.

In the first experiment, to demonstrate that ML models
can effectively learn the information contained in a seis-
mic catalog (assuming catalog-induced learning biases), a
recognition system based on transfer learning approaches
will be developed from scratch, utilizing three different ar-
chitectures. To achieve this, the three systems pre-trained

https://doi.org/10.5194/nhess-25-3827-2025 Nat. Hazards Earth Syst. Sci., 25, 3827–3851, 2025



3836 M. Titos et al.: Improving seismo-volcanic catalogs with weakly supervised learning

on MASTER-DEC (RNN-LSTM, Dilated-LSTM, and TCN)
will serve as the foundation for adapting recognition sys-
tems to the Popocatépetl volcano. Specifically, these sys-
tems will be retrained with the available data and catalog
from the POPO2002 dataset. Since the POPO2002 catalog
includes seven seismic categories while MASTER-DEC has
only five, a transfer learning-based recognition system can be
designed in different ways. One option is to train the system
using only the categories present in MASTER-DEC. Another
approach is to include all categories in POPO2002. From
an ML perspective, both approaches follow standard pro-
cedures, although they differ slightly in implementation. In
the first case, where only five seismic categories are consid-
ered, the models are fully retrained using the new catalog. In
the second case, which includes seven categories, the output
layer is modified to accommodate the two additional classes,
while the pre-trained parameters from the original model are
retained. The model is then fine-tuned on the new data, al-
lowing efficient adaptation without retraining from scratch.

3.2.2 Developing automatic recognition systems using
the proposed weakly supervised pseudo-labeling
approach

The second experiment differs from the previous one primar-
ily in the source of the labels used for training: instead of
relying on true annotations, it leverages pseudo-labels gener-
ated by the pre-trained models themselves. This experiment
highlights the use of weakly supervised approaches to en-
hance seismic-volcanic catalogs. The process involves using
each of the three pre-trained reference systems (RNN-LSTM,
Dilated-LSTM, and TCN) to recognize (detect and classify)
the seismic events in the new dataset and then retrain the
systems based on these pseudo-labels. Therefore, each sys-
tem will analyze a subset of the total POPO2002 database
to create a new training set for the retraining process. Once
retrained, the systems will generate a new seismic catalog,
which will then be compared and analyzed against the origi-
nal POPO2002 catalog to assess the results.

Since MASTER-DEC is composed of five seismic cate-
gories and the weakly supervised approach relies on pre-
trained models, the experiments presented here are based
solely on these five categories. This limitation is a conse-
quence of the methodology and must be properly understood
to ensure a correct interpretation and discussion of the re-
sults, as it directly influences the way the data are analyzed
and compared with the original catalog. An important con-
sideration in this experiment is that the recognition percent-
age obtained by the systems before and after retraining, us-
ing the original catalog annotations as a reference, can pro-
vide valuable insights into the algorithm’s behavior. There-
fore, both results will be taken into account in this experi-
ment, with the aim of analyzing in detail how the retraining
process with the new pseudo-catalog affects the system’s per-
formance.

3.3 Building a new catalog during an eruptive crisis:
the Tajogaite volcano use case, 2021

The third and final experiment aims to analyze the robust-
ness of the proposed methodology by building a seismic cat-
alog from scratch in a highly demanding use case, such as
during an eruptive crisis. Since we have not had the opportu-
nity to test it in an actual eruptive scenario, we propose us-
ing data from the Tajogaite volcano during the 2021 eruptive
episode. We also suggest abstracting this offline test to simu-
late a real-time episode, as if data were being analyzed in real
time, since the functionality would be exactly the same. As
previously mentioned, the selected pre-trained systems are
capable of operating in near real time, with particularly short
latency times, analyzing (not retraining) 24 h of data in a few
seconds.

Therefore, for this experiment, a pair of 24 h seismic
records from the PPMA and PLPI seismic stations, corre-
sponding to 12 September 2021, just a few days before the
eruption began when an increase in activity was detected,
was used. To conduct an analysis and comparison of the re-
sults, we have a seismic catalog created by geophysical ex-
perts from that volcano during the eruption crisis itself. Given
the large number of recorded events, the significance, and the
urgency of the moment, we believe that this catalog meets
the requirements of the time. Again, just as we argued in
the case of the POPO2002 catalog, this experiment does not
aim to correct the catalog created by our colleagues with ut-
most dedication and effort; it simply seeks to highlight that
a pseudo-labeler can be a valuable tool in constructing and
reviewing it.

