Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-353-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-353-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to the Kathmandu Valley, Nepal
Harriet E. Thompson
CORRESPONDING AUTHOR
Department of Geography, King's College London, London, WC2B 4BG, UK
Joel C. Gill
School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK
Robert Šakić Trogrlić
International Institute for Applied Systems Analysis (IIASA), Laxenburg, A-2361, Austria
Faith E. Taylor
Department of Geography, King's College London, London, WC2B 4BG, UK
Bruce D. Malamud
Institute of Hazard, Risk and Resilience (IHRR), Durham University, Durham, DH1 3LE, UK
Related authors
No articles found.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Nicole van Maanen, Marleen de Ruiter, Wiebke Jäger, Veronica Casartelli, Roxana Ciurean, Noemi Padron, Anne Sophie Daloz, David Geurts, Stefania Gottardo, Stefan Hochrainer-Stigler, Abel López Diez, Jaime Díaz Pacheco, Pedro Dorta Antequera, Tamara Febles Arévalo, Sara García González, Raúl Hernández-Martín, Carmen Alvarez-Albelo, Juan José Diaz-Hernandez, Lin Ma, Letizia Monteleone, Karina Reiter, Tristian Stolte, Robert Šakić Trogrlić, Silvia Torresan, Sharon Tatman, David Romero Manrique de Lara, Yeray Hernández González, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-3075, https://doi.org/10.5194/egusphere-2025-3075, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Disaster risk management faces growing challenges from multiple, changing hazards. Interviews with stakeholders in five European regions reveal that climate change, urban growth, and socio-economic shifts increase vulnerability and exposure. Measures to reduce one risk can worsen others, highlighting the need for better coordination. The study calls for flexible, context-specific strategies that connect scientific risk assessments with real-world decision-making.
Julius Schlumberger, Tristian Stolte, Helena Margaret Garcia, Antonia Sebastian, Wiebke Jäger, Philip Ward, Marleen de Ruiter, Robert Šakić Trogrlić, Annegien Tijssen, and Mariana Madruga de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-850, https://doi.org/10.5194/egusphere-2025-850, 2025
Short summary
Short summary
The risk flood of flood impacts is dynamic as society continuously responds to specific events or ongoing developments. We analyzed 28 studies that assess such dynamics of vulnerability. Most research uses surveys and basic statistics data, while integrated, flexible models are seldom used. The studies struggle to link specific events or developments to the observed changes. Our findings highlight needs and possible directions towards a better assessment of vulnerability dynamics.
Uldis Zandovskis, Davide Pigoli, and Bruce D. Malamud
EGUsphere, https://doi.org/10.5194/egusphere-2024-2733, https://doi.org/10.5194/egusphere-2024-2733, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study looks at how lightning strikes happen over time and space, focusing on six storms in the UK during 2012 and 2015. By using real data, the research examines how often lightning strikes occur, how fast the storms move, and how far the strikes spread. The storms had different speeds (47–111 km/h) and times between strikes (0.01 to 100 seconds), with strikes spreading up to 80 km. The study’s findings help create models to better characterise severe storms.
Julius Schlumberger, Robert Šakić Trogrlić, Jeroen C. J. H. Aerts, Jung-Hee Hyun, Stefan Hochrainer-Stigler, Marleen de Ruiter, and Marjolijn Haasnoot
EGUsphere, https://doi.org/10.5194/egusphere-2024-3655, https://doi.org/10.5194/egusphere-2024-3655, 2024
Short summary
Short summary
This study presents a dashboard to help decision-makers manage risks in a changing climate. Using interactive visualizations, it simplifies complex choices, even with uncertain information. Tested with 54 users of varying expertise, it enabled accurate responses to 71–80 % of questions. Users valued its scenario exploration and detailed data features. While effective, the guidance and set of visualizations could be extended and the prototype could be adapted for broader applications.
Christopher J. White, Mohammed Sarfaraz Gani Adnan, Marcello Arosio, Stephanie Buller, YoungHwa Cha, Roxana Ciurean, Julia M. Crummy, Melanie Duncan, Joel Gill, Claire Kennedy, Elisa Nobile, Lara Smale, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-178, https://doi.org/10.5194/nhess-2024-178, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
Indicators contain observable and measurable characteristics to understand the state of a concept or phenomenon and/or monitor it over time. There have been limited efforts to understand how indicators are being used in multi-hazard and multi-risk contexts. We find most of existing indicators do not include the interactions between hazards or risks. We propose 12 recommendations to enable the development and uptake of multi-hazard and multi-risk indicators.
Hedieh Soltanpour, Kamal Serrhini, Joel C. Gill, Sven Fuchs, and Solmaz Mohadjer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1779, https://doi.org/10.5194/egusphere-2024-1779, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We applied the Maximum Entropy model to characterize multi-hazard scenarios in karst environments, focusing on flood-triggered sinkholes in Val d'Orléans, France. Karst terrains as multi-hazard forming areas, have received little attention in multi-hazard literature. Our study developed a multi-hazard susceptibility map to forecast the spatial distribution of these hazards. The findings improve understanding of hazard interactions and demonstrate the model's utility in multi-hazard analysis.
Lakshmi S. Gopal, Rekha Prabha, Hemalatha Thirugnanam, Maneesha Vinodini Ramesh, and Bruce D. Malamud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1536, https://doi.org/10.5194/egusphere-2024-1536, 2024
Short summary
Short summary
We critically reviewed 250 articles from 2010 to 2023, analysed how social media is used to manage disasters, and developed the Social Media Literature Database. We summarise the methods used for data collection and filtering. Key findings include the widespread use of the latest technologies to handle data, proficiency in spatiotemporal analysis, and gaps in community interaction and resource identification. We also propose best practices for using social media to enhance disaster management.
