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Abstract. This paper addresses the issue of forecasting
the weather using consecutive runs of one given numerical
weather prediction (NWP) system. In the literature, consid-
ering how forecasts evolve from one run to another has never
proven relevant to predicting the upcoming weather. That is
why the usual approach to deal with this consists of blend-
ing all together the successive runs, which leads to the well-
known “lagged” ensemble. However, some aspects of this
approach are questionable, and if the relationship between
changes in forecasts and predictability has so far been con-
sidered weak, this does not mean that the door is closed. In
this paper, we intend to further explore this relationship by
focusing on a particular aspect of ensemble prediction sys-
tems, the persistence of a given weather scenario over con-
secutive runs. The idea is that the more a phenomenon per-
sists over successive runs, the more it is likely to occur, but
its likelihood is not necessarily estimated as it should be by
the latest run alone. Using the regional ensemble of Météo-
France, AROME-EPS, and forecasting the probability of cer-
tain (warning) precipitation amounts being exceeded in 24 h,
we have found that reliability, an important aspect of proba-
bilistic forecasts, is highly sensitive to that persistence. The
present study also shows that this dependence can be ex-
ploited to improve reliability for individual runs as well as
lagged ensembles. From these results, some recommenda-
tions for forecasters are made, and the use of new predictors
for statistical postprocessing based on consecutive runs is en-
couraged. The reason for such sensitivity is also discussed,
leading to a new insight into weather forecasting using con-
secutive ensemble runs.

1 Introduction

Meteorological centres have improved their numerical
weather prediction (NWP) systems over the past years, as
summarized in Bauer et al. (2015). These improvements
come in many forms and shapes, and some of them consist
of major changes, increasing, for example, the model resolu-
tion (ECMWF with IFS in ECMWF, 2016, 2023; DWD with
ICON in Deutscher Wetterdienst, 2022; and Météo-France
with AROME-France in Brousseau et al., 2016), the ensem-
ble size (Environment Canada with their global ensemble in
Charron et al., 2010, and NCEP with GEFS in Zhou et al.,
2022), or even the frequency with which forecasts are re-
freshed, i.e. the number of runs per day for a given model.

This last strategy is illustrated well by the Met Office, its
regional ensemble MOGREPS-UK being run four times a
day up to March 2019 and every hour since then (although
fewer members are being produced in each run; see Porson
et al., 2020). Moreover, its global ensemble, MOGREPS-G,
has gone from two runs per day to four (Hagelin et al., 2017).
Other centres have also adopted this strategy, such as Météo-
France, whose AROME-France, the regional deterministic
model that was initially run four times a day (Seity et al.,
2011), has now been running every 3 h since July 2022. Like-
wise, AROME-EPS, its ensemble version, has been running
four times a day since March 2018 compared to two times a
day previously (Raynaud and Bouttier, 2017).

In our opinion, increasing the frequency of runs signifi-
cantly affects how the weather is forecast. Along with the
extension of the forecast range, it leads to the overlapping
of consecutive runs in time so that nowadays, a given NWP
forecast is usually considered by forecasters in combination
with previous ones, especially if they are close in time. In
this context, the variations from one run to another inevitably
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become important information to deal with, in particular for
decision-making. However, this aspect of weather forecast-
ing is relatively unexplored in the literature, as pointed out by
Ehret (2010) or more recently by Richardson et al. (2020).

A review of the literature shows that most related studies
have been concerned with quantifying run-to-run variability,
underlining some features such as trends, convergence, con-
sistency, or, on the contrary, “jumpiness”. Considering de-
terministic models as well as ensembles, several measures
have been proposed and tested on various parameters, includ-
ing geopotential height (Zsoter et al., 2009), sea level pres-
sure (Hamill, 2003), temperature (Hamill, 2003; Zsoter et al.,
2009; Griffiths et al., 2019), rainfall (Ehret, 2010; Griffiths
et al., 2019), wind direction (Griffiths et al., 2021), large-
scale flow over the European—Atlantic region (Richardson
et al., 2020), or even tropical-cyclone tracks (Fowler et al.,
2015; Richardson et al., 2024). To a lesser extent, the im-
pact of run-to-run variability has also been studied from the
point of view of decision-making. For instance, how the ex-
pense incurred by a given decision can be influenced by the
way forecasts evolve over successive runs was investigated in
McLay (2011). “Decide now or wait for the next forecast?”
was the topic of Jewson et al. (2021), while communication
challenges about forecast changes were explored in Jewson
et al. (2022).

Although interesting, these studies tend to be rather lim-
ited when it comes to concretely predicting the weather us-
ing consecutive runs that may differ from each other. The
decision-making studies partly address this issue but are con-
ducted within a simplified theoretical framework that does
not reflect the complexity of real-world decision-making
(Jewson et al., 2021, 2022). On the other hand, most run-
to-run variability measures have been introduced to identify
features in the evolution of forecasts or to assess their consis-
tency but never as additional information to improve weather
forecasting. Actually, the relationship between changes in
forecasts and the upcoming weather (that is, predictability)
has rarely been studied as such, and only a few insights can
be found sporadically (Persson and Strauss, 1995; Hamill,
2003; Zsoter et al., 2009; Ehret, 2010; Pappenberger et al.,
2011; Richardson et al., 2020, 2024). It is suggested that
forecast jumpiness is more a matter of modelling than pre-
dictability and that there is no strong correlation between
run-to-run variability and forecast error. Consequently, the
ECMWEF forecast user guide advises forecasters not to rely
on how a given NWP system behaves from one run to an-
other (Owens and Hewson, 2018). The usual handling of
successive runs is then quite straightforward: either consider
the most recent one or blend them all together to create a
“lagged” ensemble, as done, for example, by the Met Office
within IMPROVER (Roberts et al., 2023). However, both ap-
proaches suffer from shortcomings, and further studies are
needed to confirm the low usefulness of considering the evo-
lution of forecasts for weather forecasting.
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Only using the latest run can be a risky strategy because
even if it is the most skilful on average, as forecast error in-
creases with forecast range, it can sometimes be worse than
the previous runs and can mislead forecasters. In particu-
lar, many high-impact case studies have cast doubt on this
strategy by showing the importance of the previous runs:
the catastrophic flood in Bavaria in August 2005 with GFS
(Ehret, 2010), the torrential rainfall on 10 May 2006 over
the southern United Kingdom with UK4 (Mittermaier, 2007),
the flash flood during 15-16 June 2010 in the southeast of
France with ARPEGE-EPS (Nuissier et al., 2012), and many
more, even the recent Hurricane Laura in August 2020 and
the ECMWEF ensemble (Richardson et al., 2024).

