Articles | Volume 25, issue 8
https://doi.org/10.5194/nhess-25-2613-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2613-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Is considering (in)consistency between runs so useless for weather forecasting?
CNRM, Toulouse University, Météo-France and CNRS, Toulouse, France
François Bouttier
CNRM, Toulouse University, Météo-France and CNRS, Toulouse, France
Olivier Nuissier
CNRM, Toulouse University, Météo-France and CNRS, Toulouse, France
Related authors
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Maryse Charpentier-Noyer, Daniela Peredo, Axelle Fleury, Hugo Marchal, François Bouttier, Eric Gaume, Pierre Nicolle, Olivier Payrastre, and Maria-Helena Ramos
Nat. Hazards Earth Syst. Sci., 23, 2001–2029, https://doi.org/10.5194/nhess-23-2001-2023, https://doi.org/10.5194/nhess-23-2001-2023, 2023
Short summary
Short summary
This paper proposes a methodological framework designed for event-based evaluation in the context of an intense flash-flood event. The evaluation adopts the point of view of end users, with a focus on the anticipation of exceedances of discharge thresholds. With a study of rainfall forecasts, a discharge evaluation and a detailed look at the forecast hydrographs, the evaluation framework should help in drawing robust conclusions about the usefulness of new rainfall ensemble forecasts.
Cloé David, Clotilde Augros, Benoit Vié, François Bouttier, and Tony Le Bastard
Atmos. Meas. Tech., 18, 3715–3745, https://doi.org/10.5194/amt-18-3715-2025, https://doi.org/10.5194/amt-18-3715-2025, 2025
Short summary
Short summary
Simulations of storm characteristics and associated radar signatures were improved, especially under the freezing level, using an advanced cloud scheme. Discrepancies between observations and forecasts at and above the melting layer highlighted issues in both the radar forward operator and the microphysics. To overcome some of these issues, different parameterizations of the operator were suggested. This work aligns with the future integration of polarimetric data into assimilation systems.
Gabriel Colas, Valéry Masson, François Bouttier, and Ludovic Bouilloud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2777, https://doi.org/10.5194/egusphere-2025-2777, 2025
Short summary
Short summary
Each vehicle from road traffic is a source of heat and an obstacle that induce wind when it passes. It directly impacts the local atmospheric conditions and the road surface temperature. These impacts are included in the numerical model of the Town Energy Balance, used to simulate local conditions in urbanised environments. Simulations show that road traffic has a significant impact on the road surface temperature up to several degrees, and on local variables.
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025, https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
Short summary
In winter, snow- and ice-covered artificial surfaces are important aspects of the urban climate. They may influence the magnitude of the urban heat island effect, but this is still unclear. In this study, we improved the representation of the snow and ice cover in the Town Energy Balance (TEB) urban climate model. Evaluations have shown that the results are promising for using TEB to study the climate of cold cities.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Juliette Godet, Olivier Payrastre, Pierre Javelle, and François Bouttier
Nat. Hazards Earth Syst. Sci., 23, 3355–3377, https://doi.org/10.5194/nhess-23-3355-2023, https://doi.org/10.5194/nhess-23-3355-2023, 2023
Short summary
Short summary
This article results from a master's research project which was part of a natural hazards programme developed by the French Ministry of Ecological Transition. The objective of this work was to investigate a possible way to improve the operational flash flood warning service by adding rainfall forecasts upstream of the forecasting chain. The results showed that the tested forecast product, which is new and experimental, has a real added value compared to other classical forecast products.
Maryse Charpentier-Noyer, Daniela Peredo, Axelle Fleury, Hugo Marchal, François Bouttier, Eric Gaume, Pierre Nicolle, Olivier Payrastre, and Maria-Helena Ramos
Nat. Hazards Earth Syst. Sci., 23, 2001–2029, https://doi.org/10.5194/nhess-23-2001-2023, https://doi.org/10.5194/nhess-23-2001-2023, 2023
Short summary
Short summary
This paper proposes a methodological framework designed for event-based evaluation in the context of an intense flash-flood event. The evaluation adopts the point of view of end users, with a focus on the anticipation of exceedances of discharge thresholds. With a study of rainfall forecasts, a discharge evaluation and a detailed look at the forecast hydrographs, the evaluation framework should help in drawing robust conclusions about the usefulness of new rainfall ensemble forecasts.
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary
Short summary
This study focuses on the heavy precipitation event of 14 and 15 October 2018, which caused deadly flash floods in the Aude basin in south-western France.
