Articles | Volume 25, issue 6
https://doi.org/10.5194/nhess-25-2115-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2115-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measuring extremes-driven direct biophysical impacts in agricultural drought damages
Mansi Nagpal
CORRESPONDING AUTHOR
Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Jasmin Heilemann
Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Luis Samaniego
Department of Computational Hydrosystems (CHS), Helmholtz Center for Environmental Research – UFZ, 04318 Leipzig, Germany
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Bernd Klauer
Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Erik Gawel
Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Faculty of Economics and Business Management, University of Leipzig, 04109 Leipzig, Germany
Christian Klassert
Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Related authors
No articles found.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 25, 2007–2029, https://doi.org/10.5194/nhess-25-2007-2025, https://doi.org/10.5194/nhess-25-2007-2025, 2025
Short summary
Short summary
The July 2021 flood in central Europe was one of the deadliest floods in Europe in the recent decades and the most expensive flood in Germany. In this paper, we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory had been only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps to better prepare for future extreme floods.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, and Miroslav Trnka
EGUsphere, https://doi.org/10.5194/egusphere-2024-1434, https://doi.org/10.5194/egusphere-2024-1434, 2024
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, which was clustered into 775/630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Kingsley Nnaemeka Ogbu, Oldrich Rakovec, Luis Samaniego, Gloria Chinwendu Okafor, Bernhard Tischbein, and Hadush Meresa
Proc. IAHS, 385, 211–218, https://doi.org/10.5194/piahs-385-211-2024, https://doi.org/10.5194/piahs-385-211-2024, 2024
Short summary
Short summary
In this study, the MPR-mHM technique was applied in four data-scarce basins in Nigeria. Remotely sensed rainfall datasets were used as model forcings to evaluate the mHM capability in reproducing observed stream discharge under single and multivariable model calibration frameworks. Overall, model calibration performances displayed satisfactory outputs as evident in the Kling-Gupta Efficiency (KGE) scores across most basins.
Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024, https://doi.org/10.5194/hess-28-899-2024, 2024
Short summary
Short summary
Global and regional models used to evaluate water shortages typically neglect the possibility that irrigated crop areas may change in response to future hydrological conditions, such as the fallowing of crops in response to drought. Here, we enhance a model used for water shortage analysis with farmer agents that dynamically adapt their irrigated crop areas based on simulated hydrological conditions. Results indicate that such cropping adaptation can strongly alter simulated water shortages.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022, https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables
environmental modelers to efficiently use extensive datasets for model setups.
It flexibly ingests the datasets using user-defined data–parameter relationships
and rescales parameter fields to given model resolutions. Modern
land surface models especially benefit from MPR through increased transparency and
flexibility in modeling decisions. Thus, MPR empowers more sound and robust
simulations of the Earth system.
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, https://doi.org/10.5194/hess-25-6523-2021, 2021
Short summary
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Miao Jing, Rohini Kumar, Falk Heße, Stephan Thober, Oldrich Rakovec, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020, https://doi.org/10.5194/hess-24-1511-2020, 2020
Short summary
Short summary
This study investigates the response of regional groundwater system to the climate change under three global warming levels (1.5, 2, and 3 °C) in a central German basin. A comprehensive uncertainty analysis is also presented. This study indicates that the variability of responses increases with the amount of global warming, which might affect the cost of managing the groundwater system.
Stephan Thober, Matthias Cuntz, Matthias Kelbling, Rohini Kumar, Juliane Mai, and Luis Samaniego
Geosci. Model Dev., 12, 2501–2521, https://doi.org/10.5194/gmd-12-2501-2019, https://doi.org/10.5194/gmd-12-2501-2019, 2019
Short summary
Short summary
We present a model that aggregates simulated runoff along a river
(i.e. a routing model). The unique feature of the model is that it
can be run at multiple resolutions without any modifications to the
input data. The model internally (dis-)aggregates all input data to
the resolution given by the user. The model performance does not
depend on the chosen resolution. This allows efficient model
calibration at coarse resolution and subsequent model application at
fine resolution.
Miao Jing, Falk Heße, Rohini Kumar, Wenqing Wang, Thomas Fischer, Marc Walther, Matthias Zink, Alraune Zech, Luis Samaniego, Olaf Kolditz, and Sabine Attinger
Geosci. Model Dev., 11, 1989–2007, https://doi.org/10.5194/gmd-11-1989-2018, https://doi.org/10.5194/gmd-11-1989-2018, 2018
Michael Peichl, Stephan Thober, Volker Meyer, and Luis Samaniego
Nat. Hazards Earth Syst. Sci., 18, 889–906, https://doi.org/10.5194/nhess-18-889-2018, https://doi.org/10.5194/nhess-18-889-2018, 2018
Short summary
Short summary
Crop yields are routinely derived from meteorological variables, especially temperature. However, the primary water source for plant growth (soil moisture) is neglected. In this study, the predictability of maize yield is investigated using soil moisture or meteorological variables in Germany. The effects of soil moisture dominate those of temperature and are time-dependent. For example, comparatively moist soil conditions in June reduce crop yields, while in August they increase yields.
Mehmet C. Demirel, Juliane Mai, Gorka Mendiguren, Julian Koch, Luis Samaniego, and Simon Stisen
Hydrol. Earth Syst. Sci., 22, 1299–1315, https://doi.org/10.5194/hess-22-1299-2018, https://doi.org/10.5194/hess-22-1299-2018, 2018
Short summary
Short summary
Satellite data offer great opportunities to improve spatial model predictions by means of spatially oriented model evaluations. In this study, satellite images are used to observe spatial patterns of evapotranspiration at the land surface. These spatial patterns are utilized in combination with streamflow observations in a model calibration framework including a novel spatial performance metric tailored to target the spatial pattern performance of a catchment-scale hydrological model.
Andreas Marx, Rohini Kumar, Stephan Thober, Oldrich Rakovec, Niko Wanders, Matthias Zink, Eric F. Wood, Ming Pan, Justin Sheffield, and Luis Samaniego
Hydrol. Earth Syst. Sci., 22, 1017–1032, https://doi.org/10.5194/hess-22-1017-2018, https://doi.org/10.5194/hess-22-1017-2018, 2018
Short summary
Short summary
Hydrological low flows are affected under different levels of future global warming (i.e. 1.5, 2, and 3 K). The multi-model ensemble results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean, while they increase in the Alpine and Northern regions. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Adaptation should make use of change and uncertainty information.
Simon Höllering, Jan Wienhöfer, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 203–220, https://doi.org/10.5194/hess-22-203-2018, https://doi.org/10.5194/hess-22-203-2018, 2018
Short summary
Short summary
Hydrological fingerprints are introduced as response targets for sensitivity analysis and combined with a conventional approach using streamflow data for a temporally resolved sensitivity analysis. The joint benefit of both approaches is presented for several headwater catchments. The approach allows discerning a clarified pattern for parameter influences pinpointed to diverse response characteristics and detecting even slight regional differences.