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Aloïs Tilloy, Bruce D. Malamud, and Amélie Joly-Laugel
Earth Syst. Dynam., 13, 993–1020, https://doi.org/10.5194/esd-13-993-2022, https://doi.org/10.5194/esd-13-993-2022, 2022
Short summary
Short summary
Compound hazards occur when two different natural hazards impact the same time period and spatial area. This article presents a methodology for the spatiotemporal identification of compound hazards (SI–CH). The methodology is applied to compound precipitation and wind extremes in Great Britain for the period 1979–2019. The study finds that the SI–CH approach can accurately identify single and compound hazard events and represent their spatial and temporal properties.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Joel C. Gill, Faith E. Taylor, Melanie J. Duncan, Solmaz Mohadjer, Mirianna Budimir, Hassan Mdala, and Vera Bukachi
Nat. Hazards Earth Syst. Sci., 21, 187–202, https://doi.org/10.5194/nhess-21-187-2021, https://doi.org/10.5194/nhess-21-187-2021, 2021
Short summary
Short summary
This paper draws on the experiences of seven early career scientists, in different sectors and contexts, to explore the improved integration of natural hazard science into broader efforts to reduce the likelihood and impacts of disasters. We include recommendations for natural hazard scientists, to improve education, training, and research design and to strengthen institutional, financial, and policy actions. We hope to provoke discussion and catalyse changes that will help reduce disaster risk.
Faith E. Taylor, Paolo Tarolli, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 20, 2585–2590, https://doi.org/10.5194/nhess-20-2585-2020, https://doi.org/10.5194/nhess-20-2585-2020, 2020
Cited articles
Adhikari, B. R., Shrestha, S. D., and Shakya, N. M.: Future Urban Water Crisis in Mountain Regions: Example of Kathmandu Valley, Nepal, in: Urban Drought, Springer, Singapore, 169–182, https://doi.org/10.1007/978-981-10-8947-3_11, 2019.
Aksha, S. K., Resler, L. M., Juran, L., and Carstensen Jr., L. W.: A geospatial analysis of multi-hazard risk in Dharan, Nepal, Geomat. Nat. Haz. Risk, 11, 88–111, https://doi.org/10.1080/19475705.2019.1710580, 2020.
Alkire, S., Kanagaratnam, U., and Suppa, N.: A methodological note on the global Multi-dimensional Poverty Index (MPI) 2023 changes over time results for 84 countries, OPHI MPI Methodological Note 57, Oxford Poverty and Human Development Initiative, https://ophi.org.uk/publications/MN-57 (last access: 2 December 2024), 2023.
Auger, C. P.: Information sources in grey literature (guides to information sources), 4, London, Bowker Saur, ISBN 9783110977233, 1998.
Bajracharya, A., Shrestha, K. K., Zwi, A. B., and Baldry, E.: Reframing Gendered Disaster: Lessons from Nepal's Indigenous women, Int. J. Disast. Risk Re., 83, 103422, https://doi.org/10.1016/j.ijdrr.2022.103422, 2022.
Bhatta, S. and Adhikari, B. R.: Comprehensive risk evaluation in Rapti Valley, Nepal: A multi-hazard approach, Progress in Disaster Science, 23, 100346, https://doi.org/10.1016/j.pdisas.2024.100346, 2024.
Boaz, A. and Hayden, C.: Pro-active evaluators: enabling research to be useful, usable and used, Evaluation, 8, 440–453, https://doi.org/10.1177/13563890260620630, 2002.
Brown, S., Budimir, M., Upadhyay Crawford, S., Clements, R., and Sneddon, A.: Gender and Age Inequality of Disaster Risk: Policy Brief, UNICEF and UN Women, https://www.unwomen.org/en/digital-library/publications/2021/11/research-paper-gender-and-age-inequality-of-disaster-risk (last access: 2 December 2024), 2019.
Chaudhary, U., Shah, M. A. R., Shakya, B. M., and Aryal, A.: Flood Susceptibility and Risk Mapping of Kathmandu Valley Watershed, Nepal, Sustainability, 16, 7101, https://doi.org/10.3390/su16167101, 2024.
Chaulagain, D., Rimal, P. R., Ngando, S. N., Nsafon, B. E. K., Suh, D., and Huh, J. S.: Flood susceptibility mapping of Kathmandu metropolitan city using GIS-based multi-criteria decision analysis, Ecol. Indic., 154, 110653, https://doi.org/10.1016/j.ecolind.2023.110653, 2023.
Chhetri, T. B., Dawadi, B., and Dhital, Y. P.: Detection of a Tornado Event on 31 March 2019 and Its Effects on the Eastern Part of Nepal, Indian Journal of Science and Technology, 12, 1–5, https://doi.org/10.17485/ijst/2019/v12i38/146311, 2019.
Ciurean, R., Gill, J., Reeves, H. J., O'Grady, S., and Aldridge, T.: Review of multi-hazards research and risk assessments, British Geological Survey, Nottingham, https://nora.nerc.ac.uk/id/eprint/524399 (last access: 2 December 2024), 2018.
Claassen, J. N., Ward, P. J., Daniell, J., Koks, E. E., Tiggeloven, T., and de Ruiter, M. C.: A new method to compile global multi-hazard event sets, Sci. Rep., 13, 13808, https://doi.org/10.1038/s41598-023-40400-5, 2023.