Conversely, considering the sequence of successive runs is
usually done by converting them into an ensemble, which
is known as a lagged ensemble. If this approach can im-
prove the forecast skill, in most studies it also assumes (Hoft-
man and Kalnay, 1983; Lu et al., 2007; Mittermaier, 2007,
Ben Bouallegue et al., 2013) that all runs are equally likely,
as the few attempts to weight runs have been unsuccessful
(Ben Bouallegue et al., 2013; Raynaud et al., 2015). There-
fore, the chronological order of runs is not accounted for,
and no distinction is made between, for instance, a sequence
of four deterministic runs with the two earliest forecasting
light rainfall and the two latest forecasting intense rainfall
and the opposite case. Yet this distinction seems crucial, at
least from the forecasters’ point of view. More generally, an
ensemble composed of successive runs reflects, by definition,
the response of a given NWP system to the recent changes
in the atmosphere processed through its data assimilation al-
gorithm. On the contrary, a standard Monte Carlo ensemble
only reflects its sensitivity to many sources of uncertainty
such as modelling approximations or initial conditions (Leut-
becher and Palmer, 2008). These two ensembles do not carry
the same information, and in this respect, distinguishing be-
tween a sequence of consecutive runs and a standard ensem-
ble seems appropriate.

As it has been previously reported, this idea is somewhat
at odds with the current state of the art since the evolution
of forecasts has never been found to be strongly related to
the upcoming weather. Nevertheless, we believe that further
studies are needed to clarify that statement. Indeed, many
results published in earlier work were based on run-to-run
variability measures whose relevance may be questioned, as
has been done, for instance, by Di Muzio et al. (2019) for
the “jumpiness” index described in Zsoter et al. (2009). The
same criticism can also be applied to the weather variables
on which these studies are based. What has been found for
the temperature or the geopotential height does not neces-
sarily apply to other variables such as precipitation, which is
characterized by a higher variability in both space and time
(Ebert and McBride, 2000; Roberts, 2008). Finally, the run-
to-run variability issue has mostly been addressed for low-
impact weather (except in Richardson et al., 2020, 2024),
while the relationship that might exist between changes in
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forecasts and predictability is often pointed out by forecast-
ers during possible high-impact weather. Some related case
studies have been documented and can be found in Kreitz et
al. (2020), Caumont et al. (2021) (same event), or Plu et al.
(2024).

For all these reasons, in this paper we intend to further ex-
plore the predictive skill of considering the (in)consistency
between runs. This is done by focusing on a particular as-
pect of ensembles, the persistence of a given weather sce-
nario over consecutive runs, and by investigating what that
means in terms of predictability. Using the regional ensemble
of Météo-France, AROME-EPS, and forecasting the proba-
bility of certain (warning) precipitation amounts being ex-
ceeded in 24 h, we study how the skill of the latest run or the
standard lagged ensemble may vary depending on the persis-
tence of the targeted events over the successive runs. From
these results, recommendations for forecasters are made, as
well as general thoughts on the usefulness of considering the
evolution of forecasts for weather forecasting.

This paper is organized as follows. Section 2 introduces
the dataset, Sect. 3 the methodology, and Sect. 4 the results
that are discussed in Sect. 5 before the conclusion in Sect. 6.

2 Dataset
2.1 NWP system: AROME-EPS

AROME-EPS, the Météo-France high-resolution regional
ensemble, is used in this study to assess the potential useful-
ness of considering run-to-run variability for weather fore-
casting. Having been run four times a day since March 2018,
at 03:00, 09:00, 15:00, and 21:00 UTC, and making predic-
tions of up to 51 h, AROME-EPS produces four forecasts
every day coming from separate but close-in-time initializa-
tions that overlap at least until the end of the following day,
which makes it well suited to this study.

AROME-EPS comprises 17 members with a 1.3 km hor-
izontal resolution and 90 vertical levels. One member
is a control member, corresponding to AROME-France,
the nonhydrostatic convection-permitting regional model of
Meétéo-France (Seity et al., 2011; Brousseau et al., 2016).
The other 16 perturbed members are obtained by sam-
pling four sources of uncertainties: initial conditions (Ray-
naud and Bouttier, 2017), model errors (Bouttier et al.,
2012), surface conditions (Bouttier et al., 2015), and lateral-
boundary conditions (Bouttier and Raynaud, 2018). For prac-
tical reasons, AROME-EPS fields are extracted on a reg-
ular 0.025° x 0.025° latitude—longitude grid using a sim-
ple nearest-neighbour algorithm. The domain covered by
AROME-EPS is displayed in Fig. 1.
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Figure 1. The AROME-EPS domain is shaded in blue. The
RADOME rain gauges are represented by red dots. The green discs
represent 25 and 50 km radius neighbourhoods in the vicinity of
Biarritz (A) and Toulouse-Blagnac (B), respectively.

2.2 Parameter of interest: 24 h accumulated
precipitation

This paper focuses exclusively on 24 h accumulated precip-
itation. As mentioned in the introduction, accumulated pre-
cipitation is characterized by large variability in both space
and time (Anagnostou et al., 1999; Ben Bouallegue et al.,
2020; Hewson and Pillosu, 2021), which makes this pa-
rameter challenging to predict and likely to show inconsis-
tency between runs, as (once again) recently experienced
by Météo-France forecasters during the Paris 2024 Olympic
Games opening ceremony (Kreitz and Decalonne, 2025).
The question of run-to-run variability has also rarely been
explored in terms of accumulated precipitation: only Ehret
(2010) and Griffiths et al. (2019) did it, dealing mostly with
relatively light 3 or 6 h rainfall accumulation. The 24 h accu-
mulation period is preferred over shorter periods, in partic-
ular because it summarizes the precipitation in a day with-
out considering how the accumulation is distributed over the
24 h.