4 Results

For each experiment, tables describing the system perfor-
mances in terms of accuracy, along with detailed confusion
matrices, are presented. These confusion matrices were con-
structed by comparing the model predictions against the la-
beled events in the catalog. This approach allows for a gran-
ular analysis of the classification behavior, revealing not only
the global accuracy but also class-specific performance, mis-
classification patterns, and possible confusion between seis-
mic event types. For experiments 1 and 2, the accuracy (%)
metric evaluates the capability of the developed systems to
accurately recognize the events annotated in the POPO2002
seismic catalog. The normalized confusion matrices provide
a breakdown of true positives, false positives, false negatives,
and true negatives, allowing a thorough analysis of each sys-
tem’s robustness. All results were obtained using a leave-
one-out cross-validation process with four random partitions.
Each time, we select T % of the entire database as the train-
ing set, and the remaining (100−T )% as the test set to eval-
uate the performance of the systems. This analysis helps to
identify specific areas where the model may struggle, such as
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misclassification between event types with similar features.
To perform a robust analysis of system performance based
on the accuracy metric (%) and build confusion matrices, it
is necessary to transform the information contained in the
catalog into labels from which the study can be conducted.
Since in experiments 1 and 2 we start with a seismic cata-
log that contains annotations for the start and end of each
event present in each seismic signal, once the signals are pre-
processed and windowed, we can associate a label with each
window. In this way, each window can be analyzed based on
its classification according to its label.

Finally, in experiment 3, where only partial knowledge of
the earthquakes recorded during the crisis is available, the
results evaluate the model’s ability to generate a more com-
prehensive and reliable catalog. This catalog will serve as a
basis for inferring potential volcanic dynamics, which is crit-
ical in real-world eruptive crisis scenarios.

The optimal RNN-LSTM configuration consists of a sin-
gle hidden layer with 210 units and no dilations. For the
Dilated-LSTM model, the configuration that yielded the best
performance included three hidden layers, each with 50 units
and 2–4 dilated recurrent skip connections per layer. The
TCN model achieved optimal performance with 50 filters,
a kernel size of 2, and dilation values of 8, 16, and 32. Only
one residual block was used, as additional blocks are more
suitable for longer sequences, such as waveforms with ex-
tensive time samples. Data normalization was performed us-
ing standard deviation normalization, where each feature was
normalized by subtracting its mean and dividing by its stan-
dard deviation, calculated from the training set. The systems
were optimized using stochastic gradient descent (SGD) with
a fixed learning rate, ranging from 0.004 to 0.01, with the
optimal learning rate found to be 0.001. To prevent overfit-
ting, early stopping and L2 regularization were applied dur-
ing training.

4.1 Developing automatic recognition systems through
a transfer learning approach leveraging available
catalogs

Table 4 shows the recognition results achieved by the systems
after being trained on the POPO2002 catalog using a transfer
learning approach. Since using a transfer learning approach
allows for more efficient use of computational resources and
the fine-tuning phase typically requires fewer resources than
training a system from scratch, two experiments were con-
ducted. These experiments considered five and seven seis-
mic categories, each using 20 % and 40 % of the total data
for the training set (T = 20 and T = 40). This means that
the results were obtained using 80 % and 60 % of the data
in the test partition, respectively. Table 5 summarizes the av-
eraged normalized confusion matrices belonging to the test
using five seismic categories and 40 % of the total data for
the training set. The appendix provides additional informa-
tion on both the F1-score metrics and the recognition confi-

Table 4. Self-consistency results using five and seven seismic cat-
egories, with 20 % and 40 % of the data for training and 80 % and
60 % for testing, respectively. The results correspond to the average
accuracy over the four partitions. The values in bold indicate the
best result for each model for each experiment.

5 seismic categories 7 seismic categories

Training percentage Training percentage

20 % 40 % 20 % 40 %

RNN-LSTM 77.38 88.99 84.01 84.39
Dilated-LSTM 82.88 84.70 84.05 85.21
TCN 82.46 88.30 85.77 83.27

dence analysis to support and complement the main results
presented in this section.

4.2 Developing automatic recognition systems using the
proposed weakly supervised pseudo-labeling
approach

Table 6 presents the recognition accuracy achieved by the
systems, which were retrained using the proposed weakly
supervised approach with the training partition set to 40 %
of the total POPO2002 dataset and a probability detection
threshold set at 50 %. The first column of the table represents
the results obtained by directly applying recognition with the
pre-trained models. This column shows the degree of similar-
ity between the original POPO2002 catalog and the pseudo-
catalog constructed using the pre-trained systems as pseudo-
labelers. The second column reflects recognition results com-
pared to the original POPO2002 catalog after the systems
have been retrained using the previously constructed pseudo-
catalog. Table 7 summarizes the averaged normalized confu-
sion matrices of the new systems based on the weakly super-
vised approach, with the POPO2002 catalog as the reference.
The y-axis corresponds to the real label or ground truth, and
the x-axis corresponds to predicted labels. Finally, Table 8
summarizes the comparison between the events initially an-
notated in the POPO2002 catalog and the events detected by
the new automatic systems following the weakly supervised
approach.