CRED (Centre for Research on the Epidemiology of Disasters, University of Louvain (UCLouvain)): The Emergency Events Database (EM-DAT), https://public.emdat.be/, last access: 2 December 2024.
Danegulu, A., Karki, S., Bhattarai, P. K., and Pandey, V. P.: Characterizing urban flooding in the Kathmandu Valley, Nepal: the influence of urbanization and river encroachment, Nat. Hazards, 120, 10923–10947, https://doi.org/10.1007/s11069-024-06650-w, 2024.
De Angeli, S., Malamud, B. D., Rossi, L., Taylor, F. E., Trasforini, E., and Rudari, R.: A multi-hazard framework for spatial-temporal impact analysis, Int. J. Disast. Risk Re., 73, 102829, https://doi.org/10.1016/j.ijdrr.2022.102829, 2022.
De Brito, M. M.: Compound and cascading drought impacts do not happen by chance: A proposal to quantify their relationships, Sci. Total Environ., 778, 146236, https://doi.org/10.1016/j.scitotenv.2021.146236, 2021.
De Maio, F. V., De Stefano, R., Lanfranconi, C., Osmani, S., Fuggini, C., and Basso, P.: Deliverable D2.3: A diagnosis and assessment of the primary types of cascading impacts related to European areas, Multi-hazard and Risk-informed System for Enhanced Local and Regional Disaster Risk Management (MEDiate), 77, https://mediate-project.eu/deliverables/ (last access: 2 December 2024), 2024.
De Maisonneuve, C. B. and Bergal-Kuvikas, O.: Timing, magnitude and geochemistry of major Southeast Asian volcanic eruptions: identifying tephrochronologic markers, J. Quaternary Sci., 35, 272–287, https://doi.org/10.1002/jqs.3181, 2020.
Dodman, D., Hayward, B., Pelling, M., Castan Broto, V., Chow, W., Chu, E., Dawson, R., Khirfan, L., McPhearson, T., Prakash, A., Zheng, Y., and Ziervogel, G.: Cities, Settlements and Key Infrastructure, in: Climate Change 2022: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 907–1040, https://doi.org/10.1017/9781009325844.008, 2022.
Dowse, L., Holland, G., Johnson, R., Li, R., and Aiken Winter, J.: Scoping Kathmandu: Exploring settlements, the city and the valley, CASS Faculty of Art, Architecture and Design, London Metropolitan University, https://www.academia.edu/9126743/Scoping_Kathmandu_Exploring_Settlements_the_City_and_the_Valley_by_ARCSR (last access: 5 December 2024), 2014.
Dunant, A., Robinson, T. R., Densmore, A. L., Rosser, N. J., Rajbhandari, R. M., Kincey, M., Li, S., Awasthi, P. R., Van Wyk de Vries, M., Guragain, R., Harvey, E., and Dadson, S.: Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1374, 2024.
Duncan, M. J.: Multi-hazard assessments for disaster risk reduction: lessons from the Philippines and applications for non-governmental organisations, PhD thesis, University College London, London, https://discovery.ucl.ac.uk/id/eprint/1452516 (last access: 5 December 2024), 2014.
Gautam, D., Adhikari, R., Jha, P., Rupakhety, R., and Yadav, M.: Windstorm vulnerability of residential buildings and infrastructures in south-central Nepal, J. Wind Eng. Ind. Aerod., 198, 104113, https://doi.org/10.1016/j.jweia.2020.104113, 2020.
Gautam, D., Thapa, S., Pokhrel, S., and Lamichhane, S.: Local level multi-hazard zonation of Nepal, Geomat. Nat. Haz. Risk, 12, 405–423, https://doi.org/10.1080/19475705.2021.1879941, 2021.
Gill, J. C. and Malamud, B. D.: Reviewing and visualising the interactions of natural hazards, Rev. Geophys., 52, 680–722, https://doi.org/10.1002/2013RG000445, 2014.
Gill, J. C. and Malamud, B. D.: Hazard interactions and interaction networks (cascades) within multi-hazard methodologies, Earth Syst. Dynam., 7, 659–679, https://doi.org/10.5194/esd-7-659-2016, 2016.
Gill, J. C. and Malamud, B. D.: Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework, Earth-Sci. Rev., 166, 246–269, https://doi.org/10.1016/j.earscirev.2017.01.002, 2017.
Gill, J. C., Malamud, B. D., Barillas, E. M., and Guerra Noriega, A.: Construction of regional multi-hazard interaction frameworks, with an application to Guatemala, Nat. Hazards Earth Syst. Sci., 20, 149–180, https://doi.org/10.5194/nhess-20-149-2020, 2020.
Gill, J. C., Hussain, E., and Malamud, B. D.: Workshop Report: Multi-Hazard Risk Scenarios for Tomorrow's Cities, Tomorrow's Cities project team, https://doi.org/10.7488/era/1005, 2021a.
Gill, J. C., Taylor, F. E., Duncan, M. J., Mohadjer, S., Budimir, M., Mdala, H., and Bukachi, V.: Invited perspectives: Building sustainable and resilient communities – recommended actions for natural hazard scientists, Nat. Hazards Earth Syst. Sci., 21, 187–202, https://doi.org/10.5194/nhess-21-187-2021, 2021b.