Luis Samaniego, Rohini Kumar, Stephan Thober, Oldrich Rakovec, Matthias Zink, Niko Wanders, Stephanie Eisner, Hannes Müller Schmied, Edwin H. Sutanudjaja, Kirsten Warrach-Sagi, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 4323–4346, https://doi.org/10.5194/hess-21-4323-2017, https://doi.org/10.5194/hess-21-4323-2017, 2017
Short summary
Short summary
We inspect the state-of-the-art of several land surface (LSMs) and hydrologic models (HMs) and show that most do not have consistent and realistic parameter fields for land surface geophysical properties. We propose to use the multiscale parameter regionalization (MPR) technique to solve, at least partly, the scaling problem in LSMs/HMs. A general model protocol is presented to describe how MPR can be applied to a specific model.
Christa D. Peters-Lidard, Martyn Clark, Luis Samaniego, Niko E. C. Verhoest, Tim van Emmerik, Remko Uijlenhoet, Kevin Achieng, Trenton E. Franz, and Ross Woods
Hydrol. Earth Syst. Sci., 21, 3701–3713, https://doi.org/10.5194/hess-21-3701-2017, https://doi.org/10.5194/hess-21-3701-2017, 2017
Short summary
Short summary
In this synthesis of hydrologic scaling and similarity, we assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modeling, have laid the foundation for a data-driven framework for scrutinizing hydrological hypotheses. We call upon the community to develop a focused effort towards a fourth paradigm for hydrology.
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Gabriele Baroni, Matthias Zink, Rohini Kumar, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 2301–2320, https://doi.org/10.5194/hess-21-2301-2017, https://doi.org/10.5194/hess-21-2301-2017, 2017
Short summary
Short summary
Three methods are used to characterize the uncertainty in soil properties. The effect on simulated states and fluxes is quantified using a distributed hydrological model. Different impacts are identified as function of the perturbation method, of the model outputs and of the spatio-temporal resolution. The study underlines the importance of a proper characterization of the uncertainty in soil properties for a correct assessment of their role and further improvements in the model application.
Matthias Zink, Rohini Kumar, Matthias Cuntz, and Luis Samaniego
Hydrol. Earth Syst. Sci., 21, 1769–1790, https://doi.org/10.5194/hess-21-1769-2017, https://doi.org/10.5194/hess-21-1769-2017, 2017
Short summary
Short summary
We discuss the estimation of a long-term, high-resolution, continuous and consistent dataset of hydro-meteorological variables for Germany. Here we describe the derivation of national-scale parameter sets and analyze the uncertainty of the estimated hydrologic variables (focusing on the parametric uncertainty). Our study highlights the role of accounting for the parametric uncertainty in model-derived hydrological datasets.
Falk Heße, Matthias Zink, Rohini Kumar, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 549–570, https://doi.org/10.5194/hess-21-549-2017, https://doi.org/10.5194/hess-21-549-2017, 2017
Short summary
Short summary
Travel-time distributions are a comprehensive tool for the characterization of hydrological systems. In our study, we used data that were simulated by virtue of a well-established hydrological model. This gave us a very large yet realistic dataset, both in time and space, from which we could infer the relative impact of different factors on travel-time behavior. These were, in particular, meteorological (precipitation), land surface (land cover, leaf-area index) and subsurface (soil) properties.
Simon Höllering, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-249, https://doi.org/10.5194/hess-2016-249, 2016
Preprint withdrawn
Remko C. Nijzink, Luis Samaniego, Juliane Mai, Rohini Kumar, Stephan Thober, Matthias Zink, David Schäfer, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 1151–1176, https://doi.org/10.5194/hess-20-1151-2016, https://doi.org/10.5194/hess-20-1151-2016, 2016
Short summary
Short summary
The heterogeneity of landscapes in river basins strongly affects the hydrological response. In this study, the distributed mesoscale Hydrologic Model (mHM) was equipped with additional processes identified by landscapes within one modelling cell. Seven study catchments across Europe were selected to test the value of this additional sub-grid heterogeneity. In addition, the models were constrained based on expert knowledge. Generally, the modifications improved the representation of low flows.
Rohini Kumar, Jude L. Musuuza, Anne F. Van Loon, Adriaan J. Teuling, Roland Barthel, Jurriaan Ten Broek, Juliane Mai, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, https://doi.org/10.5194/hess-20-1117-2016, 2016
Short summary
Short summary
In a maiden attempt, we performed a multiscale evaluation of the widely used SPI to characterize local- and regional-scale groundwater (GW) droughts using observations at 2040 groundwater wells in Germany and the Netherlands. From this data-based exploratory analysis, we provide sufficient evidence regarding the inability of the SPI to characterize GW drought events, and stress the need for more GW observations and accounting for regional hydrogeological characteristics in GW drought monitoring.
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Qualitative risk assessment of sensitive infrastructures at the local level: flooding and heavy rainfall
Brief communication: Bridging the data gap – a call to enhance the representation of global coastal flood protection
Disaster management following the great Kahramanmaraş earthquakes in 2023, Türkiye
From insufficient rainfall to livelihoods: understanding the cascade of drought impacts and policy implications
Assessing future impacts of tropical cyclones on global banana production
Review article: Applicability and effectiveness of structural measures for subsidence (risk) reduction in urban areas
Unravelling the capacity–action gap in flood risk adaptation
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
Modeling Regional Production Capacity Loss Rates Considering Response Bias: Insights from a Questionnaire Survey on Zhengzhou Flood
Warnings based on risk matrices: a coherent framework with consistent evaluation
Adaptive behavior of farmers under consecutive droughts results in more vulnerable farmers: a large-scale agent-based modeling analysis in the Bhima basin, India
Content analysis of multi-annual time series of flood-related Twitter (X) data
Enhancement of state response capability and famine mitigation: a comparative analysis of two drought events in northern China during the Ming dynasty
Flood exposure of environmental assets
A new method for calculating highway blocking due to high-impact weather conditions
Review Article: Analysis of sediment disaster risk assessment surveys in Brazil: A critical review and recommendations
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Ready, Set & Go! An anticipatory action system against droughts
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Tracing online flood conversations across borders: A watershed level analysis of geo-social media topics during the 2021 European flood
Flood risk assessment through large-scale modeling under uncertainty
Migration as a hidden risk factor in seismic fatality: spatial modeling of the Chi-Chi earthquake and suburban syndrome
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Current status of water-related planning for climate change adaptation in the Spree river basin, Germany
Using a convection-permitting climate model to assess wine grape productivity: two case studies in Italy
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Dynamic response of pile–slab retaining wall structure under rockfall impact
What if extreme droughts occur more frequently? – Mechanisms and limits of forest adaptation in pine monocultures and mixed forests in Berlin-Brandenburg, Germany
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Sectoral Vulnerability to Drought: Exploring the Role of Blue and Green Water Dependency in Mid and High-Latitudes
An evaluation on the alignment of drought policy and planning guidelines with the contemporary disaster risk reduction agenda
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Invited perspectives: Fostering interoperability of data, models, communication and governance for disaster resilience through transdisciplinary knowledge co-production
Modelling Flood Losses to Microbusinesses in Ho Chi Minh City, Vietnam
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Flood relief logistics planning for coastal cities: a case study in Shanghai, China
Review article: Co-creating knowledge for drought impact assessment in socio-hydrology
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Risk reduction through managed retreat? Investigating enabling conditions and assessing resettlement effects on community resilience in Metro Manila
Brief communication: Lessons learned and experiences gained from building up a global survey on societal resilience to changing droughts
How does perceived heat stress differ between urban forms and human vulnerability profiles? – case study Berlin
Regional seismic risk assessment based on ground conditions in Uzbekistan
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Alessa Truedinger, Joern Birkmann, Mark Fleischhauer, and Celso Ferreira
Nat. Hazards Earth Syst. Sci., 25, 2097–2113, https://doi.org/10.5194/nhess-25-2097-2025, https://doi.org/10.5194/nhess-25-2097-2025, 2025
Short summary
Short summary
In post-disaster reconstruction, emphasis should be placed on critical and sensitive infrastructures. In Germany, as in other countries, sensitive infrastructures have not yet been focused on; therefore, we developed a method for determining the risk that sensitive infrastructures are facing in the context of riverine and pluvial flooding. The easy-to-use assessment framework can be applied to various sensitive infrastructures, e.g., to qualify and accelerate decisions in the reconstruction process.