4.3 Building a new catalog during an eruptive crisis:
the Tajogaite volcano use case, 2021

Table 9 shows the recognition results obtained in this exper-
iment using 24 h seismic traces from the PLPI and PPMA
stations on 12 September 2021 at Tajogaite volcano. On
the analyzed day, experts manually annotated a total of 247
events, including both tectonic and volcanic earthquakes,
which served as a reference for the subsequent analysis. It
is important to highlight that these results correspond to an
experiment where only a tentative earthquake catalog (con-
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Table 5. Averaged normalized confusion matrices associated with the leave-one-out cross-validation process for the POPO2002 dataset.
These results belong to the test using five seismic categories. The values in bold mean the percentage of events properly classified.

RNN-LSTM Dilated-LSTM TCN

BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE

BGN 0.97 0.02 0 0 0.01 0.96 0.02 0 0 0.02 0.98 0.01 0 0 0.01
TRE 0.06 0.78 0 0.05 0.11 0.13 0.69 0 0 0.18 0.11 0.68 0 0.09 0.12
VTE 0.08 0.13 0 0.51 0.28 0.12 0.17 0 0.31 0.4 0.14 0.09 0 0.59 0.18
LPE 0.05 0.07 0 0.03 0.85 0.04 0.18 0 0 0.78 0.05 0.05 0 0.04 0.86

Table 6. Classification accuracy (acc. %) on the test set achieved by
the pre-trained systems, which were retrained using the proposed
weakly supervised approach with the training partition set to 40 %
of the total POPO2002 dataset and only five seismic categories.

Five seismic Weakly supervised TL
categories categories using five
blind test seismic categories

RNN-LSTM 55.95 64.89
Dilated-RNN 50.13 55.72
TCN 58.27 66.16

structed during the eruptive crisis under the urgency and
challenges that such situations entail) is available. For this
reason, to conduct a rigorous comparative analysis, we have
included the recognition results from a widely used tool like
PhaseNet (Zhu and Beroza, 2019).

PhaseNet is a neural network-based system designed for
automatic phase picking of seismic events. It detects and
labels seismic phases and estimates the probability of each
phase type (P and S) across the trace. After analyzing the two
seismic stations, PLPI and PPMA, for 12 September 2021,
1173 P phases and 1518 S phases were obtained for PLPI,
and 390 P phases and 522 S phases were obtained for PPMA.

5 Discussion

5.1 Developing automatic recognition systems from
available catalogs

The classical way to assess the robustness of an automatic
recognition system is by evaluating its recognition accuracy
across all events included in the catalog. Typically, a sys-
tem with an average performance below 75 % is considered
unreliable. However, this low performance is often not due
to the system’s ability to learn to distinguish between dif-
ferent events but rather results from the way the catalog is
constructed. Specifically, if the seismic categories are not ho-
mogeneous and events of different natures are assigned to
the same type, the system’s performance will drop. If events
classified as part of the same category are not consistent, the
system will struggle to make accurate predictions, as the in-

herent variability within each type undermines the learning
process. Therefore, Tables 4 and 5 not only provide informa-
tion about the reliability of the developed systems but also
about the consistency of the catalog itself.

According to such results, the systems are shown to
achieve a high degree of recognition in both experiments
(including five and seven seismic categories), allowing us
to conclude that the systems effectively learn to recognize
the events annotated in the catalog. It is worth noting, how-
ever, that in the second experiment, with seven seismic cat-
egories, the recognition rate of the three systems is slightly
affected. This result is clearly influenced by the imbalance in
the dataset. The seismic category explosion (EXP), with only
four events, has no impact on the outcome. In contrast, the in-
clusion of the garbage (GAR), with 2739 events of varying
durations, significantly changes the system’s performance.
Firstly, because it is the predominant category in terms of
both number and duration, performing an analysis by win-
dows results in a considerable increase in labels of this type,
biasing system learning. Secondly, the spectral characteris-
tics describing GAR events are very similar to those of BGN
events. The former represents a set of events without a clear
definition, while the latter represents seismic noise. There-
fore, including both in the training process leads the systems
to confuse the two, with GAR emerging as the more domi-
nant category due to its imbalance.

Regarding the confusion matrices across the three systems,
the analysis suggests that the POPO2002 catalog is consis-
tent and that, within each seismic category, there is coher-
ence among the elements classified within the same category.
However, propagation and source effects can influence seis-
mic event characterization. For instance, VTE events are not
well identified, with confusion rates exceeding 40 % in some
cases, meaning only 50 % of VTE events are accurately clas-
sified. The highest confusion levels are observed between the
VTE and LPE categories, possibly due to shared character-
istics, as LPE events may resemble highly attenuated VTEs,
causing potential biases in event categorization. This overlap
indicates that certain seismic categories contain elements lo-
cated in overlapping regions of the representation space, the
space in which data points are mapped based on learned fea-
tures. These elements share similar projected characteristics,
and as a result, events assigned to a specific cluster could po-
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Table 7. Normalized confusion matrices for the new retrained system using a weakly supervised approach, with the POPO2002 catalog
as reference. The results are based on the whole test set using 40 % of the whole set for training and five seismic categories. The y-axis
corresponds to the real label or ground truth, and the x-axis corresponds to predicted labels with the POPO2002 catalog as the reference. The
values in bold mean the events properly classified according to the catalog available.