Gill, J. C., Duncan, M., Ciurean, R., Smale, L., Stuparu, D., Schlumberger, J., de Ruiter M., Tiggeloven, T., Torresan, S., Gottardo, S., Mysiak, J., Harris, R., Petrescu, E.-C., Girard, T., Khazai, B., Claassen, J., Dai, R., Champion, A., Daloz, A. S., Cipollone, F. B., Torres, C. C., Antolin, I. P., Ferrario, D., Tatman, S., Tijssen, A., Vaidya, S., Adesiyun, A., Goger, T., Angiuli, A., Audren, M., Machado, M., Hochrainer-Stigler, S., Šakić Trogrlić, R., Daniell, J., Bulder, B., Swamy, S. K., Wiggelinkhuizen; E.-J., Pacheco, J. D., Díez, A. L., Jiménez, J. M, Padrón-Fumero, N., Appulo, L., Orth, R., Sillmann, J., and Ward, P.: MYRIAD-EU D1.2 Handbook of Multihazard, Multi-Risk Definitions and Concepts, H2020 MYRIAD-EU Project, grant no. 101003276, 75 pp., https://doi.org/10.5281/zenodo.7135138, 2022.
Gorman-Murray, A., McKinnon, S., Dominey-Howes, D., Nash, C. J., and Bolton, R.: Listening and learning: Giving voice to trans experiences of disasters, Gender Place Cult., 25, 166–187, https://doi.org/10.1080/0966369X.2017.1334632, 2018.
Government of Nepal, Ministry of Home Affairs: Disaster Risk Reduction National Strategic Plan of Action 2018–2030, United Nations Development Programme, Kathmandu, Nepal, https://www.preventionweb.net/publication/nepal-disaster-risk-reduction-national-strategic-plan-action-2018-2030 (last access: 7 December 2024), 2018.
Grant, M. J. and Booth, A.: A typology of reviews: an analysis of 14 review types and associated methodologies, Health Info. Libr. J., 26, 91–108, https://doi.org/10.1111/j.1471-1842.2009.00848.x, 2009.
Gustafsson, V. S., Hjerpe, M., and Strandberg, G.: Construction of a national natural hazard interaction framework: The case of Sweden, Iscience, 26, 106501, https://doi.org/10.1016/j.isci.2023.106501, 2023.
Hallegatte, S., Vogt-Schilb, A., Rozenberg, J., Bangalore, M., and Beaudet, C.: From Poverty to Disaster and Back: a Review of the Literature, Economics of Disasters and Climate Change, 4, 223–247, https://doi.org/10.1007/s41885-020-00060-5, 2020.
Hochrainer-Stigler, S., Trogrlić, R.Š., Reiter, K., Ward, P. J., de Ruiter, M. C., Duncan, M. J., Torresan, S., Ciurean, R., Mysiak, J., Stuparu, D., and Gottardo, S.: Toward a framework for systemic multi-hazard and multi-risk assessment and management, Iscience, 26, 106736, https://doi.org/10.1016/j.isci.2023.106736, 2023.
International Institute for Environment and Development (IIED): In the Grip of Drought, YouTube, https://www.youtube.com/watch?v=GVVbGSzr_nc (last access: 13 August 2021), 2010.
International Labour Organization (ILO): Nepal Labour Market Update, ILO Country Office for Nepal, Kathmandu, https://www.ilo.org/wcmsp5/groups/public/---asia/---ro-bangkok/---ilo-kathmandu/documents/publication/wcms_543497.pdf (last access: 7 December 2024), 2017.
James, K. L., Randall, N. P., and Haddaway, N. R.: A methodology for systematic mapping in environmental sciences, Environmental Evidence, 5, 1–13, https://doi.org/10.1186/s13750-016-0059-6, 2016.
Jäger, W. S., de Ruiter, M. C., Tiggeloven, T., and Ward, P. J.: What can we learn from global disaster records about multi-hazards and their risk dynamics?, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2024-134, in review, 2024.
Kappes, M. S., Keiler, M., and Glade, T.: From Single- to Multi-Hazard Risk Analyses: a concept addressing emerging challenges, in: Proceedings of the Mountain Risks International Conference, edited by: Malet, J. P., Glade, T., and Casagli, N., 351–356, ISBN 2-95183317-1-5, 2010.
Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington, A., Fielding, E. J., Fujita, K., Geertsema, M., Miles, E. S., Steiner, J., and Anderson, E.: Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake, Science, 351, aac8353, https://doi.org/10.1126/science.aac8353, 2015.
Khan, S.: A geographical assessment of hazardscape of Wellington region: influences on intra-regional response, PhD thesis, Victoria University of Wellington, Wellington, 421, https://doi.org/10.26686/wgtn.16968442, 2009.
Khanal, K. and Khanal, S. P.: The Study of Slum Definitions, its Demographic Characteristic and Distribution Patterns in Kathmandu Valley, Nepal, Nepal J. Math. Sci., 3, 59–74, https://doi.org/10.3126/njmathsci.v3i1.44126, 2022.
Khatakho, R., Gautam, D., Aryal, K. R., Pandey, V. P., Rupakhety, R., Lamichhane, S., Liu, Y. C., Abdouli, K., Talchabhadel, R., Thapa, B. R., and Adhikari, R.: Multi-hazard risk assessment of Kathmandu Valley, Nepal, Sustainability, 13, 5369, https://doi.org/10.3390/su13105369, 2021.
Lee, R., White, C. J., Adnan, M. S. G., Douglas, J., Mahecha, M. D., O'Loughlin, F. E., Patelli, E., Ramos, A. M., Roberts, M. J., Martius, O., and Tubaldi, E.: Reclassifying historical disasters: From single to multi-hazards, Sci. Total Environ., 912, 169120, https://doi.org/10.1016/j.scitotenv.2023.169120, 2024.