2.3 Observations and study period

The ANTILOPE quantitative precipitation estimate (QPE)
algorithm (Champeaux et al., 2009) is used as the 24 h ac-
cumulated precipitation observations. ANTILOPE merges
rain gauge data with radar reflectivity observations (Tabary,
2007), and provides data on a regular 0.025° x 0.025°
latitude—longitude grid over a subdomain of AROME-EPS.
Because ANTILOPE quality decreases with distance from
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Figure 2. How the four daily AROME-EPS runs are used to forecast
the 24 h accumulated precipitation (“RR24”) of the following day.

radars and rain gauges, its use is restricted in this study
to areas close to rain gauges from the RADOME network.
RADOME is the real-time meteorological observation net-
work of Météo-France (Tardieu and Leroy, 2003) and com-
prises 596 stations that are included by design within the AN-
TILOPE analysis. Figure 1 shows the RADOME coverage
over mainland France. How AROME-EPS forecasts will be
compared to these observations and how ANTILOPE will be
precisely used in this study will be detailed in the Methodol-
ogy section.

Finally, the study period over which the results are ob-
tained runs from early July 2022 to late June 2023, approxi-
mately 1 year of data. 21 August 2022 has been removed due
to missing AROME-EPS data.

3 Methodology
3.1 Use of the four daily AROME-EPS runs

This study focuses on daily precipitation, i.e. accumulated
between 00:00 and 00:00 UTC the next day. To predict the
daily precipitation on a given day, the four AROME-EPS
runs of the day before are considered, with the 21:00 UTC
run being the latest one and the 03:00 UTC run the oldest
one, as depicted in Fig. 2. Note that hereafter, “Z21” stands
for the 21:00 UTC run, “Z03” for the 03:00 UTC run, and so
on. Each run is used to predict the probability of occurrence
of targeted events corresponding to precipitation exceeding
various thresholds during the following day. Such probabili-
ties are computed using the frequentist approach, which con-
sists of counting the number of members that have simulated
the exceedance and dividing it by the total number of mem-
bers (17), assuming that they are equally likely.

3.2 The risk persistence and its diagnostic

The purpose of this study is to further explore the predictive
skill of considering (in)consistency between runs. Following
discussions with Météo-France’s forecasters, we chose to fo-
cus on a particular aspect of ensembles: the persistence of
a given weather scenario over consecutive runs. The idea is
that the more a scenario persists over successive runs, the
more it is likely to occur, but its likelihood is not necessarily
estimated as it should be by the latest run alone. Here, the
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latest run is Z21, and the event for which probability is com-
puted is daily precipitation exceeding a given threshold. In
this respect, the variable “risk_persistence” is defined as the
number of previous runs that predict a nonzero probability of
occurrence, i.e that have at least one member simulating the
exceedance. Hence, if by “risk” we mean “nonzero probabil-

LLIY3

ity of occurrence”, “risk_persistence” is equal to
0 if none of Z03, Z09 and Z15 had predicted
arisk
1 if only one run among Z03, Z09 and Z15
had predicted a risk . (1)
2 if only two runs among Z03, Z09 and Z15
had predicted a risk

3 if Z03, Z09 and Z15 had all predicted a risk

The usefulness of risk persistence is assessed in two differ-
ent but complementary ways that are presented below. The
relevance of its definition will be discussed after the results.

3.3 Manual assessment of the risk persistence
usefulness

The first part of the results will be a study of how the
721 skill varies according to the different modalities of
risk_persistence. In order to establish a link with forecasters’
impressions of the risk persistence, the reliability of the Z21
probabilities is assessed. Indeed, reliability measures by def-
inition the agreement between forecast probabilities and the
relative observed frequency of the target event (Toth et al.,
2003). In practice, it amounts to investigating how Z21 may
under/overestimate the probability of exceedance depending
on whether or not the previous runs also predicted a nonzero
probability. By doing this for various precipitation thresholds
ranging from 0.2 to 100 mm, the dependence of the Z21 relia-
bility on what the previous runs predicted can be highlighted.

3.4 Forecast calibration using the risk persistence
information

The second part of the results will consist of “automatically”
assessing the usefulness of risk persistence using a simple
machine learning algorithm. The logistic regression is chosen
since it has been widely used for precipitation (Ben Boual-
legue, 2013, and references therein). If P(¢z) = P(RR24 > ¢)
denotes the probability that daily precipitation exceeds  mm,
then the logistic regression derives probabilities through the
following equation:

et

P(t) = 2

1 +ex®’
where ¢® =exp(x) is the exponential function, and z(¢) is a
linear function of N predictors X,

N
2(t) =Bo(t)+ Y Bi(OXi(0). 3)
i=1
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Bo is the regression intercept, whereas f; is the regression
coefficient corresponding to the predictor X;. The only pre-
dictors that are considered in this study are raw probabilities,
for example from Z21, and risk_persistence is seen as a cat-
egorical variable. The potential added value of taking into
account the risk persistence information is assessed by test-
ing several regressions that differ only in the input predic-
tors, mainly in the use or nonuse of risk_persistence. Those
regressions are compared with each other and with the raw
probabilities from Z21 and from the lagged ensemble based
on the four daily runs (Z03, Z09, Z15, Z21). The regression
coefficients that have been estimated for each modality of
risk_persistence are also interpreted.

3.5 Spatial neighbourhood postprocessing

High-resolution models such as AROME-EPS are subject to
the double-penalty effect, i.e. the fact that models that pre-
dict a “good” feature that is offset from the observation are
penalized twice, with a false alarm and with a non-detection
(Ebert, 2008). In order to cope with it, a 25 km radius neigh-
bourhood is introduced. In concrete terms, the four AROME-
EPS runs are used to predict the probability of daily precipi-
tation exceeding a given threshold anywhere within a 25 km
radius of the RADOME stations rather than predicting it pre-
cisely at station locations. This is done using the same up-
scaling procedure as in Ben Bouallegue and Theis (2013);
i.e. the probabilities are generated from the maximum of each
member within the area of interest. Observations are also
upscaled, taking the maximum of the ANTILOPE QPE al-
gorithm within the area, which includes RADOME stations
by design. Other neighbourhood approaches could be used
(some can be found in Schwartz and Sobash, 2017), but the
upscaling procedure was preferred because of its relevance to
the issuance of warnings (Ben Bouallegue and Theis, 2013).