RNN-LSTM Dilated-LSTM TCN

BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE BGN TRE HYB VTE LPE

BGN 0.88 0.09 0 0 0.03 0.67 0.32 0 0 0.01 0.8 0.19 0 0 0.01
TRE 0.29 0.36 0.03 0.02 0.03 0.29 0.5 0 0 0.21 0.19 0.7 0 0 0.11
VTE 0.27 0.41 0.08 0.03 0.21 0.46 0.28 0 0.03 0.23 0.36 0.46 0.03 0.06 0.09
LPE 0.36 0.19 0.06 0.06 0.33 0.47 0.18 0 0.01 0.34 0.41 0.33 0.01 0.01 0.24

Table 8. Comparison between the events initially annotated in the catalog and the events detected by the new automatic systems following
the implementation of a weakly supervised approach.

Popo2002 catalog RNN-LSTM Dilated-LSTM TCN

BGN 340 > 20 000 > 20 000 17 206
TRE 273 3291 2538 3204
VTE 371 1741 1032 94
LPE 1155 2230 2250 2159

Table 9. Earthquakes recognized by the pre-trained reference mod-
els on the seismic traces recorded on 12 September 2021 at the PLPI
and PPMA stations. Results are without considering the retraining
process.

RNN-LSTM Dilated-LSTM TCN

PLPI PPMA PLPI PPMA PLPI PPMA

BGN 4344 4641 1800 3005 6409 8642
TRE 109 64 229 241 152 139
HYB 12 14 5 8 – –
VTE 187 131 194 161 333 403
LPE 1008 1032 564 711 516 761

tentially transition between categories (similar to MASTER-
DEC and described in Fig. 3). Thus, although system perfor-
mances range between 85 % and 90 %, this does not always
reflect a complete or unbiased seismic catalog. Rather than
solely learning to characterize volcano dynamics based on
an underlying physical model, the systems may be learning
the information contained within the catalog itself. Conse-
quently, catalog-induced learning could limit a system’s abil-
ity to generalize, potentially obscuring information relevant
to advancing our understanding of volcanic behavior.

5.2 Developing automatic recognition systems with
weakly supervised pseudo-labeling

Results demonstrate that, when applied effectively, these
methods can significantly improve the detection and identi-
fication of diverse earthquake-volcanic signals. According to

Table 6, using pre-trained systems as pseudo-labelers results
in a substantial decrease in overall performance compared to
building automatic monitoring systems from available cata-
logs (Table 4). However, a closer inspection of Table 8 shows
other aspects of the performance that are very encouraging.

First, the new systems recognized events that were orig-
inally not annotated in the preliminary catalog during data
labeling. The vast majority of such recognized events were
discovered within long segments labeled as GAR or TRE.
An example of this behavior can be seen in Fig. 4, which
shows LPE events (red boxes) that were not initially anno-
tated during labeling within a trace labeled as TRE, along
with the correction of an event originally labeled as LPE,
which is now relabeled by the system as VTE. This scenario
occurs many times throughout the dataset, and these addi-
tional labels reduce overall recognition accuracy relative to
the original labeling, although they do not necessarily repre-
sent errors.

Second, among the seismological community, there is a
marked interest in associating different types of seismo-
volcanic signals with models of seismic sources in order to
better understand the physics of the underlying processes. At
present, there are two main complementary lines of research
within volcano seismology: a) the detection and identifica-
tion of different types of volcanic events and b) the investiga-
tion of physical source models that explain the origin of these
signals. As scientific knowledge has advanced, a paradoxical
situation has developed: there is a lack of uniformity in the
naming of observed seismic signals. Therefore, the subjectiv-
ity of human operators during the labeling process can lead
to discrepancies in catalog construction. As a result, catalogs
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Figure 4. Insertion-based errors when retraining systems using a weakly supervised approach: First, detection of LPE events (red boxes)
that were initially overlooked during the labeling process within a trace labeled as TRE–LPE–TRE. Second, correction of an event originally
labeled as LPE, which the system now relabels as VTE. This scenario occurs frequently throughout the dataset, and these additions reduce
per-frame recognition accuracy compared to the original labeling; however, they do not always indicate errors. The blue color corresponds
to the minimum energy, while the red color corresponds to the maximum energy.