The case is studied from a meteorological point of view using various operational numerical weather prediction systems, as well as a unique combination of observations from both standard and personal weather stations. The peculiarities of this case compared to other cases of Mediterranean heavy precipitation events are presented.
Christian Keil, Lucie Chabert, Olivier Nuissier, and Laure Raynaud
Atmos. Chem. Phys., 20, 15851–15865, https://doi.org/10.5194/acp-20-15851-2020, https://doi.org/10.5194/acp-20-15851-2020, 2020
Short summary
Short summary
During strong synoptic control, which dominates the weather on 80 % of the days in the 2-month HyMeX-SOP1 period, the domain-integrated precipitation predictability assessed with the normalized ensemble standard deviation is above average, the wet bias is smaller and the forecast quality is generally better. In contrast, the spatial forecast quality of the most intense precipitation in the afternoon, as quantified with its 95th percentile, is superior during weakly forced synoptic regimes.
Olivier Nuissier, Fanny Duffourg, Maxime Martinet, Véronique Ducrocq, and Christine Lac
Atmos. Chem. Phys., 20, 14649–14667, https://doi.org/10.5194/acp-20-14649-2020, https://doi.org/10.5194/acp-20-14649-2020, 2020
Short summary
Short summary
This present article demonstrates how numerical simulations with very high horizontal resolution (150 m) can contribute to better understanding the key physical processes (turbulence and microphysics) that lead to Mediterranean heavy precipitation.
Cited articles
Anagnostou, E. N., Negri, A. J., and Adler, R. F.: A satellite infrared technique for diurnal rainfall variability studies, J. Geophys. Res.-Atmos., 104, 31477–31488, https://doi.org/10.1029/1999jd900157, 1999. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Ben Bouallègue, Z.: Calibrated short-range ensemble precipitation forecasts using extended logistic regression with interaction terms, Weather Forecast., 28, 515–524, https://doi.org/10.1175/waf-d-12-00062.1, 2013. a, b, c
Ben Bouallègue, Z. and Theis, S. E.: Spatial techniques applied to precipitation ensemble forecasts: from verification results to probabilistic products, Meteorol. Appl., 21, 922–929, https://doi.org/10.1002/met.1435, 2013. a, b, c
Ben Bouallègue, Z., Theis, S. E., and Gebhardt, C.: Enhancing COSMO-DE ensemble forecasts by inexpensive techniques, Meteorol. Z., 22, 49–59, https://doi.org/10.1127/0941-2948/2013/0374, 2013. a, b
Ben Bouallègue, Z., Haiden, T., Weber, N. J., Hamill, T. M., and Richardson, D. S.: Accounting for representativeness in the verification of ensemble precipitation forecasts, Mon. Weather Rev., 148, 2049–2062, https://doi.org/10.1175/mwr-d-19-0323.1, 2020. a, b
Bouttier, F. and Raynaud, L.: Clustering and selection of boundary conditions for limited‐area ensemble prediction, Q. J. Roy. Meteor. Soc., 144, 2381–2391, https://doi.org/10.1002/qj.3304, 2018. a
Bouttier, F., Vié, B., Nuissier, O., and Raynaud, L.: Impact of stochastic physics in a convection-permitting ensemble, Mon. Weather Rev., 140, 3706–3721, https://doi.org/10.1175/mwr-d-12-00031.1, 2012. a
Bouttier, F., Raynaud, L., Nuissier, O., and Ménétrier, B.: Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX, Q. J. Roy. Meteor. Soc., 142, 390–403, https://doi.org/10.1002/qj.2622, 2015. a
Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G.: Background‐error covariances for a convective‐scale data‐assimilation system: AROME–France 3D‐Var, Q. J. Roy. Meteor. Soc., 137, 409–422, https://doi.org/10.1002/qj.750, 2011. a
Brousseau, P., Seity, Y., Ricard, D., and Léger, J.: Improvement of the forecast of convective activity from the AROME‐France system, Q. J. Roy. Meteor. Soc., 142, 2231–2243, https://doi.org/10.1002/qj.2822, 2016. a, b