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound event framework for understanding extreme impacts, Wires Clim. Change, 5, 113–128, https://doi.org/10.1002/wcc.252, 2014.
Liu, B., Siu, Y. L., and Mitchell, G.: Hazard interaction analysis for multi-hazard risk assessment: a systematic classification based on hazard-forming environment, Nat. Hazards Earth Syst. Sci., 16, 629–642, https://doi.org/10.5194/nhess-16-629-2016, 2016.
Magar, S. G.: The Tamang epicentre, https://archive.nepalitimes.com/article/nation/april-25-earthquake-tamang-epicentre,2407 (last access: 2 December 2024), 2015.
Mallapaty, S.: Nepali scientists record country's first tornado, Springer Nature, https://doi.org/10.1038/d41586-019-01159-w, 2019.
Manning, J.: Becoming a decolonial feminist ethnographer: Addressing the complexities of positionality and representation, Manage. Learn., 49, 311–326, https://doi.org/10.1177/1350507617745275, 2018.
Matanó, A., de Ruiter, M. C., Koehler, J., Ward, P. J., and Van Loon, A. F.: Caught Between Extremes: Understanding Human-Water Interactions During Drought-To-Flood Events in the Horn of Africa, Earth's Future, 10, e2022EF002747, https://doi.org/10.1029/2022EF002747, 2022.
Mishra, M.: Fieldwork among Women in Nepal: A Female Researcher Revisits Her Experience, Dhaulagiri Journal of Sociology and Anthropology, 12, 27–36, https://doi.org/10.3126/dsaj.v12i0.22177, 2018.
Mishra, B. K., Kobayashi, K., Murata, A., Fukui, S., and Suzuki, K.: Hydrologic modeling and flood-frequency analysis under climate change scenario, Modeling Earth Systems and Environment, 10, 1–13, https://doi.org/10.1007/s40808-024-02082-4, 2024.
Molden, O. and McMahon, T.: In Nepal's weather, erratic is the new normal, https://nepalitimes.com/here-now/in-nepal-s-weather-erratic-is-the-new-normal (last access: 2 December 2024), 2019.
Murray, V., Abrahams, J., Abdallah, C., Ahmed, K., Angeles, L., Benouar, D., Brenes Torres, A., Chang Hun, C., Cox, S., Douris, J., Fagan, L., Fra Paleo, U., Han, Q., Handmer, J., Hodson, S., Khim, W., Mayner, L., Moody, N., Moraes, L. L., Osvaldo; Nagy, M., Norris, J., Peduzzi, P., Perwaiz, A., Peters, K., Radisch, J., Reichstein, M., Schneider, J., Smith, A., Souch, C., Stevance A. Triyanti, A., Weir, M., and Wright, N.: Hazard Information Profiles: Supplement to UNDRR-ISC Hazard Definition & Classification Review: Technical Report, United Nations Office for Disaster Risk Reduction and International Science Council, https://www.undrr.org/publication/hazard-information-profiles-hips (last access: 7 December 2024), 2021.
Mustafa, D.: The Production of an Urban Hazardscape in Pakistan: Modernity, Vulnerability, and the Range of Choice, Ann. Assoc. Am. Geogr., 95, 566–586, https://doi.org/10.1111/j.1467-8306.2005.00475.x, 2005.
National Statistics Office, Government of Nepal: National Population and Housing Census 2021 (National Report), National Statistics Office, Government of Nepal, Kathmandu, 614 pp., ISBN 978-9937-1-3221-3, 2023.
NDRRMA (National Disaster Risk Reduction and Management Authority, Government of Nepal): BIPAD Portal (Building Information Platform Against Disasters Portal), NDRRMA [data set], https://bipadportal.gov.np/, last access: 2 December 2024.
Nehren, U., Subedi, J., Yanakieva, I., Sandholz, S., Pokharel, J., Lal, A.C., Pradhan-Salike, I., Marfai, M. A., Hadmoko, D. S., and Straub, G.: Community perception on climate change and climate-related disaster preparedness in Kathmandu Valley, Nepal, JNRD-Journal of Natural Resources and Development, 3, 35–57, https://doi.org/10.5027/jnrd.v3i0.04, 2013.
Nepal DRR Portal (Nepal Disaster Risk Reduction Portal): https://drrportal.gov.np/, last access: 11 April 2024.
Neri, A., Aspinall, W. P., Cioni, R., Bertagnini, A., Baxter, P. J., Zuccaro, G., Andronico, D., Barsotti, S., Cole, P. D., Ongaro, T. E., and Hincks, T. K.: Developing an event tree for probabilistic hazard and risk assessment at Vesuvius, J. Volcanol. Geoth. Res., 178, 397–415, https://doi.org/10.1016/j.jvolgeores.2008.05.014, 2008.
Osuteye, E., Johnson, C., and Brown, D.: The data gap: An analysis of data availability on disaster losses in sub-Saharan African cities, Int. J. Disast. Risk Re., 26, 24–33, https://doi.org/10.1016/j.ijdrr.2017.09.026, 2017.
Owolabi, T. A. and Sajjad, M.: A global outlook on multi-hazard risk analysis: A systematic and scientometric review, Int. J. Disast. Risk Re., 92, 103727, https://doi.org/10.1016/j.ijdrr.2023.103727, 2023.
Ozkazanc-Pan, B.: Postcolonial feminist research: challenges and complexities, Equality, Diversity and Inclusion: An International Journal, 31, 573–591, https://doi.org/10.1108/02610151211235532, 2012.