Figure 5. Insertion-based errors when retraining systems using a weakly supervised approach. Event delimitation: examples of the labeling
process by the systems. Instead of recognizing entire seismic traces such as volcano-tectonic earthquakes (VTE) as annotated in the original
catalog, the systems detect background noise (BGN) segments before and after the earthquakes. These additional detections reduce per-frame
recognition accuracy; however, after a posterior revision, they should not be considered errors. The current color map in the spectrogram
represents the energy levels. The blue color corresponds to the minimum energy, while the red color corresponds to the maximum energy.

and automatic recognition outcomes often vary across dif-
ferent volcanoes and researchers, which ultimately reduces
the system’s ability to be universally applied and impacts
its performance. A clear example of this discrepancy can be
seen in Table 7. Based on that table, on average, only 5 % of
the analysis windows labeled as VTE in the original catalog
were identified by the retrained systems. On initial inspec-

tion, these results might suggest poor system recognition for
this seismic category, but interestingly, it is one of the most
distinctive events due to its high-frequency content and ex-
ponential energy decay. So, what accounts for the low recog-
nition rate? A detailed analysis shows that it is mainly due
to labeling discrepancies between the MASTER-DEC event
prototypes and the POPO2002 catalog annotations. On the
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one hand, the start and end points of some events are of-
ten marked in positions that differ significantly from those
annotated by the automatic systems. Instead of recognizing
entire seismic traces such as volcano-tectonic earthquakes
(VTE) as annotated in the original catalog, the systems de-
tect background noise (BGN) segments before and after the
earthquakes. While segments with high spectral content were
detected and classified as VTE, those with low spectral con-
tent were classified as BGN or TRE. These additional de-
tections reduce per-frame recognition accuracy. This can be
clearly seen in Fig. 5 in earthquake recognition.

On the other hand, the VTE prototype events used in
MASTER-DEC have very specific characteristics. However,
some of the VTE events labeled in POPO2002 do not reli-
ably share these characteristics. This may be due to the fact
that catalogs are often constructed using data from multiple
seismic stations, with strong attenuation and source effects,
while imposing rules or conditions for identifying signals.
Therefore, the original labeling of an event does not always
align with the waveform and spectral content of the analyzed
signal, as it may vary depending on the station being ana-
lyzed. As a result, if the signal being analyzed does not align
with the characteristics of the prototype event used to con-
struct the system, the signal will be labeled or associated with
the event prototype that most probabilistically resembles it.
This behavior reduces the recognition rate for this seismic
category. Figure 6 illustrates this behavior, showing two ex-
amples of events annotated as VTE in the POPO2002 cata-
log that are recognized as TRE by the systems. The power
spectral density (PSD) of both events shows clear content in
low and intermediate frequencies (1–12 Hz), perfectly align-
ing with the source model proposed by Ibáñez et al. (2000),
as shown in Table 1, which is also used by MASTER-DEC.
Similar to the previous analysis, this behavior is repeated
throughout the database, not only with TRE but also with
LPE events, which explains the high degree of confusion ad-
dressed. A potential solution to this situation would be to ap-
ply the algorithm to different stations.

Third, intra-category variability can also affect the over-
all recognition of the systems. The new dataset exhibits high
variability within certain categories, where events with dis-
tinct characteristics but shared features are grouped together.
For example, different LPEs, TRE events, and regional or
volcano-tectonic earthquakes. Within the feature space, the
representation of events belonging to a given subcategory
in the new domain (POPO2002) was closely related to the
representation of events belonging to a different category in
the source domain (MASTER-DEC). For example, similar to
what occurs with some events in Fig. 3, the representations
of some LPEs in POPO2002 are very close to the representa-
tions of TRE in MASTER-DEC (Fig. 7a). As such, the algo-
rithm assigns the TRE label during the training phase. This
decreased the overall system performance since many frames
(33 %, 19 %, and 18 % for TCN, RNN-LSTM, and Dilated-
LSTM, respectively) were detected as TRE. The same issue

arose for some attenuated earthquakes, which were labeled as
LPE in the original seismic catalog but classified as VTE or
TRE since, even when attenuated, they align with the feature
space representation of an earthquake event in MASTER-
DEC (Fig. 7b). Finally, low-energy TRE events were clearly
misclassified as BGN because the peak-to-peak amplitude
degradation of the signals was related to attenuation effects.
This complex scenario was widely discussed by Titos et al.
(2018b); therefore, to correctly deal with these errors, further
information from several seismic stations is needed.

The results suggest that overall recognition can be strongly
biased by the intrinsic limitations encountered when devel-
oping the seismic catalog and from which the comparative
metrics were obtained. Therefore, if labeling criteria be-
tween datasets differ, per-frame recognition results will vary
widely. Until now, the development of new monitoring sys-
tems has focused primarily on improving existing recogni-
tion rates. However, our findings confirm that by leverag-
ing an existing unbiased master catalog, we can incorporate
prior knowledge into the new dataset under review. Using
automatic pseudo-labelers has the remarkable capability of
simultaneously identifying unannotated seismic traces in the
catalog and helping to correct the labels of misannotated seis-
mic traces. Although the general performance of the system
seems to decrease relative to the original catalog, unanno-
tated information that can improve knowledge of the volcanic
dynamic background can still be obtained.