As many RADOME stations are less than 50 km apart,
many verification areas will overlap if this neighbourhood
method is applied to all stations. This is problematic since
it can bias the score estimation and may lead to overfitting
(Hastie et al., 2009). To avoid this, only RADOME stations
that guarantee nonoverlapping verification areas are selected,
and from the 596 initial stations, only 164 are finally used
(see Fig. Al in Appendix A). As shown in Table 1, the num-
ber of daily (obs, forecast) couples is thus substantially re-
duced, leading to a total of 59 368 over the 362 d of the study
period. The upscaling procedure has, however, the substan-
tial advantage of considering many more (and potentially in-
teresting) precipitation values compared to only those ob-
served at the rain gauge locations or predicted at specific grid
points. In the following, all results are based on a 25 km ra-
dius neighbourhood unless explicitly stated otherwise. Their
sensitivity to the spatial neighbourhood size and the rele-
vance of the 25 km radius will be studied in a dedicated sub-
section and discussed later.
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Table 1. Number of daily (obs, forecast) couples and the resulting
sample size of the whole study period for each neighbourhood size.

Neighbourhood  Daily (obs, forecast)  Sample
size couples size
Okm 596 215752
25km 164 59368
50km 56 20272

3.6 Score and regression coefficient estimation

Reliability diagrams are used to assess the reliability of fore-
cast probabilities. Here, they are obtained by plotting the rel-
ative observed frequency of the exceedance within the fol-
lowing 10 forecast probabilities bins: 0 %—10 %, 10 %-20 %,
etc., with the upper bound of each bin excluded, except for
the last bin. The statistical significance of the results (includ-
ing these diagrams) is estimated by a bootstrapping proce-
dure that produces 1000 resampled study periods of the same
length. The bootstrap mean and Q5-Q95 confidence interval
are shown but only for results whose estimation is sensitive
to the sample used.

To complete the methodology, we would like to point out
that unlike in Ben Bouallegue (2013), there is no unification
term in the logistic regression: each exceedance threshold
requires a specific estimation of the regression coefficients,
which explains why the different elements of Egs. (2) and (3)
depend on 7. Regression coefficients are estimated using a 1d
cross-validation procedure with a 5d block separation be-
tween the test and training samples. In other words, 1d of
the study period is selected as a test sample, and the regres-
sion training is done over all the other days, excluding the
5d on either side of the test day to ensure complete separa-
tion between the test and training samples. At the end of the
cross-validation procedure, each day of the study period has
been used once as a test sample. For further details on logistic
regression, refer to Ben Bouallegue (2013) or Wilks (2011).

4 Results

4.1 Manual assessment of the risk persistence
usefulness

In what follows, we take the perspective of a forecaster con-
fronting the latest AROME-EPS run predicting a risk of a
given precipitation threshold being exceeded in 24 h; i.e. at
least one member of Z21 is predicting the exceedance. Then,
in this context, the objective is to highlight the extent to
which the forecaster has to take that latest run at face value,
depending on whether or not the previous runs also predicted
a risk of exceedance. For the sake of clarity, the two “ex-
treme” scenarios of risk persistence are considered: the risk
of exceedance is either “brand-new” (i.e. risk_persistence =
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Figure 3. Frequency of “brand-new” risks of exceedance cases (red
line) compared to frequency of “long-lived” risks of exceedance
cases (blue line), conditioned on the precipitation amount (x axis).
Vertical bars indicate 5 %—95 % confidence intervals.

0) or “long-lived” (i.e. risk_persistence = 3). To begin with,
the frequency of both cases is shown in Fig. 3. Firstly, it ap-
pears that the higher the precipitation amount (x axis), the
rarer the risk_persistence = 3 case (blue line) and the more
frequent the risk_persistence = 0 case (red line). In other
words, exceedance scenarios involving large amounts of pre-
cipitation are less likely to persist over consecutive runs,
and conversely, those involving smaller amounts tend to be
more consistently predicted. Moreover, the more we focus
on heavy rainfall, the more likely both cases are to occur,
making these thresholds particularly relevant to the question
of whether a forecaster should act differently in these two
cases, as discussed below.

To assess the practical usefulness of considering how long
a risk of exceedance exists, a comparison between the av-
erage probability predicted by Z21 (solid lines) and the ob-
served exceedance frequency (dashed lines) is made in the
first place and is shown in Fig. 4. This simple diagnostic is
used to identify possible trivial under/overestimation biases
before conducting any in-depth analysis. This comparison
made over the whole study period, regardless of what Z21
predicted or the risk persistence value, leads to the two green
lines in Fig. 4. The solid and dashed green lines are close re-
gardless of the precipitation threshold, which means that, on
average, Z21 probabilities are a reliable estimate of the risk
of exceedance. However, this is not true if this comparison
is restricted to cases where a brand-new risk is predicted by
721 (i.e. risk_persistence = 0, same subsample as in Fig. 3),
as depicted by the red lines. In this particular case, the solid
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Figure 4. Comparison between the average probability of ex-
ceedance predicted by Z21 (solid lines) and the observed ex-
ceedance frequency (dashed lines), distinguishing between three
different samples. In green, the entire study period is considered.
In red, the comparison is restricted to cases where Z21 predicts a
brand-new risk of exceedance (risk_persistence = 0), whereas in
blue, it is limited to cases where Z21 predicts a long-lived risk of
exceedance (risk_persistence = 3). Vertical bars indicate 5 %-95 %
confidence intervals.