Buizza, R.: The value of probabilistic prediction, Atmos. Sci. Lett., 9, 36–42, https://doi.org/10.1002/asl.170, 2008. a
Caumont, O., Mandement, M., Bouttier, F., Eeckman, J., Lebeaupin Brossier, C., Lovat, A., Nuissier, O., and Laurantin, O.: The heavy precipitation event of 14–15 October 2018 in the Aude catchment: a meteorological study based on operational numerical weather prediction systems and standard and personal observations, Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, 2021. a
Champeaux, J.-L., Dupuy, P., Laurantin, O., Soulan, I., Tabary, P., and Soubeyroux, J.-M.: Les mesures de précipitations et l’estimation des lames d'eau à Météo-France: état de l'art et perspectives, La Houille Blanche, 95, 28–34, https://doi.org/10.1051/lhb/2009052, 2009 (in French). a
Charron, M., Pellerin, G., Spacek, L., Houtekamer, P. L., Gagnon, N., Mitchell, H. L., and Michelin, L.: Toward random sampling of model error in the Canadian ensemble prediction system, Mon. Weather Rev., 138, 1877–1901, https://doi.org/10.1175/2009mwr3187.1, 2010. a
Deutscher Wetterdienst: Operationelles NWV-System: ICON-EPS: Resolution upgrade in global ICON/ICON-EPS, https://www.dwd.de/DE/fachnutzer/forschung_lehre/numerische_wettervorhersage/nwv_aenderungen/_functions/DownloadBox_modellaenderungen/icon/pdf_2022/pdf_icon_23_11_2022.html (last access: 14 April 2025), 2022. a
Di Muzio, E., Riemer, M., Fink, A. H., and Maier-Gerber, M.: Assessing the predictability of Medicanes in ECMWF ensemble forecasts using an object-based approach, Q. J. Roy. Meteor. Soc., 145, 1202–1217, 2019. a
Ebert, E. and McBride, J.: Verification of precipitation in weather systems: determination of systematic errors, J. Hydrology, 239, 179–202, https://doi.org/10.1016/s0022-1694(00)00343-7, 2000. a
Ebert, E. E.: Fuzzy verification of high‐resolution gridded forecasts: a review and proposed framework, Meteorol. Appl., 15, 51–64, https://doi.org/10.1002/met.25, 2008. a
ECMWF: Horizontal resolution increase – IFS Cycle 41r2 implemented 8 March 2016, https://confluence.ecmwf.int/display/FCST/Changes+to+the+forecasting+system (last access: 14 April 2025), 2016. a
ECMWF: Implementation of IFS Cycle 48r1 – Implemented 27 June 2023, https://confluence.ecmwf.int/display/FCST/Changes+to+the+forecasting+system (last access: 14 April 2025), 2023. a
Fowler, T. L., Brown, B. G., Gotway, J. H., and Kucera, P.: Spare change: Evaluating revised forecasts, Mausam, 66, 635–644, https://doi.org/10.54302/mausam.v66i3.572, 2015. a
Griffiths, D., Foley, M., Ioannou, I., and Leeuwenburg, T.: Flip-flop index: Quantifying revision stability for fixed-event forecasts, Meteorol. Appl., 26, 30–35, https://doi.org/10.1002/met.1732, 2019. a, b, c
Griffiths, D., Loveday, N., Price, B., Foley, M., and McKelvie, A.: Circular Flip-Flop Index: Quantifying revision stability of forecasts of direction, Journal of Southern Hemisphere Earth Systems Science, 71, 266–271, https://doi.org/10.1071/ES21010, 2021. a
Hagelin, S., Son, J., Swinbank, R., McCabe, A., Roberts, N., and Tennant, W.: The Met Office convective-scale ensemble, MOGREPS-UK, Q. J. Roy. Meteor. Soc., 143, 2846–2861, https://doi.org/10.1002/qj.3135, 2017. a
Hamill, T. M.: Evaluating forecasters' rules of thumb: A study of , Weather Forecast., 18, 933–937, https://doi.org/10.1175/1520-0434(2003)018<0933:EFROTA>2.0.CO;2, 2003. a, b, c
Hastie, T., Tibshirani, R., and Friedman, J. H.: The Elements of Statistical Learning, in: Springer Series in Statistics, Springer New Youk, https://doi.org/10.1007/978-0-387-84858-7, 2009. a
Hewson, T. D. and Pillosu, F. M.: A low-cost post-processing technique improves weather forecasts around the world, Communications Earth & Environment, 2, 132, https://doi.org/10.1038/s43247-021-00185-9, 2021. a
Hoffman, R. N. and Kalnay, E.: Lagged average forecasting, an alternative to Monte Carlo forecasting, Tellus A, 35, 100–118, https://doi.org/10.3402/tellusa.v35i2.11425, 1983. a