Panta, N.: Damage and loss data standards for BIPAD, Youth Innovation Lab, Kathmandu, 27 pp., https://www.preventionweb.net/publication/damage-and-loss-data-standards-bipad (last access: 7 December 2024), 2020.
Paudyal, K., Baral, H., Burkhard, B., Bhandari, S. P., and Keenan, R. J.: Participatory assessment and mapping of ecosystem services in a data-poor region: Case study of community-managed forests in central Nepal, Ecosyst. Serv., 13, 81–92, https://doi.org/10.1016/j.ecoser.2015.01.007, 2015.
Payo, A., Arnhardt, R., Galindo, A. C. R., Van Dong, P., Guzman, M. A. L. G., Hatta, Y. O., Bevan, A., and Monje, J. C. N.: Developing an open database to support forensic investigation of disasters in South East Asia: FORINSEA v1.0, Front. Earth Sci., 10, 833599, https://doi.org/10.3389/feart.2022.833599, 2022.
Pelling, M., Maskrey, A., Ruiz, P., Hall, L., Peduzzi, P., Dao, Q. H., Mouton, F., Herold, C., and Kluser, S.: Reducing disaster risk: a challenge for development, United Nations Development Bank, Bureau for Crisis Prevention and Recovery, New York, 161, ISBN 9211261600, 2004.
Poudel, D. P., Ensor, J., and Barcena, A.: Production of Risks and Local Risk Governance in Kathmandu Valley, Tomorrow's Cities Working Paper, Tomorrow's Cities, 36 pp., https://doi.org/10.7488/era/1947, 2021.
Pradhan, B., Sharma, P., and Pradhan, P. K.: Urban growth and environment and health hazards in Kathmandu Valley, Nepal, in: Urban Health Risk and Resilience in Asian Cities, edited by: Singh, R. B., Srinagesh B., and Anand, S., Springer, 293–324, https://doi.org/10.1007/978-981-15-1205-6_17, 2020.
Pradhan-Salike, I. and Pokharel, J. R.: Impact of urbanisation and climate change on urban flooding: a case of the Kathmandu valley, JNRD-Journal of Natural Resources and Development, 7, 56–66, https://doi.org/10.5027/jnrd.v7i0.07, 2017.
Rajendran, C. P.: Constraints on previous earthquakes from the liquefaction sites in the Kathmandu Valley associated with the 2015 Gorkha earthquake and their regional implications, Quatern. Int., 585, 44–54, https://doi.org/10.1016/j.quaint.2020.10.053, 2021.
ReliefWeb: Nepal: Floods and Landslides – Jun 2021, https://reliefweb.int/disaster/fl-2021-000134-npl, last access: 8 September 2021.
Riddell, G. A., van Delden, H., Maier, H. R., and Zecchin, A. C.: Exploratory scenario analysis for disaster risk reduction: Considering alternative pathways in disaster risk assessment, Int. J. Disast. Risk Re., 39, 101230, https://doi.org/10.1016/j.ijdrr.2019.101230, 2019.
Royal Academy of Engineering: Building resilience: lessons from the Academy's review of the National Security Risk Assessment methodology, Royal Academy of Engineering, 58 pp., https://raeng.org.uk/news/lessons-to-be-learned-from-academy-review-of-the-uk-national-security-risk-assessment (last access: 7 December 2024), 2023.
Šakić Trogrlić, R., Donovan, A., and Malamud, B. D.: Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals, Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, 2022.
Šakić Trogrlić, R., Reiter, K., Ciurean, R. L., Gottardo, S., Torresan, S., Daloz, A. S., Ma, L., Fumero, N. P., Tatman, S., Hochrainer-Stigler, S., and de Ruiter, M. C.: Challenges in assessing and managing multi-hazard risks: A European stakeholders perspective, Environ. Sci. Policy, 157, 103774, https://doi.org/10.1016/j.envsci.2024.103774, 2024a.
Šakić Trogrlić, R., Thompson, H. E., Menteşe, E. Y., Hussain, E., Gill, J. C., Taylor, F. E., Mwangi, E., Öner, E., Bukachi, V. G., and Malamud, B. D.: Multi-hazard Interrelationships and Risk Scenarios in Urban Areas: A Case of Nairobi and Istanbul, Earth's Future, 12, e2023EF004413, https://doi.org/10.1029/2023EF004413, 2024b.
Scolobig, A., Prior, T., Schröter, D., Jörin, J., and Patt, A.: Towards people-centred approaches for effective disaster risk management: Balancing rhetoric with reality, Int. J. Disast. Risk Re., 12, 202–212, https://doi.org/10.1016/j.ijdrr.2015.01.006, 2015.
Scolobig, A., Komendantova, N., and Mignan, A.: Mainstreaming multi-risk approaches into policy, Geosciences, 7, 129, https://doi.org/10.3390/geosciences7040129, 2017.
Secor, A.J.: Chapter 12: Social Surveys, Interviews, and Focus Groups, in: Research Methods in Geography: A Critical Introduction, edited by: Gomez, B. and Jones III, J. P., Blackwell Publishing, 194–205, ISBN 978-1-444-32773-1, 2010.
Sharma, V. and Biswas, R.: Statistical analysis of seismic b-value using non-parametric Kolmogorov–Smirnov test and probabilistic seismic hazard parametrization for Nepal and its surrounding regions, Nat. Hazards, 120, 1–28, https://doi.org/10.1007/s11069-024-06531-2, 2024.