line is above the dashed line for most precipitation thresh-
olds, which means that Z21 tends to overestimate the prob-
ability of these thresholds being exceeded. On the contrary,
when Z21 predicts a risk that has been consistently predicted
over the previous runs (i.e. risk_persistence = 3, same sub-
sample as in Fig. 3), the latest run seems to underestimate the
probability at most precipitation thresholds (blue lines).
Further analysis is still needed to ensure that the risk per-
sistence explains these biases. Indeed, because the average
probability predicted by Z21 is significantly higher when
risk_persistence = 3 than when risk_persistence = 0, the pre-
vious results could just reflect the fact that high probabilities
tend to underestimate the real risk of exceedance, whereas
low probabilities tend to overestimate it. An appropriate way
of testing this hypothesis is to compute a reliability diagram.
Figure 5 shows one related to the 20 mm precipitation thresh-
old for which the under- and overestimations made by Z21
are both statistically significant; see Fig. 4. Focusing on the
risk_persistence = 3 case, Fig. 5 confirms that Z21 underes-
timates the risk of exceedance but only for probability levels
under 60 %. For higher precipitation thresholds (not shown),
this limit decreases; i.e. only low levels of probability are
consistently underestimated. As for the risk_persistence =0
case, Z21 probabilities are overestimated, but unlike for the
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Figure 5. Reliability diagram of Z21 for the 20 mm exceedance
threshold, computed over two different samples. In red, only cases
where Z21 predicts a brand-new risk (risk_persistence = 0) are
considered, whereas in blue, only cases where the risk of ex-
ceedance predicted by Z21 is consistent with the three previous
runs (risk_persistence = 3) are considered. For each sample, the
frequency histogram of probabilities forecast by Z21 is also repre-
sented by shaded bars (right y axis). Vertical bars indicate 5 %95 %
confidence intervals.

risk_persistence =3 case, Z21 mostly predicts small proba-
bilities, as shown by the frequency histogram (shaded bars;
cf. right y axis). This remains true for the other precipitation
thresholds (not shown).

In this respect, it is interesting to remake the compari-
son shown in Fig. 4 but on an equal footing, restricting it
to only the small probabilities predicted by Z21. Figure 6 il-
lustrates this by focusing the comparison on only Z21 prob-
abilities that are lower than or equal to 15 %. It reveals that
when risk_persistence = 3, the low probabilities predicted by
721 are largely underestimated at all precipitation thresholds,
whereas when risk_persistence = 0, these same probabilities
are overestimated but to a lesser extent and not for all pre-
cipitation thresholds. Also, the underestimation bias when
risk_persistence =3 is much more obvious than in Fig. 4,
especially for high precipitation amounts.

Some practical recommendations can be made from these
findings. If the latest AROME-EPS run predicts a risk of a
given precipitation threshold being exceeded in 24 h, fore-
casters should not take the exceedance probability at face
value without checking whether that exceedance scenario has
just emerged or has recurred from run to run (possibly in a
minority compared to the other members). The probability
of this scenario occurring may be overestimated by the latest
run in the former case and underestimated in the latter case.
In particular, forecasters should pay attention to scenarios
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Figure 6. Comparison between the average probability of ex-
ceedance predicted by Z21 (solid lines) and the observed frequency
of exceedance (dashed lines). Unlike in Fig. 4, this comparison only
focuses on low probabilities (< 15 %) predicted by Z21. In red, the
comparison is restricted to cases where Z21 predicts a brand-new
risk of exceedance (risk_persistence = 0), whereas in blue, it is
limited to cases where Z21 predicts a long-lived risk of exceedance
(risk_persistence = 3). Vertical bars indicate 5 %—95 % confidence
intervals.

that have a small, nonzero probability of occurring according
to the latest run but have been repeatedly predicted in previ-
ous runs. In that case, their likelihood is probably (largely)
underestimated by the latest run. Finally, it should be remem-
bered that the two extreme scenarios of risk persistence are
about equally likely to occur when it comes to forecasting
heavy precipitation (around 100 mm; cf. Fig. 3). As forecast-
ers should act differently in these two scenarios, they should
be particularly vigilant in looking for such events.

These recommendations are valid for forecasters who con-
sider runs separately. Thus, a related question is should a
forecaster working with a lagged ensemble ignore such rec-
ommendations, or in other words, does the contribution of
each run to the final lagged ensemble probability matter? By
following the same procedure but using probabilities com-
puted by merging the four daily ensemble runs instead of
just Z21, the answer to the last question is also yes, as similar
reliability biases depending on the different risk_persistence
modalities were found. As evidence, the next subsection will
show how the lagged ensemble, as well as Z21, can ben-
efit from the previous results by improving their reliability
thanks to the risk persistence information.
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4.2 Forecast calibration using the risk persistence
information

In this section, the usefulness of risk persistence is as-
sessed using a simple machine learning algorithm, the lo-
gistic regression. Doing so, we let an algorithm estab-
lish a link between the risk of exceedance and the dif-
ferent risk_persistence modalities and use it to derive en-
hanced forecasts. In the following, three regressions are
tested. The first regression uses only one input variable, the
raw Z21 probabilities. The second regression also uses the
risk_persistence variable. The third regression works like the
second one, but the raw probabilities are taken from the
lagged ensemble based on the four daily runs instead of from
Z21. Using the entire study period this time (i.e. regardless of
what Z21 predicted), these regressions are trained and then
compared with each other and with raw probabilities from
721 and the lagged ensemble. As for the previous results, the
reliability is assessed.

Figure 7 shows reliability diagrams for two daily precip-
itation thresholds, 10 and 30 mm. Focusing on the 10 mm
threshold (left diagram), the latest run and the lagged en-
semble (green and purple lines, respectively) are found to
be quite reliable, although there is a slight tendency to-
wards probability underestimation. The lagged ensemble is
not much better than Z21 and is even worse at the 60 %—
70 % levels. The regression with raw Z21 probabilities as the
only input variable (dark-green line) performs poorly; it even
degrades the reliability of the raw ensemble. On the contrary,
reliability is improved with the risk_persistence information
(light-blue line). Similar results are obtained with the lagged
ensemble (orange line), which demonstrates the usefulness
of including the risk persistence information even when us-
ing the lagging approach. Focusing now on the 30 mm pre-
cipitation threshold (right diagram), the raw ensembles are
less reliable. Nonetheless, the regressions that use the risk
persistence information still improve the reliability. As for
the 10 mm threshold, the regression using raw probabilities
as the only predictor performs poorly. Other precipitation
thresholds have been tested with similar results, although we
must point out that the higher the threshold, the more difficult
the assessment, especially for the high levels of probability
due to lack of data in the related bins.