Nicole van Maanen, Joël J.-F. G. De Plaen, Timothy Tiggeloven, Maria Luisa Colmenares, Philip J. Ward, Paolo Scussolini, and Elco Koks
Nat. Hazards Earth Syst. Sci., 25, 2075–2080, https://doi.org/10.5194/nhess-25-2075-2025, https://doi.org/10.5194/nhess-25-2075-2025, 2025
Short summary
Short summary
Understanding coastal flood protection is vital for assessing risks from natural disasters and climate change. However, current global data on coastal flood protection are limited and based on simplified assumptions, leading to potential uncertainties in risk estimates. As a step in this direction, we propose a comprehensive dataset, COASTtal flood PROtection Standards within EUrope (COASTPROS-EU), which compiles coastal flood protection standards in Europe.
Bektaş Sarı
Nat. Hazards Earth Syst. Sci., 25, 2031–2043, https://doi.org/10.5194/nhess-25-2031-2025, https://doi.org/10.5194/nhess-25-2031-2025, 2025
Short summary
Short summary
After the Kahramanmaraş earthquakes, the Turkish Government mobilized all available resources, ensured regular information updates, and deployed a significant number of rescue personnel to the affected areas. However, the scale of this devastating disaster, resulting in the loss of over 50 000 lives, underscores the critical importance of building earthquake-resistant structures as the most effective means to mitigate such calamities.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 1993–2005, https://doi.org/10.5194/nhess-25-1993-2025, https://doi.org/10.5194/nhess-25-1993-2025, 2025
Short summary
Short summary
Drought affects not only water availability but also agriculture, the economy, and communities. This study explores how public policies help reduce these impacts in Ceará, Northeast Brazil. Using qualitative drought monitoring data, interviews, and policy analysis, we found that policies supporting local economies help lessen drought effects. However, most reported impacts are still related to water shortages, showing the need for broader strategies beyond water supply investment.
Sophie Kaashoek, Žiga Malek, Nadia Bloemendaal, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 25, 1963–1974, https://doi.org/10.5194/nhess-25-1963-2025, https://doi.org/10.5194/nhess-25-1963-2025, 2025
Short summary
Short summary
Tropical storms are expected to get stronger all over the world, and this will have a big impact on people, buildings and important activities like growing bananas. Already, in different parts of the world, banana farms are being hurt by these storms, which makes banana prices go up and affects the people who grow them. We are not sure how these storms will affect bananas everywhere in the future. We assessed what happened to banana farms during storms in different parts of the world.
Nicoletta Nappo and Mandy Korff
Nat. Hazards Earth Syst. Sci., 25, 1811–1839, https://doi.org/10.5194/nhess-25-1811-2025, https://doi.org/10.5194/nhess-25-1811-2025, 2025
Short summary
Short summary
Cities in coastal and delta areas need effective engineering techniques to counteract subsidence and its damage. This paper presents a framework for choosing these techniques using a decision tree and four performance parameters. This procedure was tested on various cases representative of different scenarios. This demonstrated the potential of this method for initial screenings of techniques which site-specific assessments should always follow.
Annika Schubert, Anne von Streit, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 25, 1621–1653, https://doi.org/10.5194/nhess-25-1621-2025, https://doi.org/10.5194/nhess-25-1621-2025, 2025
Short summary
Short summary
Households play a crucial role in climate adaptation efforts. Yet, households require capacities to implement measures. We explore which capacities enable German households to adapt to flooding. Our results indicate that flood-related capacities such as risk perception, responsibility appraisal, and motivation are pivotal, whereas financial assets are secondary. Enhancing these specific capacities, e.g. through collaborations between households and municipalities, could promote local adaptation.
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025, https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Short summary
Adapting to climate extremes is a challenge for spatial planning. Risk maps that include not just a consideration of hazards but also social vulnerability can help. We develop social vulnerability maps for the Stuttgart region, Germany. We show the maps, describe how and why we developed them, and provide an analysis of practitioners' needs and their feedback. Insights presented in this paper can help to improve map usability and to better link research and planning practice.
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025, https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Lijiao Yang, Yan Luo, Zilong Li, and Xinyu Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3923, https://doi.org/10.5194/egusphere-2024-3923, 2025
Short summary
Short summary
This study proposes a response-bias-tolerant methodology for constructing production capacity loss rate (PCLR) curves, which addresses response bias in extreme flood scenarios and considers the distribution characteristics of PCLR under different damage states. The core value of this study is to provide a competing and promising input in economic modeling, such as input-output and computable general equilibrium models.
Robert J. Taggart and David J. Wilke
EGUsphere, https://doi.org/10.5194/egusphere-2025-323, https://doi.org/10.5194/egusphere-2025-323, 2025
Short summary
Short summary
Our research presents a new method for determining warning levels for any hazard. Using risk matrices, our framework addresses issues found in other approaches. We provide examples to demonstrate how the approach works. A powerful method for evaluating warning accuracy is given, allowing for a cycle of continuous improvement in warning services. This research is relevant to a broad audience, from those who develop forecast systems to practitioners who issue or communicate warnings.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025, https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated farmers' individual choices – like changing crops or digging wells – and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damage. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrological models in shaping policies to lessen drought impacts.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025, https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help us understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci., 25, 591–607, https://doi.org/10.5194/nhess-25-591-2025, https://doi.org/10.5194/nhess-25-591-2025, 2025
Short summary
Short summary
This study developed a model of extreme drought-induced famine processes and response mechanisms in ancient China. The spatial distribution of drought and famine during the Chenghua drought and the Wanli drought was constructed. By categorizing drought-affected counties into three types, a comparative analysis of the differences in famine severity and response effectiveness between the Chenghua and Wanli droughts was conducted.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci., 25, 565–580, https://doi.org/10.5194/nhess-25-565-2025, https://doi.org/10.5194/nhess-25-565-2025, 2025
Short summary
Short summary
Environmental assets are crucial to sustaining and fulfilling life on Earth via ecosystem services (ESs). Studying their flood risk is thus seminal, in addition to being required by several norms. However, this field is not yet adequately developed. We studied the exposure component of flood risk and developed an evaluating methodology based on the ESs provided by environmental assets to discern assets and areas that are more important than others with metrics suitable to large-scale studies.
Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu
Nat. Hazards Earth Syst. Sci., 25, 493–513, https://doi.org/10.5194/nhess-25-493-2025, https://doi.org/10.5194/nhess-25-493-2025, 2025
Short summary
Short summary
Highway-blocking events are characterized by diurnal variation. A classification method of severity levels of highway blocking is catagorized into five levels. The severity levels of highway blocking due to high-impact weather are evaluated. A method for calculating the degree of highway load in China is proposed. A quantitative assessment of the losses of highway blocking due to dense fog is conducted. The highway losses caused by dense fog are concentrated in North, East, and Southwest China.
Thiago Dutra dos Santos and Taro Uchida
EGUsphere, https://doi.org/10.5194/egusphere-2024-2255, https://doi.org/10.5194/egusphere-2024-2255, 2025
Short summary
Short summary
Five federal sediment-related disaster risk assessments have been conducted in Brazil, each with distinct objectives and methodologies. To evaluate their effectiveness and identify issues, we analyzed the methods, the outcome data, and reviewed the status of disaster prevention initiatives based on the assessment results. Our findings revealed persistent problems across all methods. Consequently, we recommended improvements to enhance their efficacy and reliability.
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci., 25, 49–76, https://doi.org/10.5194/nhess-25-49-2025, https://doi.org/10.5194/nhess-25-49-2025, 2025
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history mean the data required for vulnerability evaluation by the insurance industry are scarce. A systematic literature review is conducted in this study to determine the suitability of current published literature for this purpose. Knowledge gaps are charted, and a representative asset–hazard taxonomy is proposed to guide future quantitative research.
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024, https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Short summary
The
Ready, Set & Go!system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024, https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Short summary
In this paper, we provide a brief introduction of the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructure to increase their capabilities.
Sébastien Dujardin, Dorian Arifi, Sebastian Schmidt, Catherine Linard, and Bernd Resch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3255, https://doi.org/10.5194/egusphere-2024-3255, 2024
Short summary
Short summary
Our research explores how social media can help understand public responses to floods, focusing on the 2021 Western European flood. By analysing flood-related topics on social media, we found that conversations varied depending on the location and impact of the flood, with in-disaster concerns emerging in severely affected upstream areas and post-disaster discussions in less affected regions. This shows the potential of social media for better disaster coordination along border crossing rivers.
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024, https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investment, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows for identifying the critical points where single-value estimates may underestimate the risk and the areas of vulnerability for prioritizing risk reduction efforts.
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
Nat. Hazards Earth Syst. Sci., 24, 4457–4471, https://doi.org/10.5194/nhess-24-4457-2024, https://doi.org/10.5194/nhess-24-4457-2024, 2024
Short summary
Short summary
This study shows migration patterns to be a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing on the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024, https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary
Short summary
As sea levels rise, coastal areas will experience more frequent flooding, and salt water will start seeping into the soil, which is a serious issue for farmers who rely on good soil quality for their crops. Here, we studied coastal Mozambique to understand the risks from sea level rise and flooding by looking at how salt intrusion affects farming and how floods damage buildings. We find that 15 %–21 % of coastal households will adapt and 13 %–20 % will migrate to inland areas in the future.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci., 24, 4369–4383, https://doi.org/10.5194/nhess-24-4369-2024, https://doi.org/10.5194/nhess-24-4369-2024, 2024
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in plans for water management, spatial planning and landscape planning in the Spree river basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this gap, more frequent updates of plans, a stronger focus on multifunctional measures, and the adaptation of best-practice examples for systematic integration of climate change impacts and adaptation are needed.
Laura T. Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
Nat. Hazards Earth Syst. Sci., 24, 4293–4315, https://doi.org/10.5194/nhess-24-4293-2024, https://doi.org/10.5194/nhess-24-4293-2024, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based on both temperature and precipitation. These indices are correlated with grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change will affect wine production in the future.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024, https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Short summary
To integrate resilience assessment into practical management, this study designs a step-by-step guide that enables managers of critical infrastructure (CI) to create specific indicator systems tailored to real cases. This guide considers the consequences of hazards to CI and the cost–benefit analysis and side effects of implementable actions. The assessment results assist managers, as they are based on a multi-criterion framework that addresses several factors valued in practical management.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024, https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Short summary
Natural disturbances are projected to intensify in the future, threatening our forests and their functions such as wood production, protection against natural hazards, and carbon sequestration. By assessing risks to forests from wind and fire damage, alongside the vulnerability of carbon, it is possible to prioritize forest stands at high risk. In this study, we propose a novel methodological approach to support climate-smart forest management and inform better decision-making.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
Jamir Priesner, Boris Sakschewski, Maik Billing, Werner von Bloh, Sebastian Fiedler, Sarah Bereswill, Kirsten Thonicke, and Britta Tietjen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3066, https://doi.org/10.5194/egusphere-2024-3066, 2024
Short summary
Short summary
Our simulations suggest that increased drought frequencies lead to a drastic reduction in biomass in pine monoculture and mixed forest. Mixed forest eventually recovered, as long as drought frequencies was not too high. The higher resilience of mixed forests was due to higher adaptive capacity. After adaptation mixed forests were mainly composed of smaller, broad-leaved trees with higher wood density and slower growth.This would have strong implications for forestry and other ecosystem services.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2726, https://doi.org/10.5194/egusphere-2024-2726, 2024
Short summary
Short summary
Utilizing a survey including respondents from seven societal sectors, the role of water dependency for drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture, or groundwater and surface water). The results highlight the importance of accounting for water dependency, and to clearly define the drought hazard, in drought vulnerability or risk assessments.
Ilyas Masih
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-163, https://doi.org/10.5194/nhess-2024-163, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study evaluates twelve drought policy and planning guidelines for their alignment with the four priority areas of the SENDAI Framework. The guidelines do not align very well with the contemporary disaster risk reduction agenda. The study highlights strengths, weaknesses, opportunities and threats, and provides useful insights to develop next generation of drought guidelines.
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
EGUsphere, https://doi.org/10.5194/egusphere-2024-2340, https://doi.org/10.5194/egusphere-2024-2340, 2024
Short summary
Short summary
Many households in Vietnam depend on revenues from microbusinesses (shop-houses). However, losses caused by regular flooding to the microbusinesses are not modelled. Business turnover, building age and water depth are found to be the main drivers of flood losses to microbusinesses. We built and validated probabilistic models (Non-parametric Bayesian Networks) that estimate flood losses to microbusinesses. The results help in flood risk management and adaption decision making for microbusinesses.
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
Pujun Liang, Jie Yin, Dandan Wang, Yi Lu, Yuhan Yang, Dan Gao, and Jianfeng Mai
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-88, https://doi.org/10.5194/nhess-2024-88, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Addressing coastal city flood risks, this article examines relief logistics planning, employing a GIS-network analysis and optimization model to minimize costs and dissatisfaction. The investigation, grounded in Shanghai's emergency infrastructure and flood relief logistics framework, presents feasible distribution strategies. Meanwhile, the case study indicates that the supply levels of Emergency Flood Shelters and Emergency Reserve Warehouses vary in different coastal flood scenarios.