Sharma, S., Talchabhadel, R., Nepal, S., Ghimire, G. R., Rakhal, B., Panthi, J., Adhikari, B. R., Pradhanang, S. M., Maskey, S., and Kumar, S.: Increasing risk of cascading hazards in the central Himalayas, Nat. Hazards, 119, 1117–1126, https://doi.org/10.1007/s11069-022-05462-0, 2023.
Spoon, J., Hunter, C. E., Gerkey, D., Chhetri, R. B., Rai, A., Basnet, U., and Dewan, A.: Anatomy of disaster recoveries: Tangible and intangible short-term recovery dynamics following the 2015 Nepal earthquakes, Int. J. Disast. Risk Re., 51, 101879, https://doi.org/10.1016/j.ijdrr.2020.101879, 2020.
Stolte, T. R., Koks, E. E., de Moel, H., Reimann, L., van Vliet, J., de Ruiter, M. C., and Ward, P. J.: Research brief: VulneraCity: the most comprehensive database of urban vulnerability drivers and dynamics, MYRIAD-EU project, Zenodo [data set], https://doi.org/10.5281/zenodo.12755274, 2024.
Strong, K., Carpenter, O., and Ralph, D.: Scenario Best Practices: Developing Scenarios for Disaster Risk Reduction, Cambridge Centre for Risk Studies at the University of Cambridge Judge Business School and Lighthill Risk Network, 44 pp., https://www.jbs.cam.ac.uk/centres/risk/publications/natural-catastrophe-and-climate/developing-scenarios-for-disaster-risk-reduction/ (last access: 7 December 2024), 2020.
Subedi, B.: Theorising a “halfie” researcher's identity in transnational fieldwork, International Journal of Qualitative Studies in Education, 19, 573–593, https://doi.org/10.1080/09518390600886353, 2006.
Survey Department, Government of Nepal: New political and administrative boundaries, Shapefile of Nepal, Open Data Nepal [data set], https://opendatanepal.com/dataset/new-political-and-administrative-boundaries-shapefile-of-nepal (last access: 7 December 2024), 2020.
Takai, N., Shigefuji, M., Rajaure, S., Bijukchhen, S., Ichiyanagi, M., Dhital, M. R., and Sasatani, T.: Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake, Earth Planets Space, 68, 1–8, https://doi.org/10.1186/s40623-016-0383-7, 2016.
Tamrakar, A. and Bajracharya, R.: Standardization of Loss and Damage Datasets on BIPAD, Youth Innovation Lab, Kathmandu, 33 pp., https://www.preventionweb.net/publication/standardization-loss-and-damage-datasets-bipad (last access: 7 December 2024), 2020.
Tarvainen, T., Jarva, J., and Greiving, S.: Spatial pattern of hazards and hazard interactions in Europe, Geol. S. Finl., 42, 83–91, https://www.researchgate.net/publication/291079839_Spatial_pattern_of_hazards_and_hazard_interactions_in_Europe (last access: 7 December 2024), 2006.
Taylor, F. E., Malamud, B. D., Freeborough, K., and Demeritt, D.: Enriching Great Britain's national landslide database by searching newspaper archives, Geomorphology, 249, 52–68, https://doi.org/10.1016/j.geomorph.2015.05.019, 2015.
Taylor, F. E., Millington, J. D., Jacob, E., Malamud, B. D., and Pelling, M.: Messy maps: Qualitative GIS representations of resilience, Landscape Urban Plan., 198, 103771, https://doi.org/10.1016/j.landurbplan.2020.103771, 2020.
Thompson, H. E., Gill, J. C., Šakić Trogrlić, R., Taylor, F. E, and Malamud, B. D.: Kathmandu Valley Single Hazards and Multi-Hazard Interrelationships Database, Zenodo [data set], https://doi.org/10.5281/zenodo.13749299, 2024.
Tilloy, A., Malamud, B. D., Winter, H., and Joly-Laugel, A.: A review of quantification methodologies for multi-hazard interrelationships, Earth-Sci. Rev., 196, 102881, https://doi.org/10.1016/j.earscirev.2019.102881, 2019.
Timsina, N. P., Shrestha, A., Poudel, D. P., and Upadhyaya, R.: Trend of urban growth in Nepal with a focus in Kathmandu Valley: A review of processes and drivers of change, Tomorrow's Cities, Kathmandu, Nepal, 29 pp., https://era.ed.ac.uk/handle/1842/37436 (last access: 14 June 2024), 2020.
Titz, A.: Geographies of doing nothing–internal displacement and practices of post-disaster recovery in urban areas of the Kathmandu valley, Nepal, Soc. Sci., 10, 110, https://doi.org/10.3390/socsci10030110, 2021.
Tiwari, R. K. and Paudyal, H.: Analysis of the b, p values, and the fractal dimension of aftershocks sequences following two major earthquakes in central Himalaya, Heliyon, 10, E24476, https://doi.org/10.1016/j.heliyon.2024.e24476, 2024.
UNDP (United Nations Development Programme): Human Development Report 2021–22: Uncertain Times, Unsettled Lives: Shaping our Future in a Transforming World, UNDP, New York, 320 pp., https://hdr.undp.org/content/human-development-report-2021-22 (last access: 17 December 2024), 2022.
UNDRR (United Nations Office for Disaster Risk Reduction): Sendai Framework for Disaster Risk Reduction 2015–2030, United Nations General Assembly, https://www.preventionweb.net/files/resolutions/N1516716.pdf (last access: 7 December 2024), 2015.