Jewson, S., Scher, S., and Messori, G.: Decide now or wait for the next forecast? Testing a decision framework using real forecasts and observations, Mon. Weather Rev., 149, 1637–1650, https://doi.org/10.1175/MWR-D-20-0392.1, 2021. a, b
Jewson, S., Scher, S., and Messori, G.: Communicating properties of changes in lagged weather forecasts, Weather Forecast., 37, 125–142, https://doi.org/10.1175/WAF-D-21-0086.1, 2022. a, b
Jolliffe, I. T. and Stephenson, D. B.: Forecast Verification: A Practitioner's Guide in Atmospheric Science, Wiley, https://doi.org/10.1002/9781119960003, 2012. a
Khodayar, S., Davolio, S., Di Girolamo, P., Lebeaupin Brossier, C., Flaounas, E., Fourrie, N., Lee, K.-O., Ricard, D., Vie, B., Bouttier, F., Caldas-Alvarez, A., and Ducrocq, V.: Overview towards improved understanding of the mechanisms leading to heavy precipitation in the western Mediterranean: lessons learned from HyMeX, Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, 2021. a
Kreitz, M. and Decalonne, A.: Cérémonie d’ouverture des JO: la soirée où il ne pouvait pas pleuvoir..., La Météorologie, 128, 51–58, https://doi.org/10.37053/lameteorologie-2025-0012, 2025 (in French). a
Kreitz, M., Calas, C., and Baille, S.: Inondations de l’Aude du 15 octobre 2018: analyse météorologique, conséquences hydrologiques et prévisibilité, La Météorologie, 110, 46–64, https://doi.org/10.37053/lameteorologie-2020-0067, 2020 (in French). a
Leutbecher, M.: Ensemble size: How suboptimal is less than infinity?, Q. J. Roy. Meteor. Soc., 145, 107–128, https://doi.org/10.1002/qj.3387, 2018. a
Leutbecher, M. and Palmer, T.: Ensemble forecasting, J. Comput. Phys., 227, 3515–3539, https://doi.org/10.1016/j.jcp.2007.02.014, 2008. a, b
Lu, C., Yuan, H., Schwartz, B. E., and Benjamin, S. G.: Short-range numerical weather prediction using time-lagged ensembles, Weather Forecast., 22, 580–595, https://doi.org/10.1175/WAF999.1, 2007. a
Marchal, H.: Dataset and code to reproduce the results presented in the article “Is considering (in)consistency between runs so useless for weather forecasting?”, Version v1, Zenodo [data set/code], https://doi.org/10.5281/zenodo.14051958, 2025. a
Mason, I.: A model for assessment of weather forecasts, Aust. Meteor. Mag, 30, 291–303, 1982. a
McLay, J. G.: Diagnosing the relative impact of “sneaks”, “phantoms”, and volatility in sequences of lagged ensemble probability forecasts with a simple dynamic decision model, Mon. Weather Rev., 139, 387–402, https://doi.org/10.1175/2010MWR3449.1, 2011. a, b, c
Michel, Y. and Brousseau, P.: A square-root, dual-resolution 3DEnVar for the AROME Model: Formulation and evaluation on a Summertime convective period, Mon. Weather Rev., 149, 3135–3153, https://doi.org/10.1175/mwr-d-21-0026.1, 2021. a
Mittermaier, M. P.: Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles, Q. J. Roy. Meteor. Soc., 133, 1487–1500, https://doi.org/10.1002/qj.135, 2007. a, b, c
Murphy, A. H.: Forecast verification: its complexity and dimensionality, Mon. Weather Rev., 119, 1590–1601, https://doi.org/10.1175/1520-0493(1991)119<1590:fvicad>2.0.co;2, 1991. a
Nuissier, O., Joly, B., Vié, B., and Ducrocq, V.: Uncertainty of lateral boundary conditions in a convection-permitting ensemble: a strategy of selection for Mediterranean heavy precipitation events, Nat. Hazards Earth Syst. Sci., 12, 2993–3011, https://doi.org/10.5194/nhess-12-2993-2012, 2012. a
Owens, R. and Hewson, T.: ECMWF forecast user guide, ECMWF, Reading, https://doi.org/10.21957/m1cs7h, 2018. a
Pappenberger, F., Cloke, H. L., Persson, A., and Demeritt, D.: HESS Opinions ”On forecast (in)consistency in a hydro-meteorological chain: curse or blessing?”, Hydrol. Earth Syst. Sci., 15, 2391–2400, https://doi.org/10.5194/hess-15-2391-2011, 2011. a