Silvia De Angeli, Lorenzo Villani, Giulio Castelli, Maria Rusca, Giorgio Boni, Elena Bresci, and Luigi Piemontese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2207, https://doi.org/10.5194/egusphere-2024-2207, 2024
Short summary
Short summary
Despite droughts are deeply intertwined within sociohydrological systems, traditional top-down approaches often ignore those directly affected. By integrating insights from five research fields, we present a framework to guide the co-creation of knowledge for drought impact assessment. Emphasizing social dynamics and power imbalances, the framework guides a more inclusive approach to drought assessment and adaptation.
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
Nimra Iqbal, Marvin Ravan, Zina Mitraka, Joern Birkmann, Sue Grimmond, Denise Hertwig, Nektarios Chrysoulakis, Giorgos Somarakis, and Angela Wendnagel-Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-1907, https://doi.org/10.5194/egusphere-2024-1907, 2024
Short summary
Short summary
This work deepens the understanding of how perceived heat stress, human vulnerability (e.g. age, income) and adaptive capacities (e.g. green, shaded spaces) are coupled with urban structures. The results show that perceived heat stress decreases with distance from urban center, however, human vulnerability and adaptive capacities depend stronger on inner-variations and differences between urban structures. Planning policies and adaptation strategies should account for these differences.
Vakhitkhan Alikhanovich Ismailov, Sharofiddin Ismatullayevich Yodgorov, Akhror Sabriddinovich Khusomiddinov, Eldor Makhmadiyorovich Yadigarov, Bekzod Uktamovich Aktamov, and Shuhrat Bakhtiyorovich Avazov
Nat. Hazards Earth Syst. Sci., 24, 2133–2146, https://doi.org/10.5194/nhess-24-2133-2024, https://doi.org/10.5194/nhess-24-2133-2024, 2024
Short summary
Short summary
For the basis of seismic risk assessment, maps of seismic intensity increment and an improved map of seismic hazard have been developed, taking into account the engineering-geological conditions of the territory of Uzbekistan and the seismic characteristics of soils. For seismic risk map development, databases were created based on geographic information system platforms, allowing us to systematize and evaluate the regional distribution of information.
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024, https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Short summary
Transboundary flood risk management in the Ciliwung River basin is placed in a broader context of disaster management, environmental science, and governance. This is particularly relevant for areas of research involving the management of shared water resources, the impact of regional development on flood risk, and strategies to reduce economic losses from flooding.
Cited articles
AghaKouchak, A., Cheng, L., Mazdiyasni, O., and Farahmand, A.: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought, Geophys. Res. Lett., 41, 8847–8852, https://doi.org/10.1002/2014GL062308, 2014.
Ahmad, M. M., Yaseen, M., and Saqib, S. E.: Climate change impacts of drought on the livelihood of dryland smallholders: Implications of adaptation challenges, Int. J. Disast. Risk Re., 80, 103210, https://doi.org/10.1016/j.ijdrr.2022.103210, 2022.
Appau, S., Awaworyi Churchill, S., Smyth, R., and Trinh, T.-A.: The long-term impact of the Vietnam War on agricultural productivity, World Dev., 146, 105613, https://doi.org/10.1016/j.worlddev.2021.105613, 2021.
Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.: A quantitative analysis to objectively appraise drought indicators and model drought impacts, Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, 2016.
Badolo, F. and Somlanare, R. K.: Rainfall shocks, food prices vulnerability and food security: Evidence for Sub-Saharan African Countries, in: Proceedings of the African Economic Conference, 30 October–2 November 2012, Kigali, Rwanda, https://www.afdb.org/sites/default/files/documents/publications/aec_2012_-_rainfall_shocks_food_prices_vulnerability_and_food_security-evidence_for_sub-saharan_african_countries.pdf (lass access: 11 December 2024), 2012.
Belleza, G. A. C., Bierkens, M. F. P., and Vliet, M. T. H. van: Sectoral water use responses to droughts and heatwaves: analyses from local to global scales for 1990–2019, Environ. Res. Lett., 18, 104008, https://doi.org/10.1088/1748-9326/acf82e, 2023.
Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., Van der Velde, M., and Makowski, D.: Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France, Nat. Commun., 9, 1627, https://doi.org/10.1038/s41467-018-04087-x, 2018.
Berhanu, M. and Wolde, A.: Review on Climate Change Impacts and its Adaptation strategies on Food Security in Sub-Saharan Africa, Agricultural Social Economic Journal, 19, 145–154, https://doi.org/10.21776/ub.agrise.2019.019.3.3, 2019.
Biazin, B. and Sterk, G.: Drought vulnerability drives land-use and land cover changes in the Rift Valley dry lands of Ethiopia, Agr. Ecosyst. Environ., 164, 100–113, https://doi.org/10.1016/j.agee.2012.09.012, 2013.
Blanchy, G., Bragato, G., Di Bene, C., Jarvis, N., Larsbo, M., Meurer, K., and Garré, S.: Soil and crop management practices and the water regulation functions of soils: a qualitative synthesis of meta-analyses relevant to European agriculture, SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, 2023.
Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., and Hostert, P.: National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data (2017, 2018 and 2019), Zenodo [data set], https://doi.org/10.5281/zenodo.5153047, 2021.
Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., and Hostert, P.: Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany, Remote Sens. Environ., 269, 112831, https://doi.org/10.1016/j.rse.2021.112831, 2022.
BMEL: Daten und Fakten Land-, Forst- und Ernährungswirtschaft mit Fischerei und Wein- und Gartenbau, Bundesministerium für Ernährung und Landwirtschaft (BMEL), https://www.bmel.de/SharedDocs/Downloads/DE/Broschueren/daten-fakten-2022.html (last access: 29 July 2024), 2022.
Brás, T. A., Seixas, J., Carvalhais, N., and Jägermeyr, J.: Severity of drought and heatwave crop losses tripled over the last five decades in Europe, Environ. Res. Lett., 16, 065012, https://doi.org/10.1088/1748-9326/abf004, 2021.
Conradt, T., Engelhardt, H., Menz, C., Vicente-Serrano, S. M., Farizo, B. A., Peña-Angulo, D., Domínguez-Castro, F., Eklundh, L., Jin, H., Boincean, B., Murphy, C., and López-Moreno, J. I.: Cross-sectoral impacts of the 2018–2019 Central European drought and climate resilience in the German part of the Elbe River basin, Reg. Environ. Change, 23, 32, https://doi.org/10.1007/s10113-023-02032-3, 2023.
COPA-COGECA: Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry Technical Report, Committee of Agricultural Organisations in the European Union, Brussels, http://docs.gip-ecofor.org/libre/COPA_COGECA_2004.pdf (last access: 13 April 2024), 2003.