UNDRR (United Nations Office for Disaster Risk Reduction): Disaster impact, https://www.undrr.org/terminology/disaster (last access: 10 September 2024), 2017a.
UNDRR (United Nations Office for Disaster Risk Reduction): Terminology: Hazard, https://www.undrr.org/terminology/hazard (last access: 20 October 2021), 2017b.
UNDRR (United Nations Office for Disaster Risk Reduction): Disaster Risk Reduction in Nepal: Status Report 2019, UNDRR, Regional Office for Asia and the Pacific, Bangkok, Thailand, https://www.undrr.org/publication/disaster-risk-reduction-nepal-status-report-2019 (last access: 7 December 2024), 2019.
UNDRR (United Nations Office for Disaster Risk Reduction): The Report of the Midterm Review of the Implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030, UNDRR, Geneva, Switzerland, https://www.undrr.org/publication/report-midterm-review-implementation-sendai-framework-disaster-risk-reduction-2015-2030 (last access: 7 December 2024), 2023.
UNDRR (United Nations Office for Disaster Risk Reduction): DesInventar Sendai, UNDRR [data set], https://www.desinventar.net/, last access: 5 December 2024.
Van Westen, C., Kappes, M. S., Luna, B. Q., Frigerio, S., Glade, T., and Malet, J. P.: Medium-scale multi-hazard risk assessment of gravitational processes, in: Mountain risks: from prediction to management and governance, edited by: Van Asch, T., Corominas, J., Greiving, S., Malet, J. P., and Sterlacchini, S., Springer, Dordrecht, 201–231, https://doi.org/10.1007/978-94-007-6769-0_7, 2014.
Ward, P. J., Daniell, J., Duncan, M., Dunne, A., Hananel, C., Hochrainer-Stigler, S., Tijssen, A., Torresan, S., Ciurean, R., Gill, J. C., Sillmann, J., Couasnon, A., Koks, E., Padrón-Fumero, N., Tatman, S., Tronstad Lund, M., Adesiyun, A., Aerts, J. C. J. H., Alabaster, A., Bulder, B., Campillo Torres, C., Critto, A., Hernández-Martín, R., Machado, M., Mysiak, J., Orth, R., Palomino Antolín, I., Petrescu, E.-C., Reichstein, M., Tiggeloven, T., Van Loon, A. F., Vuong Pham, H., and de Ruiter, M. C.: Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment, Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, 2022.
Whelley, P. L., Newhall, C. G., and Bradley, K. E.: The frequency of explosive volcanic eruptions in Southeast Asia, B. Volcanol., 77, 1–11, https://doi.org/10.1007/s00445-014-0893-8, 2015.
Whitworth, M. R. Z., Boulton, S., and Jones, J.: Implementing the Sendai Framework in developing countries using remote sensing techniques for the evaluation of natural hazards, International Association of Lowland Technology (IALT), Special Issue on: Engineering Geology and Geotechniques for Developing Countries, https://pearl.plymouth.ac.uk/gees-research/727 (last access: 7 December 2024), 2020.
Wilmsen, C.: Chapter 10: Extraction, empowerment, and relationships in the practice of participatory research, in: Towards Quality Improvement of Action Research, edited by: Boog, B., Slager, M., Preece, J., and Zeelen, J., Brill, 135–146, ISBN 978-90-8790-594-1, 2008.
Wolf, D. L.: Chapter 1: Situating Feminist Dilemmas in Fieldwork, in: Feminist Dilemmas in Fieldwork, edited by: Wolf, D. L., Routledge, https://doi.org/10.4324/9780429493843-1, 2018.
World Bank Group and Asian Development Bank: Climate Risk Country Profile: Nepal, https://climatenepal.org.np/resources/climate-risk-country-profile, last access: 21 October 2021.
Ybañez, R., Lagmay, A. M. F., and Malamud, B.: A Systematic Overview of Hazard Interrelationships in the Philippines, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4275, https://doi.org/10.5194/egusphere-egu24-4275, 2024.
Zuccaro, G., De Gregorio, D., and Leone, M. F.: Theoretical model for cascading effects analyses, Int. J. Disast. Risk Re., 30, 199–215, https://doi.org/10.1016/j.ijdrr.2018.04.019, 2018.
Executive editor
The manuscript offers significant contributions that justify its consideration as a highlight paper:
It presents a novel, multifaceted methodology for identifying and compiling single hazard types and multi-hazard interrelationships in data-scarce urban settings, which is applied in the context of Kathmandu Valley, Nepal. The research provides a comprehensive database of 21 single hazard types and 83 multi-hazard interrelationships, contributing critical insights for disaster risk reduction (DRR) in “Global South” urban areas, with an emphasis on inclusive, people-centred approaches. By integrating stakeholder perspectives and multi-hazard scenario generation, the paper advances the development of dynamic risk scenarios, strengthening multi-hazard approaches for disaster preparedness and response.
The manuscript offers significant contributions that justify its consideration as a highlight...
Short summary
We present a methodology to compile single hazards and multi-hazard interrelationships in data-scarce urban settings, which we apply to the Kathmandu Valley, Nepal. Using blended sources, we collate evidence of 21 single natural hazard types and 83 multi-hazard interrelationships that could impact the Kathmandu Valley. We supplement these exemplars with multi-hazard scenarios developed by practitioner stakeholders, emphasising the need for inclusive disaster preparedness and response approaches.
We present a methodology to compile single hazards and multi-hazard interrelationships in...
Altmetrics
Final-revised paper
Preprint