To understand how reliability has been improved by
these simple regressions, it is interesting to visualize how
they transform the input raw probabilities, given each
risk_persistence modality. Figure 8 shows this dependence
for the “blue” regression and for the 30 mm threshold for
which the impact of the regression is more obvious. In
this figure, each line depicts how the input Z21 raw prob-
abilities (x axis) are transformed by the logistic regression
(y axis) within a given risk_persistence case. For example, if
risk_persistence = 3 (dark-blue line), a probability of 20 %
predicted by Z21 becomes a 30 % probability after the re-
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gression. These lines only differ by the specific coefficient
affected by the regression to each risk_persistence modality.

When risk_persistence = 3, the probabilities forecast by
the latest run are increased by the regression, as the dark-
blue line is above the diagonal for most probability levels.
Also, this upward adjustment of raw probabilities is more im-
portant for low levels, even if the difference is small. These
results are similar to those shown in the previous subsec-
tion, although they were obtained differently. Raw probabil-
ities are adjusted downwards at all the other risk_persistence
modalities, the magnitude of this decrease being roughly
proportional to the number of previous runs that did not
predict a risk. A spectacular decrease is obtained for the
risk_persistence =0 case (red line), for which the regression
almost nullifies the latest run regardless of the probability
that it predicts. The way raw probabilities are calibrated re-
mains quite the same no matter the precipitation threshold,
with only the distance from the diagonal changing slightly
(not shown). Fairly comparable results are obtained for the
regression with the lagged ensemble, which indicates that
probabilities have been similarly calibrated using the risk
persistence information, whether they were derived from the
last run or from the lagged ensemble.

4.3 Sensitivity of the results to the spatial
neighbourhood radius size

As mentioned in the methodology section, all the previous
results were obtained using a 25 km radius neighbourhood.
What the results would be without any spatial neighbourhood
or with a larger one is an important question related to the
effective usefulness of this paper. This has been studied by
reproducing the results using a 50 km radius neighbourhood
and using no spatial neighbourhood at all. In the following,
only the impact on the logistic regression is shown because it
is a direct assessment of the usefulness of the risk persistence
information.

In Fig. 9 the results obtained without any spatial neigh-
bourhood are displayed. In this experiment, the precipitation
observations come from all the rain gauges of the RADOME
station network (cf. Fig. 1) and the corresponding forecasts
from the closest AROME-EPS grid points. Focusing on the
10 mm threshold (left diagram), what differs from the 25 km
radius neighbourhood experiment is that raw ensembles are
biased in the other sense: raw probabilities, on average, over-
estimate the risk of exceedance. Nevertheless, reliability is
still improved using the risk persistence information, and
the regression that does not use it still performs poorly. For
higher precipitation thresholds, results cannot really be in-
terpreted because of the large confidence intervals and the
jumpy lines, as can be seen in the right diagram (30 mm).
This problem does not come from the sample size, which is
enlarged compared with the 25 km neighbourhood, as shown
in Table 1. Indeed, the larger the neighbourhood, the lower
the sample size because fewer verification areas can cover
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Figure 7. Reliability diagrams for the 10 mm (a) and 30 mm (b) exceedance thresholds. The raw Z21 ensemble is in green, whereas the raw
lagged ensemble based on the four daily runs is in purple. The logistic regression with raw Z21 probabilities as only input variable is in dark
green. In light blue, the risk_persistence variable is added to that regression. In orange, it is the same regression as in light blue, except that
the raw probabilities are derived from the lagged ensemble instead of from Z21. The frequency histograms of the corresponding forecast
probabilities are also represented by shaded bars (right y axis). Vertical bars indicate 5 %—95 % confidence intervals.

mainland France without any overlap between them. It in-
stead means that there are not enough data points in each
probability bin, as shown by the frequency histogram. Very
few nonzero probabilities are forecasts, suggesting that it is
rare that several AROME-EPS members predict more than
30 mm in 24 h at the exact same grid point. Finally, it should
be noted that in this experiment, there is a scale mismatch
between observations and forecasts, as we compare regular
latitude—longitude gridded forecasts against point observa-
tions, which makes the previous results subject to represen-
tativeness error (Ben Bouallegue et al., 2020).

The results obtained with a 50 km radius neighbourhood
are shown in Fig. 10. The verification areas used in this ex-
periment can be seen in Fig. A2 (Appendix A), and for com-
parison purposes, the coverage of both the 25 and 50 km
verification areas is displayed in Fig. 1. Because high pre-
cipitation thresholds are likely to benefit from upscaling
(Ben Bouallegue and Theis, 2013), the 30 and 50 mm ex-
ceedance thresholds are assessed. For the 30 mm threshold
(left diagram), the reliability bias of the raw probabilities is
similar but slightly more exaggerated than in the 25 km ex-
periment. Again, this bias can be reduced using the risk per-
sistence information, in particular for the probabilities up to
30 %—40 %. Similar results are found for higher thresholds,
such as 50 mm (right diagram), even if they are only valid for
levels up to 50 % due to the lack of data above.
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5 Discussion

Several details of this study need to be discussed. To be-
gin with, the risk_persistence definition on which the entire
study is based does not fully take into account the chrono-
logical order of runs. A more refined definition could be that
risk_persistence is equal to

0 if no forecast (Z03, Z09, or Z15) predicted
arisk
1 if among Z03, Z09, and Z15, only Z15
predicted a risk . 4)
2 if among Z03, Z09, and Z15, only Z15 and
Z09 predicted a risk
3 if Z03, Z09, and Z15 all predicted a risk

Compared to the first definition given by Eq. (1), modalities 1
and 2 are more restrictive so as to better characterize the
persistence of a given weather scenario, from “brand-new”
(modality 0) to “long-lived” (modality 3). Although appeal-
ing, this definition suffers from drawbacks that have led us to
reject it. The main problem comes from the difficulty of us-
ing it as an input variable for a regression because many cases
of the risk persistence are not covered, such as “among Z03,
709, and Z15, only Z09 predicted a risk™. This is problematic
within the regression framework since the impact of all these
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Figure 8. On the y axis, postprocessed probabilities of 30 mm being
exceeded in 24 h, derived from the logistic regression with Z21 raw
probabilities and risk_persistence as only input predictors. They are
expressed as a function of Z21 raw probabilities (x axis), distin-
guishing each risk_persistence modality (colours).