5.3 Building a new catalog during an eruptive crisis:
the Tajogaite volcano use case, 2021

This experiment considered the seismic traces from two sta-
tions, PLPI and PPMA, for 12 September 2021, a few days
before the eruption of Tajogaite volcano began. On this day,
given the volcanic activity and monitoring conditions, only
247 earthquakes, both tectonic and volcanic, were annotated
in the catalog.

For the sake of comparison, we will begin analyzing the
outcomes obtained by PhaseNet. PhaseNet detected several
hundreds of P and S phases, with the number of S phases
being higher at both stations. This is due to the greater en-
ergy associated with these waves. However, as can be seen
in Fig. 8a, when fixing a phase score threshold highlight-
ing the reliability of the detections, the number of detec-
tions decreases rapidly with high values. For example, for
values close to 80 %, only approximately 722 P phases and
503 S phases at PLPI and 282 P phases and 216 S phases
at PPMA are detected. This significantly reduces the num-
ber of potential events that could be included in the catalog.
Figure 8b shows the match between detections and the cat-
aloged events. Of these 247 annotated events, PhaseNet de-
tects 206 P phases and 199 S phases at PLPI and 157 P phases
and 28 S phases at PPMA, all without applying any probabil-
ity threshold. Again, when setting the phase score threshold
greater than or equal to 80 %, the detections decrease to 163
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Figure 6. Two examples of events annotated as VTE in the POPO2002 catalog being recognized as TRE by the classifiers. The current color
map in the spectrogram represents the energy levels. The blue color corresponds to the minimum energy, while the red color corresponds to
the maximum energy. The PSD reflects the distribution of signal energy among the frequencies.

P phases and 164 S phases at PLPI and 116 P phases and
21 S phases at PPMA. This behavior underscores the com-
plexity of constructing seismic catalogs, because even when
focusing solely on seismic phase detections, there is no con-
sistent criterion for agreement between human operators and
advanced automatic systems. More importantly, even when
considering the inclusion of these potential events, extensive
human supervision would be required to validate and catego-
rize them.

Looking at the recognition results obtained by the pre-
trained reference systems in Table 9, it can be observed that a
large number of events are being detected. However, similar
to PhaseNet, some of these events should be discarded for the
sake of reliability in recognition. Figure 9 depicts such reli-
ability based on the belonging probabilities outputted by the
systems. To explore these results, we will: (1) analyze how

the number of detections varies as reliability changes, with a
focus on more specific or sensitive systems; (2) evaluate the
performance of the systems using the 247 events annotated
in the catalog as a reference; and (3) assess the reliability of
the remaining detected events to evaluate the reliability of the
new pseudo-catalogs.

Across all systems and at both stations, the number of
detected events decreases significantly as the probability
threshold increases, particularly for values above 80 %. At
higher thresholds, the detections are predominantly limited
to events closely correlated with the prototype events on
which the systems were trained. Figure 9c shows that for
thresholds above 80 %, the number of detected earthquakes
by both RNN-LSTM and Dilated-LSTM averages between
120 and 150 events at both stations. For TCN, the number
of detected earthquakes is significantly higher, highlighting
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Figure 7. Detailed analysis of intra-class variability and attenuation-based errors when applying a weakly supervised approach. (a) Intra-
class variability-based errors: some long period event (LPE) subcategories in POPO2002 are very close to the representation of tremor
(TRE) in MASTER-DEC. Therefore, they were classified as TREs. (b) Two attenuated earthquakes labeled as LPE in the seismic catalog
now reclassified as volcano-tectonic earthquake (VTE) and Tremor (TRE). The current color map in the spectrogram represents the energy
levels. The blue color corresponds to the minimum energy, while the red color corresponds to the maximum energy.

Figure 8. Evolution of the number of detected phases at the seismic stations as the phase score threshold varies using PhaseNet. (a) Total
number of phases detected at both stations. (b) Number of phases matching the 247 events recorded in the LAPALMA2021 catalog on
12 September 2021.
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Figure 9. Evolution of the number of detected events at the seismic stations as the belonging probability threshold varies using PhaseNet.
(a) Total number of LPEs detected at both stations. (b) Total number of TREs detected at both stations. (c) Total number of VTEs detected
at both stations.

that its specificity could be set at slightly higher thresholds,
around 85 %–90 %. The main reason for the non-detection of
certain catalog-annotated events was their differing spectral
content compared to the average spectral content of the earth-
quakes annotated in the catalog. Specifically, by comparing
the spectral content of the undetected events with the average
spectral content of all the annotated events, a clear attenua-
tion of energy is observed at higher frequencies (> 15 Hz).
This characteristic is crucial, as the systems were trained with
prototype events that had a clear energy component at high
frequencies. Figure 10 illustrates a couple of examples of this
behavior. The fourth row of both Fig. 10a and b shows a clear
attenuation of energy at high frequencies and a higher level
of energy at lower and intermediate frequencies. In general,
these events reflect belonging probabilities ranging between
50 % and 80 %. This highlights the importance of adjust-

ing the specificity or sensitivity threshold when creating new
pseudo-catalogs.