Daramola, M. T. and Xu, M.: Recent changes in global dryland temperature and precipitation, Int. J. Climatol., 42, 1267–1282, https://doi.org/10.1002/joc.7301, 2022.
de Brito, M. M., Kuhlicke, C., and Marx, A.: Near-real-time drought impact assessment: a text mining approach on the 2018/19 drought in Germany, Environ. Res. Lett., 15, 1040a9, https://doi.org/10.1088/1748-9326/aba4ca, 2020.
Deng, S., Zhao, D., Chen, Z., Liu, L., Zhu, Y., Wang, K., Gao, X., Wu, H., and Zheng, D.: Global Distribution and Projected Variations of Compound Drought-Extreme Precipitation Events, Earths Future, 12, e2024EF004809, https://doi.org/10.1029/2024EF004809, 2024.
Deutscher Wetterdienst: Climate data center, Deutscher Wetterdienst, https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html, last access: 6 July 2024.
Diaz, D. and Moore, F.: Quantifying the economic risks of climate change, Nat. Clim. Change, 7, 774–782, https://doi.org/10.1038/nclimate3411, 2017.
Di Marcoberardino, D. and Cucculelli, M.: “Natural” disasters and regional governance: Evidence from European NUTS-3 regions, Pap. Reg. Sci., 103, 100003, https://doi.org/10.1016/j.pirs.2024.100003, 2024.
Ding, J., Huang, Z., Zhu, M., Li, C., Zhu, X., and Guo, W.: Does cyclic water stress damage wheat yield more than a single stress?, PLoS One, 13, e0195535, https://doi.org/10.1371/journal.pone.0195535, 2018.
Ding, Y., Hayes, M. J., and Widhalm, M.: Measuring economic impacts of drought: a review and discussion, Disaster Prev. Manag., 20, 434–446, https://doi.org/10.1108/09653561111161752, 2011.
Eckhardt, D., Leiras, A., and Thomé, A. M. T.: Systematic literature review of methodologies for assessing the costs of disasters, Int. J. Disast. Risk Re., 33, 398–416, https://doi.org/10.1016/j.ijdrr.2018.10.010, 2019.
Egerer, S., Puente, A. F., Peichl, M., Rakovec, O., Samaniego, L., and Schneider, U. A.: Limited potential of irrigation to prevent potato yield losses in Germany under climate change, Agr. Syst., 207, 103633, https://doi.org/10.1016/j.agsy.2023.103633, 2023.
EUROSTAT: Agriculture-Database. Selling prices of crop products (absolute prices) – annual price (from 2000 onwards), EUROSTAT, https://ec.europa.eu/eurostat/databrowser/view/apri_ap_crpouta/default/table?lang=en (last access: 3 July 2023), 2022.
FAO: The impact of disasters on agriculture and food security 2023, FAO, Rome, https://doi.org/10.4060/cc7900en, 2023.
FNR: https://pflanzen.fnr.de/energiepflanzen/pflanzen/mais, last access: 7 March 2023.
Foreign Policy Research Institute: The Impact of Climate Change on Africa's Economies, Foreign Policy Research Institute, https://www.fpri.org/article/2021/10/the-impact-of-climate-change-on-africas-economies/, last access: 11 December 2024.
Frame, D. J., Rosier, S. M., Noy, I., Harrington, L. J., Carey-Smith, T., Sparrow, S. N., Stone, D. A., and Dean, S. M.: Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought, Climatic Change, 162, 781–797, https://doi.org/10.1007/s10584-020-02729-y, 2020.
Garbero, A. and Muttarak, R.: Impacts of the 2010 Droughts and Floods on Community Welfare in Rural Thailand: Differential Effects of Village Educational Attainment, Ecol. Soc., 18, 27, https://doi.org/10.5751/ES-05871-180427, 2013.
García-León, D., Standardi, G., and Staccione, A.: An integrated approach for the estimation of agricultural drought costs, Land Use Policy, 100, 104923, https://doi.org/10.1016/j.landusepol.2020.104923, 2021.
Gömann, H., Bender, A., Bolte, A., Dirksmeyer, W., Englert, H., Feil, J.-H., Frühauf, C., Hauschild, M., Krengel, S., Lilienthal, H., Löpmeier, F.-J., Müller, J., Mußhof, O., Natkhin, M., Offermann, F., Seidel, P., Schmidt, M., Seintsch, B., Steidl, J., Strohm, K., and Zimmer, Y.: Agrarrelevante Extremwetterlagen und Möglichkeiten von Risikomanagementsystemen: Studie im Auftrag des Bundesministeriums für Ernährung und Landwirtschaft (BMEL), Johann Heinrich von Thünen-Institut, DE, https://doi.org/10.22004/ag.econ.206716, 2015.
Gray, M., Hunter, B., and Edwards, B.: A Sunburnt Country: The Economic and Financial Impact of Drought on Rural and Regional Families in Australia in an Era of Climate Change, Australian Journal of Labour Economics, 12, 108–131, 2009.
Haqiqi, I., Grogan, D. S., Hertel, T. W., and Schlenker, W.: Quantifying the impacts of compound extremes on agriculture, Hydrol. Earth Syst. Sci., 25, 551–564, https://doi.org/10.5194/hess-25-551-2021, 2021.
Heilemann, J.: LASSO-crop-yield-projection, GitLab [code], https://git.ufz.de/heileman/lasso-crop-yield-projection, last access: 27 June 2025.
Heilemann, J., Klassert, C., Samaniego, L., Thober, S., Marx, A., Boeing, F., Klauer, B., and Gawel, E.: Projecting Impacts of Extreme Weather Events on Crop Yields Using Lasso Regression, Weather and Climate Extremes, 46, 100738, https://doi.org/10.1016/j.wace.2024.100738, 2024.
Helmholtz Centre for Environmental Research: Dürremonitor Deutschland, Helmholtz-Zentrum für Umweltforschung (UFZ) [data set], https://www.ufz.de/index.php?de=37937, last access: 26 February 2025.
Henchiri, M., Liu, Q., Essifi, B., Javed, T., Zhang, S., Bai, Y., and Zhang, J.: Spatio-Temporal Patterns of Drought and Impact on Vegetation in North and West Africa Based on Multi-Satellite Data, Remote Sens., 12, 3869, https://doi.org/10.3390/rs12233869, 2020.
Howitt, R., MacEwan, D., Medellín-Azuara, J., Lund, J., and Sumner, D.: Economic Analysis of the 2015 Drought For California Agriculture, Center for Watershed Sciences, University of California – Davis, Davis, CA, https://watershed.ucdavis.edu/sites/g/files/dgvnsk8531/files/products/2021-05/Economic_Analysis_2015_California_Drought__Main_Report.pdf (last access: 3 November 2024), 2015.
Hydroclimatic Forecasting System: https://www.ufz.de/index.php?en=47304, last access: 26 February 2025.
Jaeger, W. K., Plantinga, A. J., Chang, H., Dello, K., Grant, G., Hulse, D., McDonnell, J. J., Lancaster, S., Moradkhani, H., Morzillo, A. T., Mote, P., Nolin, A., Santelmann, M., and Wu, J.: Toward a formal definition of water scarcity in natural-human systems, Water Resour. Res., 49, 4506–4517, https://doi.org/10.1002/wrcr.20249, 2013.