missed cases on the risk of exceedance would be blended into
one single coefficient, the intercept, making the usefulness of
accounting for the risk persistence more difficult to assess.
One solution could be to create as many modalities as there
are cases, but each case would represent a small subset, lead-
ing inevitably to sample size issues that are harmful to the
robustness of the results. In the light of all this, the definition
of risk persistence used throughout this study seems to be a
good compromise, as it remains quite simple while still pro-
viding information about the (in)consistency between runs.
The criterion of “at least one member predicts the ex-
ceedance” seems a bit ad hoc and could also be refined. In-
deed, the exact number of members simulating exceedance
is not accounted for, although it could be a valuable informa-
tion. We decided to ignore this criterion because it would be
too complex for a first study, as it would imply dealing with
the many possibilities for the evolution of probabilities over
consecutive runs, which could not be summarized by a sim-
ple four-modality variable. As an illustration, an overview
of the difficulties in characterizing the “trend” feature, i.e.
probabilities that increase or decrease from run to run, can be
found in McLay (2011). It is also worth saying that beyond
the sample size issues this may raise, the definition of such
features would be based on probability thresholding, which
would need to be adapted to the different precipitation ex-
ceedance thresholds. For instance, the “sneak” and “phan-
tom” sequences described in McLay (2011), which are char-
acterized by large and rapid increases or decreases in event

Nat. Hazards Earth Syst. Sci., 25, 2613-2628, 2025

H. Marchal et al.: (In)consistency between successive ensemble runs

probability at short lag times, respectively, cannot be used for
high precipitation thresholds in their original definition, since
high probabilities of exceedance are almost never forecast at
such thresholds. Finally, it should not be forgotten that the
entire study is based on AROME-EPS, which only comprises
17 members. Given this ensemble size, the use of statistical
quantities such as probabilities can be limited (Leutbecher,
2018). In that context, knowing that something might hap-
pen (i.e. that it has a nonzero probability) may already be a
strong signal, and knowing the exact value of its probabil-
ity may be less important in comparison, as already noted by
Mittermaier (2007).

Another aspect to discuss is the use of a spatial neigh-
bourhood. In this study, it amounts to introducing a spatial
tolerance when forecasts and observations are being com-
pared, as the objective is to predict the probability of daily
precipitation exceeding a given threshold anywhere within a
given area rather than predicting it at precise locations. De-
spite this loss of resolution, in our opinion the use of a spa-
tial neighbourhood for precipitation has proved relevant. For
instance, without it, we would not know that the risk per-
sistence information could be useful for predicting moderate
to high precipitation exceedance. Changing the spatial scale
also changes the way different aspects of the forecasts are
perceived, which is important to keep in mind. The differ-
ence between the frequency histograms of forecast proba-
bilities computed with and without spatial neighbourhoods
illustrates this. Because members rarely agree on the exact
location of the precipitation amounts, the risk of exceed-
ing them is mostly low without spatial neighbourhoods, and
therefore it could appear almost negligible. This impression
can be misleading because that same risk is revised upwards
as soon as a spatial neighbourhood is introduced, showing
that a consensus may appear between the same members at
a slightly larger scale. Regarding the neighbourhood size it-
self, the 25 km radius was chosen because it seemed to be
a good compromise. It is wide enough to benefit from the
previous advantages while remaining reasonable, especially
for Météo-France forecasters who issue warnings at the de-
partment scale. Finally, it should be noted that aspects of the
spatial neighbourhood other than the radius size could have
been investigated but were not, as they were considered be-
yond the scope of this paper. These could include the sensi-
tivity of the results to the geographical area, the density of
the verification zones, the shape of the neighbourhood (for
example, squares rather than discs), or the station selection
for the 25 and 50 km neighbourhood experiments. Regarding
this last point, note that a preliminary study has shown that if
we want to keep as many stations as possible while avoiding
overlap between verification areas, there are very few pos-
sible different samples, probably because some stations are
much better at optimizing coverage than others.

If this study focuses on reliability, what about other fore-
cast attributes? In particular, discrimination, i.e. the ability
to discriminate between events and nonevents, is also an im-
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Figure 10. As in Fig. 7 but with a 50 km radius spatial neighbourhood and for the 30 mm (a) and 50 mm (b) precipitation thresholds.

portant aspect of probabilistic forecast (Murphy, 1991). This
attribute was investigated using receiver operating charac-
teristic (ROC) curves (Mason, 1982). Surprisingly, discrim-
ination was neither improved nor degraded by incorporat-
ing the risk persistence information. In our opinion, it could
be a consequence of the specific way raw that probabili-
ties are transformed by the regression. Indeed, an increas-
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ing monotonic transformation of probabilities cannot modify
the ROC curve, as shown in Jolliffe and Stephenson (2012).
Some tests have been carried out to verify this hypothesis,
in which interaction terms have been added to the regres-
sion: they showed no statistically significant added value in
terms of both reliability and discrimination. Understanding
why discrimination is not impacted would be a good step for-
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ward, as it would better characterize the effective usefulness
of the risk persistence information. But it would require fur-
ther tests, such as using a more advanced machine learning
algorithm, which is out of the scope of this paper. In sum, we
believe that the (high) sensitivity of the reliability to the risk
persistence is already a significant result in and of itself.