Regarding the detection of events identified by the systems
but not annotated in the catalog, on average, RNN-LSTM and
Dilated-LSTM detected approximately 60 earthquake-type
events, while TCN identified over 150. Figure 11 presents
a couple of examples of such earthquakes. The PSDs reveal
that they share characteristics consistent with those of earth-
quakes. However, as indicated by the probabilities shown at
the top of the figure, their partial similarity in spectral content
prevented them from being classified with higher confidence.

Finally, it is important to discuss the recognition of events
other than earthquakes, for which no information is available
to contrast the results. Figure 9a and b shows the number of
LPE and TRE events recognized by the systems, along with
their corresponding membership probabilities. From these
figures, it can be concluded that the number of detected
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Figure 10. Example of two earthquakes annotated in the LAPALMA2021 catalog that were not detected by any of the three reference
systems. The first row corresponds to the seismogram of the event being analyzed (annotated in the catalog but not detected by any of the
systems). The second row corresponds to its spectrograms. The third and fourth rows show the average power spectral density (PSD) of
all events annotated in the catalog for that day and the PSD of the event under analysis. (a) Spectral analysis of an undetected earthquake,
where a clear attenuation of energy at high frequencies is observed. (b) Spectral analysis of an undetected earthquake, where a high energy
distribution in intermediate frequencies and attenuation at high frequencies are observed.

Figure 11. Example of two earthquakes not annotated in the LAPALMA2021 catalog that were detected by the three reference systems with
probabilities ranging from 63 % to 78 %.

events is high for both categories, and the assigned member-
ship probabilities are also relatively high, ranging from 80 %
to 95 %. Unlike earthquakes, where high-frequency energy
from external factors can lead to errors, TRE and LPE events
are highly distinctive and well-defined at low frequencies.
Since the systems were trained using parameter vectors based
on log frequency scale filter banks, which provide higher res-
olution at low frequencies than at high frequencies, the anal-
ysis of energy distribution across low frequencies is highly
reliable. Figure 12 shows an example of the LPE and TRE de-
tections. As shown, these events were recognized with very
high probabilities. Analyzing their spectral content, wave-
form, and energy reveals a perfect correlation with the char-

acteristics of the prototype events on which the systems were
trained, as illustrated in Fig. 1. Therefore, we can conclude
that a large percentage of the detected TRE and LPE events
correspond to prototype events from MASTER-DEC, which
indicates the associated source mechanism of their label. It
will be the responsibility of the volcano experts to analyze
whether these detected events share the same source mecha-
nism or whether they should be relabeled before pre-training
the systems to adjust to the volcanic environment under anal-
ysis.
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Figure 12. Example of (a) LPE detected but not annotated and (b) TRE detected but not annotated in the LAPALMA2021 catalog.

5.4 Summary of findings

The results presented in each experiment provide valuable
insights into the development of automatic recognition sys-
tems with weakly supervised pseudo-labeling, highlighting
both the strengths and limitations of the proposed methods.
By synthesizing the outcomes, we aim to offer a comprehen-
sive understanding of how leveraging an existing automatic
pseudo-labeler based on a master catalog can incorporate
prior knowledge into the new dataset under review, which
can inform future research and applications in the field.

One of the main strengths of the proposed system is its
ability to recognize previously learned prototype events, even
in volcanic environments that differ significantly from those
present in the training datasets. This feature enhances its use-
fulness in reducing biases when creating or updating cat-
alogs. The results suggest that training on a broader vari-
ety of volcanic settings with diverse event prototype dis-
tributions could improve recognition performance, fostering
the development of more generalizable and less biased cata-
logs. Nonetheless, the system also presents limitations. Since
the pseudo-catalogs are generated using models trained on a
fixed set of known seismic categories, the system is forced
to assign one of these categories to each analyzed window
even when the event does not match any known prototype.
This constraint can lead to the mislabeling of truly novel
events and, consequently, affect the performance of systems
retrained using such pseudo-labels. Addressing this issue
would require the creation of more comprehensive master
databases that incorporate a wider range of event types, ide-
ally from multiple volcanic settings. Moreover, determining
the appropriate membership threshold for including events
in the new pseudo-catalogs remains a key challenge. Low
thresholds may increase sensitivity but also introduce many
false positives – events that are dissimilar to any known pro-
totype. Retraining the systems with these catalogs could re-

duce performance and detection skills. High thresholds, on
the other hand, may improve specificity but may not be suf-
ficient to allow the system to adapt to the new volcanic en-
vironment. This trade-off highlights the importance of post-
analysis tools that assess detection confidence, which, in ad-
dition to offering insights into the presence of potentially
novel classes not covered by the original training data, also
contributes to evaluating the reliability and effectiveness of
the domain adaptation process by revealing how well the sys-
tem distinguishes between learned and unfamiliar patterns in
new volcanic environments, that is, how volcano-specific the
results are and how relevant they may be to other volcanoes.