Persson, A. and Strauss, B.: On the skill and consistency in medium range weather forecasts, ECMWF Newsletter, 70, 12–15, 1995. a
Plu, M., Raynaud, L., and Brousseau, P.: La prévision d’ensemble au coeur de la prévision numérique du temps: état des lieux et perspectives, La Météorologie, 126, 36–47, https://doi.org/10.37053/lameteorologie-2024-0057, 2024 (in French). a
Porson, A. N., Carr, J. M., Hagelin, S., Darvell, R., North, R., Walters, D., Mylne, K. R., Mittermaier, M. P., Willington, S., and Macpherson, B.: Recent upgrades to the Met Office convective-scale ensemble: an hourly time-lagged 5-day ensemble, Q. J. Roy. Meteor. Soc., 146, 3245–3265, https://doi.org/10.1002/qj.3844, 2020. a
Raynaud, L. and Bouttier, F.: The impact of horizontal resolution and ensemble size for convective-scale probabilistic forecasts, Q. J. Roy. Meteor. Soc., 143, 3037–3047, https://doi.org/10.1002/qj.3159, 2017. a, b
Raynaud, L., Pannekoucke, O., Arbogast, P., and Bouttier, F.: Application of a Bayesian weighting for short-range lagged ensemble forecasting at the convective scale, Q. J. Roy. Meteor. Soc., 141, 459–468, https://doi.org/10.1002/qj.2366, 2015. a
Roberts, N.: Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model, Meteorol. Appl., 15, 163–169, https://doi.org/10.1002/met.57, 2008. a
Roberts, N., Ayliffe, B., Evans, G., Moseley, S., Rust, F., Sandford, C., Trzeciak, T., Abernethy, P., Beard, L., Crosswaite, N., Fitzpatrick, B., Flowerdew, J., Gale, T., Holly, L., Hopkinson, A., Hurst, K., Jackson, S., Jones, C., Mylne, K., Sampson, C., Sharpe, M., Wright, B., Backhouse, S., Baker, M., Brierley, D., Booton, A., Bysouth, C., Coulson, R., Coultas, S., Crocker, R., Harbord, R., Howard, K., Hughes, T., Mittermaier, M., Petch, J., Pillinger, T., Smart, V., Smith, E., and Worsfold, M.: IMPROVER: The new probabilistic postprocessing system at the Met Office, B. Am. Meteorol. Soc., 104, E680–E697, https://doi.org/10.1175/bams-d-21-0273.1, 2023. a
Schwartz, C. S. and Sobash, R. A.: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations, Mon. Weather Rev., 145, 3397–3418, https://doi.org/10.1175/mwr-d-16-0400.1, 2017. a
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France convective-scale operational model, Mon. Weather Rev., 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011. a, b
Tabary, P.: The new French operational radar rainfall product. Part I: methodology, Weather Forecast., 22, 393–408, https://doi.org/10.1175/waf1004.1, 2007. a
Taillardat, M., Fougères, A.-L., Naveau, P., and Mestre, O.: Forest-Based and Semiparametric Methods for the Postprocessing of Rainfall Ensemble Forecasting, Weather Forecast., 34, 617–634, https://doi.org/10.1175/waf-d-18-0149.1, 2019. a
Tardieu, J. and Leroy, M.: Radome, le réseau temps réel d’observation au sol de Météo-France, La Météorologie, 8, 40, https://doi.org/10.4267/2042/36262, 2003 (in French). a
Toth, Z., Talagrand, O., Candille, G., and Zhu, Y.: Probability and ensemble forecasts, Vol. 137, John Wiley and Sons, ISBN: 0-471-49759-2, 2003. a
Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic Press, ISBN: 978-0-12-751966-1, 2011. a
Zhou, X., Zhu, Y., Hou, D., Fu, B., Li, W., Guan, H., Sinsky, E., Kolczynski, W., Xue, X., Luo, Y., Peng, J., Yang, B., Tallapragada, V., and Pegion, P.: The development of the NCEP Global Ensemble Forecast System, version 12, Weather Forecast., 37, 1069–1084, https://doi.org/10.1175/waf-d-21-0112.1, 2022. a
Short summary
This paper investigates the relationship between changes in weather forecasts and predictability, which has so far been considered weak. By studying how weather scenarios persist over successive forecasts, it appears that conclusions can be drawn about forecasts' reliability.
This paper investigates the relationship between changes in weather forecasts and...
Altmetrics
Final-revised paper
Preprint