Finally, regarding the results themselves, it has to be un-
derlined that they are somewhat at odds with the current state
of the art, since the evolution of forecasts has not previously
been reported to be strongly related to the upcoming weather.
In our opinion, there could be several reasons for this. First,
we tried to maximize the chances of obtaining new results
on that subject. For example, the present study differs from
the previous ones by focusing on a parameter that is well-
known for its large spatial and temporal variability and by
focusing on a more tangible aspect of forecast evolution than
an “all-in-one” run-to-run variability measure. We also felt
that working with an ensemble was preferable for the ques-
tion we wanted to explore. Indeed, the idea behind this work
is to find out whether the way the atmosphere is evolving,
as perceived by a given NWP system, gives us information
about the upcoming weather. For this to have any chance of
working, the run-to-run variability has to be an accurate re-
flection of what is happening in the atmosphere. The problem
with deterministic models is that they are nonlinear systems,
which are highly sensitive to small perturbations (Leutbecher
and Palmer, 2008); therefore, the variations from one run to
another, which are assumed to be strictly caused by the as-
similation of new observations, may also be insidiously af-
fected by such sensitivity. Ensembles are less subject to this
sensitivity by construction and are found to be more con-
sistent from one run to another (Buizza, 2008; Zsoter et al.,
2009; Richardson et al., 2020).

Another insight can be found in Richardson et al. (2024).
In this paper, the origin of run-to-run variability is studied,
and several factors that can influence it are identified and dis-
cussed. The data assimilation (DA) algorithm is one of them,
and it is clear that changing it would probably affect our re-
sults. Independently of this paper, Météo-France is currently
testing a three-dimensional ensemble-variational (3DEnVar)
DA algorithm (Michel and Brousseau, 2021) for its regional
deterministic model AROME-France, and preliminary re-
sults show better consistency between runs, in particular
for case studies involving heavy precipitation, compared to
the current three-dimensional variational (3DVar) scheme
(Brousseau et al., 2011). The ensemble spread, size, and per-
turbations are also important factors identified by Richardson
et al. (2024). Whether the same results as ours would be ob-
tained with another ensemble or with a different number of
members are interesting and open questions. With a bigger
ensemble, the probability of having a weather scenario recur-
ring from run to run would certainly be higher, as each run
would explore a wider range of possibilities. In this context,
the risk_persistence = 3 case would occur more often, and
the risk persistence defined in this study may be of limited
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use. On the basis of this reasoning, our results can be under-
stood differently. Indeed, it can be hypothesized that if risk
persistence has worked for this study, it is precisely because
the information that it provides has somehow compensated
for the limited size of AROME-EPS by (for example) giving
importance back to scenarios whose likelihood was under-
represented for the “wrong” reasons, e.g. not enough mem-
bers or insufficient sampling of uncertainties (in the lateral-
boundary conditions or in the physical parameterizations). If
that were true, this study would suggest that limited-size en-
sembles may suffer from some kind of “memory loss”, which
can be partly “healed” by providing a record of their previ-
ous runs but in a more subtle way than within the standard
lagging approach. Thus, it would finally be in line with the
state of the art, as it would mean that it was not the forecast
evolution that gave us information on the upcoming weather.

6 Conclusions

This paper addresses the issue of forecasting the weather us-
ing consecutive runs of one given NWP system. As forecasts
may vary (sometimes significantly) from one run to another,
this situation can be difficult to deal with. In the literature,
considering how forecasts evolve from one run to another
has never proven relevant for the prediction of the upcoming
weather. Therefore, the usual approaches to handle this are
either considering only the latest run or blending the succes-
sive runs all together to create a lagged ensemble. However,
both approaches suffer from shortcomings, and if the rela-
tionship between changes in forecasts and predictability is
assumed to be weak, some aspects remain unexplored. This
paper is an attempt to further assess this relationship.

As forecast evolution can be described in many different
ways, we have focused on a simple, tangible aspect of en-
sembles: the persistence of a given scenario over consecutive
runs. Following discussions with Météo-France forecasters,
we have investigated the idea that the more a scenario re-
curs from run to run, the more it is likely to occur, but its
likelihood is not necessarily estimated as it should be by
the latest run alone. Using the regional ensemble of Météo-
France, AROME-EPS, and forecasting the probability of cer-
tain (warning) precipitation amounts being exceeded in 24 h,
the notion of “risk persistence” has been introduced. It char-
acterizes the newness of the weather scenario involving ex-
ceedance, from “long-lived” (it was predicted several runs
ago and has recurred from run to run) to brand-new (it has
just emerged from the latest run) scenarios.

Doing so, we found out that reliability, an important prob-
abilistic forecast attribute, is quite dependent on the risk
persistence. In particular, we highlighted that the probabil-
ity predicted by a given run can be under/overestimated de-
pending on whether or not the previous runs also predicted a
nonzero probability. Similar biases were found for the stan-
dard lagged ensemble, suggesting that the contribution of
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each run to the final lagged probability matters. The use-
fulness of the risk persistence information has also been as-
sessed using a simple machine learning algorithm, the logis-
tic regression. We showed that the forecast reliability can
be improved, including for moderate to high precipitation
amounts, just by providing it.

In our opinion, what should be remembered about this
work is not so much the statistical calibration shown in
Sect. 4.2 and 4.3. The important point is instead the high
sensitivity of the reliability to something as simple as the
risk persistence and the fact that the gain in reliability was
achieved by a simple logistic regression, using an unusual
type predictor based on previous forecasts. More advanced
postprocessing techniques (see Taillardat et al., 2019, and
references therein for an overview) would certainly lead to
better results. This could be seen as proof that considering
forecast evolution can actually be useful for weather fore-
casting. But it could also reveal that limited-size ensembles
may suffer from some kind of memory loss, as they do not re-
liably estimate the likelihood of weather scenarios that were
recurrently suggested by previous runs. Further studies are
still needed to better understand this point.

At this stage, we see two applications for this study. It
could pave the way for the use of new predictors for statis-
tical postprocessing based on consecutive runs. Indeed, we
believe that we can benefit from looking at successive runs
in ways other than lagging and that this study is one exam-
ple among many. It should also discourage operational fore-
casters from taking raw probabilities at face value without
considering their evolution from run to run. Regarding this,
it would be very interesting to see if some specific weather
phenomena could benefit more from this information than
others. For instance, phenomena that are well known for their
low predictability, such as Mediterranean heavy precipitation
(Khodayar et al., 2021), should be much more feared than
more “common” ones if they persist from run to run.
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Appendix A: Verification areas for neighbourhood
experiments

Figure Al. Verification areas for the 25 km radius neighbourhood
experiment.

Figure A2. Verification areas for the 50 km radius neighbourhood
experiment.
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