James, G., Witten, D., Hastie, T., and Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R, Springer US, New York, NY, https://doi.org/10.1007/978-1-0716-1418-1, 2013.
Khodaverdi, H., Fowles, T., Bick, E., and Nansen, C.: Does Drought Increase the Risk of Insects Developing Behavioral Resistance to Systemic Insecticides?, J. Econ. Entomol., 109, 2027–2031, https://doi.org/10.1093/jee/tow188, 2016.
Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL): SDB – Standarddeckungsbeiträge, Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), https://daten.ktbl.de/sdb/welcome.do (last access: 6 March 2023), 2023.
Kurukulasuriya, P., Mendelsohn, R., Hassan, R., Benhin, J., Deressa, T., Diop, M., Eid, H. M., Fosu, K. Y., Gbetibouo, G., Jain, S., Mahamadou, A., Mano, R., Kabubo-Mariara, J., El-Marsafawy, S., Molua, E., Ouda, S., Ouedraogo, M., Séne, I., Maddison, D., Seo, S. N., and Dinar, A.: Will African Agriculture Survive Climate Change?, World Bank Econ. Rev., 20, 367–388, https://doi.org/10.1093/wber/lhl004, 2006.
Lesk, C., Rowhani, P., and Ramankutty, N.: Influence of extreme weather disasters on global crop production, Nature, 529, 84–87, https://doi.org/10.1038/nature16467, 2016.
Liu, S., Xiao, L., Sun, J., Yang, P., Yang, X., and Wu, W.: Probability of maize yield failure increases with drought occurrence but partially depends on local conditions in China, Eur. J. Agron., 139, 126552, https://doi.org/10.1016/j.eja.2022.126552, 2022.
Liu, X., Zhu, X., Pan, Y., Li, S., Liu, Y., and Ma, Y.: Agricultural drought monitoring: Progress, challenges, and prospects, J. Geogr. Sci., 26, 750–767, https://doi.org/10.1007/s11442-016-1297-9, 2016.
Lobell, D. B., Schlenker, W., and Costa-Roberts, J.: Climate Trends and Global Crop Production Since 1980, Science, 333, 616–620, https://doi.org/10.1126/science.1204531, 2011.
Lüttger, A. B. and Feike, T.: Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany, Theor. Appl. Climatol., 132, 15–29, https://doi.org/10.1007/s00704-017-2076-y, 2018.
McNamara, I., Flörke, M., Uschan, T., Baez-Villanueva, O. M., and Herrmann, F.: Estimates of irrigation requirements throughout Germany under varying climatic conditions, Agr. Water Manage., 291, 108641, https://doi.org/10.1016/j.agwat.2023.108641, 2024.
Meisner, A. and de Boer, W.: Strategies to Maintain Natural Biocontrol of Soil-Borne Crop Diseases During Severe Drought and Rainfall Events, Front. Microbiol., 9, 2279, https://doi.org/10.3389/fmicb.2018.02279, 2018.
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.
Muller, L. C. F. E., Schaafsma, M., Mazzoleni, M., and Van Loon, A. F.: Responding to climate services in the context of drought: A systematic review, Climate Services, 35, 100493, https://doi.org/10.1016/j.cliser.2024.100493, 2024.
Musolino, D. A., Massarutto, A., and de Carli, A.: Does drought always cause economic losses in agriculture? An empirical investigation on the distributive effects of drought events in some areas of Southern Europe, Sci. Total Environ., 633, 1560–1570, https://doi.org/10.1016/j.scitotenv.2018.02.308, 2018.
Nagpal, M., Klassert, C., Heilemann, J., Klauer, B., and Gawel, E.: Measuring Crop Acreage Adaptation to Changing Yields and Prices: An Empirical Analysis for Agriculture in Germany, SSRN (Elsevier) [preprint], https://doi.org/10.2139/ssrn.4728661, 16 February 2024.
Newman, R. and Noy, I.: The global costs of extreme weather that are attributable to climate change, Nat. Commun., 14, 6103, https://doi.org/10.1038/s41467-023-41888-1, 2023.
Orth, R., O, S., Zscheischler, J., Mahecha, M. D., and Reichstein, M.: Contrasting biophysical and societal impacts of hydro-meteorological extremes, Environ. Res. Lett., 17, 014044, https://doi.org/10.1088/1748-9326/ac4139, 2022.
Peichl, M., Thober, S., Meyer, V., and Samaniego, L.: The effect of soil moisture anomalies on maize yield in Germany, Nat. Hazards Earth Syst. Sci., 18, 889–906, https://doi.org/10.5194/nhess-18-889-2018, 2018.
Peichl, M., Thober, S., Samaniego, L., Hansjürgens, B., and Marx, A.: Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany, Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, 2021.
Prasanna, R. P. I. R.: Economic costs of drought and farmers' adaptation strategies: evidence from Sri Lanka, Sri Lanka Journal of Economic Research, 5, 61–79, https://doi.org/10.4038/sljer.v5i2.49, 2018.
Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S., Hanel, M., and Kumar, R.: The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe, Earths Future, 10, e2021EF002394, https://doi.org/10.1029/2021EF002394, 2022.
Ray, D. K., Gerber, J. S., MacDonald, G. K., and West, P. C.: Climate variation explains a third of global crop yield variability, Nat. Commun., 6, 5989, https://doi.org/10.1038/ncomms6989, 2015.
Reinermann, S., Gessner, U., Asam, S., Kuenzer, C., and Dech, S.: The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics, Remote Sens., 11, 1783, https://doi.org/10.3390/rs11151783, 2019.
Rose, A.: Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation, in: Modeling Spatial and Economic Impacts of Disasters, edited by: Okuyama, Y. and Chang, S. E., Springer Berlin Heidelberg, Berlin, Heidelberg, 13–36, https://doi.org/10.1007/978-3-540-24787-6_2, 2004.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, 47–68, https://doi.org/10.1029/2008WR007327, 2010.
Samaniego, L., Kumar, R., and Zink, M.: Implications of Parameter Uncertainty on Soil Moisture Drought Analysis in Germany, J. Hydrometeorol., 14, 47–68, https://doi.org/10.1175/JHM-D-12-075.1, 2013.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming exacerbates European soil moisture droughts, Nat. Clim. Change, 8, 421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018.
Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A.: The global burden of pathogens and pests on major food crops, Nat. Ecol. Evol., 3, 430–439, https://doi.org/10.1038/s41559-018-0793-y, 2019.
Schmitt, J., Offermann, F., Söder, M., Frühauf, C., and Finger, R.: Extreme weather events cause significant crop yield losses at the farm level in German agriculture, Food Policy, 112, 102359, https://doi.org/10.1016/j.foodpol.2022.102359, 2022.
Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, S., Ferrat, M., Haughey, S., Luz, Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, H., Kissick, K., Belkacemi, M., and Malley, J.: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, IPCC, Cambridge University Press, https://doi.org/10.1017/9781009157988, 2019.
Smith, S. M. and Edwards, E. C.: Water storage and agricultural resilience to drought: historical evidence of the capacity and institutional limits in the United States, Environ. Res. Lett., 16, 124020, https://doi.org/10.1088/1748-9326/ac358a, 2021.