6 Conclusions

This study provides the first comprehensive analysis of seis-
mic catalog-induced bias when developing automatic recog-
nition systems. We evaluated the ability of several monitor-
ing systems trained using a master seismic catalog from De-
ception Island volcano to adapt to a new seismic catalog from
Popocatépetl volcano through our novel, proposed weakly
supervised framework. Our results confirm the robustness
of data-driven approaches as a basis for the construction of
short-term early warning systems. However, quantitative and
qualitative analyses confirmed that the reliability of a sys-
tem is strongly biased by the incomplete coverage of the
seismic catalog. While system performance reached almost
90 % per-frame recognition accuracy, intrinsic limitations in
developing seismic catalogs led to extremely useful informa-
tion describing the volcanic behavior being ignored. Instead
of simply learning to characterize volcanic dynamics by de-
scribing the latent physical model, catalog-induced learning
can bias the system by discarding useful data describing vol-
canic dynamics. However, when a weakly supervised learn-
ing approach based on a master seismic catalog is applied,
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an indeterminate amount of information related to volcano
dynamics is revealed.

This study raises important questions about the relevance
of catalog-induced learning when developing new monitor-
ing systems. Our results demonstrate that systems based on
iterative weakly supervised or even unsupervised learning
techniques could offer a more successful approach than su-
pervised techniques under crude seismic catalogs. Therefore,
we conclude that ensuring appropriate seismic catalogs and
support for developing monitoring tools should be a priority
to the same extent as applying new and more effective AI
techniques. The use of more sophisticated pseudo-labeling
techniques involving data from several catalogs could help
develop universal monitoring tools capable of working ac-
curately across different volcanic systems, even when faced
with unforeseen temporal changes in monitored signals.

Appendix A

This section contains the information related to the F1-score
metrics and the cumulative distribution functions (CDFs) that
support the results obtained and constitute the foundation of
the conducted study.

A1 Recognition confidence analysis on the
MASTER-DEC dataset

To further support the results obtained with the MASTER-
DEC dataset, this section presents the CDFs of the recog-
nition probabilities. These CDFs demonstrate that, beyond
achieving favorable confusion matrix metrics, the system
assigns high confidence scores to most correctly classified
events, indicating strong and reliable recognition perfor-
mance.

A2 F1-score metrics and recognition confidence
analysis on the POPO2002 dataset

Table 5 in the paper refers to the best results obtained in Table
4, which were achieved using a training split of 40 % of the
total data and considering five seismic classes. This section
presents the results primarily in terms of the F1 score. This
metric provides an evaluation of the model’s performance by
considering both precision and recall, thereby strengthening
the interpretation and discussion of the results.

Table A1. Precision, recall, and F1 score for the RNN-LSTM archi-
tecture.

Class Precision Recall F1 score

BGN 0.836 0.97 0.898
TRE 0.780 0.78 0.780
HYB 0 0 0
VTE 0.864 0.51 0.640
LPE 0.680 0.85 0.750

Table A2. Precision, recall, and F1 score for the Dilated-LSTM ar-
chitecture.

Class Precision Recall F1 score

BGN 0.768 0.96 0.855
TRE 0.650 0.69 0.669
HYB 0 0 0
VTE 1.000 0.31 0.473
LPE 0.565 0.78 0.654

Table A3. Precision, recall, and F1 score for the TCN architecture.

Class Precision Recall F1 score

BGN 0.766 0.98 0.863
TRE 0.819 0.68 0.742
HYB 0 0 0
VTE 0.819 0.59 0.688
LPE 0.735 0.86 0.791

To further support the results obtained with the POPO2002
dataset, this section also presents the CDFs of the recog-
nition probabilities. These results demonstrate that the sys-
tem assigns high confidence scores to most correctly classi-
fied events, indicating strong and reliable recognition perfor-
mance.
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Figure A1. Recognition confidence analysis on the MASTER-DEC dataset. CDFs of the recognition probabilities for each event in the master
database are shown. Dilated-LSTM-2, Dilated-LSTM-3, and Dilated-LSTM-4 refer to the Dilated-LSTM architectures with two, three, and
four hidden layers, respectively, for the sake of comparison.

Figure A2. Recognition confidence analysis on the POPO2002 dataset. CDFs of the recognition probabilities for each event in the master
database, obtained using the best-performing architectures detailed in the paper.
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