Soares, P. R., Harrison, M. T., Kalantari, Z., Zhao, W., and Ferreira, C. S. S.: Drought effects on soil organic carbon under different agricultural systems, Environ. Res. Commun., 5, 112001, https://doi.org/10.1088/2515-7620/ad04f5, 2023.
Statistisches Bundesamt (Destatis): Regionaldatenbank Deutschland, 41141-02-02-4: Anbau auf dem Ackerland in landwirtschaftlichen Betrieben nach Fruchtarten, 2010–2020, Statistisches Bundesamt (Destatis) [data set], https://www.regionalstatistik.de/genesis/online?operation=table&code=41141-02-02-4#astructure (last access: 3 March 2023), 2020.
Statistisches Bundesamt (Destatis): Fachserie 3, R 3.1.2, Bodennutzung der Betriebe (Landwirtschaftlich genutzte Flächen), Statistisches Bundesamt (Destatis), https://www.destatis.de/DE/Service/Bibliothek/_publikationen-fachserienliste-3.html#631572 (last access: 29 July 2024), 2022a.
Statistisches Bundesamt (Destatis): Regionaldatenbank Deutschland. 41241-01-03-4: Erträge ausgewählter Feldfrüchte – Jahressumme, Statistisches Bundesamt (Destatis) [data set], https://www.regionalstatistik.de/genesis//online?operation=table&code=41241-01-03-4&bypass=true&levelindex=1&levelid=1677842497003#abreadcrumb (last access: 3 March 2023), 1999–2022, 2022b.
Suarez-Gutierrez, L., Müller, W. A., and Marotzke, J.: Extreme heat and drought typical of an end-of-century climate could occur over Europe soon and repeatedly, Commun. Earth Environ., 4, 1–11, https://doi.org/10.1038/s43247-023-01075-y, 2023.
Tibshirani, R.: Regression Shrinkage and Selection via the Lasso, J. Roy. Stat. Soc. B, 58, 267–288, 1996.
Trenczek, J., Lühr, O., Eiserbeck, L., Sandhövel, M., and Ibens, D.: Schäden der Dürre-und Hitzeextreme 2018 und 2019-eine ex-post-Analyse, Prognos AG, Berlin, https://www.prognos.com/sites/default/files/2022-07/Prognos_KlimawandelfolgenDeutschland_Detailuntersuchung%20Hitzesommer%2018_19_AP2_3a_.pdf (last access: 3 August 2024), 2022.
van der Wiel, K., Batelaan, T. J., and Wanders, N.: Large increases of multi-year droughts in north-western Europe in a warmer climate, Clim Dyn, 60, 1781–1800, https://doi.org/10.1007/s00382-022-06373-3, 2023.
van Duinen, R., Filatova, T., Geurts, P., and van der Veen, A.: Coping with drought risk: empirical analysis of farmers' drought adaptation in the south-west Netherlands, Reg. Environ. Change, 15, 1081–1093, https://doi.org/10.1007/s10113-014-0692-y, 2015.
Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., Meinshausen, N., and Frieler, K.: The effects of climate extremes on global agricultural yields, Environ. Res. Lett., 14, 054010, https://doi.org/10.1088/1748-9326/ab154b, 2019.
Vogel, J., Rivoire, P., Deidda, C., Rahimi, L., Sauter, C. A., Tschumi, E., van der Wiel, K., Zhang, T., and Zscheischler, J.: Identifying meteorological drivers of extreme impacts: an application to simulated crop yields, Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, 2021.
von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., Menzer, O., Arain, M. A., Buchmann, N., Cescatti, A., Gianelle, D., Kiely, G., Law, B. E., Magliulo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani, L., Oechel, W., Pavelka, M., Peichl, M., Rambal, S., Raschi, A., Scott, R. L., Vaccari, F. P., van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones, Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, 2018.
Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., Bourgault, M., Martre, P., Ababaei, B., Bindi, M., Ferrise, R., Finger, R., Fodor, N., Gabaldón-Leal, C., Gaiser, T., Jabloun, M., Kersebaum, K.-C., Lizaso, J. I., Lorite, I. J., Manceau, L., Moriondo, M., Nendel, C., Rodríguez, A., Ruiz-Ramos, M., Semenov, M. A., Siebert, S., Stella, T., Stratonovitch, P., Trombi, G., and Wallach, D.: Diverging importance of drought stress for maize and winter wheat in Europe, Nat. Commun., 9, 4249, https://doi.org/10.1038/s41467-018-06525-2, 2018.
Webber, H., Lischeid, G., Sommer, M., Finger, R., Nendel, C., Gaiser, T., and Ewert, F.: No perfect storm for crop yield failure in Germany, Environ. Res. Lett., 15, 104012, https://doi.org/10.1088/1748-9326/aba2a4, 2020.
Wens, M. L. K., Mwangi, M. N., van Loon, A. F., and Aerts, J. C. J. H.: Complexities of drought adaptive behaviour: Linking theory to data on smallholder farmer adaptation decisions, Int. J. Disast. Risk Re., 63, 102435, https://doi.org/10.1016/j.ijdrr.2021.102435, 2021.
Wilhite, D. A.: Drought as a Natural Hazard: Concepts and Definitions, in: Drought: A Global Assessment, 3–18, Routledge, ISBN 9780415168335, 2000.
Wilhite, D. A. and Glantz, M. H.: Understanding: the Drought Phenomenon: The Role of Definitions, Water Int., 10, 111–120, https://doi.org/10.1080/02508068508686328, 1985.
Wimmer, S. and Sauer, J.: Profitability Development and Resource Reallocation: The Case of Sugar Beet Farming in Germany, J. Agr. Econ., 71, 816–837, https://doi.org/10.1111/1477-9552.12373, 2020.
Zampieri, M., Ceglar, A., Dentener, F., and Toreti, A.: Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales, Environ. Res. Lett., 12, 064008, https://doi.org/10.1088/1748-9326/aa723b, 2017.
Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schäfer, D., and Marx, A.: The German drought monitor, Environ. Res. Lett., 11, 074002, https://doi.org/10.1088/1748-9326/11/7/074002, 2016.
Ziolkowska, J. R.: Socio-Economic Implications of Drought in the Agricultural Sector and the State Economy, Economies, 4, 19, https://doi.org/10.3390/economies4030019, 2016.
Zipper, S. C., Qiu, J., and Kucharik, C. J.: Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes, Environ. Res. Lett., 11, 094021, https://doi.org/10.1088/1748-9326/11/9/094021, 2016.
Zscheischler, J., Westra, S., Hurk, B. J. J. M. V. D., Seneviratne, S. I., Ward, P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Short summary
This study measures the direct effects of droughts in association with other extreme weather events on agriculture in Germany at the district level. Using a statistical yield model, we quantify the direct damage of extremes on crop yields and farm revenue. Extreme events during drought cause an average annual damage of EUR 781 million, accounting for 45 % of reported revenue losses. The insights herein can help develop better strategies for managing and mitigating the effects of future climate extremes.
This study measures the direct effects of droughts in association with other extreme weather...
Altmetrics
Final-revised paper
Preprint