Articles | Volume 25, issue 6
https://doi.org/10.5194/nhess-25-2115-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2115-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measuring extremes-driven direct biophysical impacts in agricultural drought damages
Mansi Nagpal
CORRESPONDING AUTHOR
Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Jasmin Heilemann
Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Luis Samaniego
Department of Computational Hydrosystems (CHS), Helmholtz Center for Environmental Research – UFZ, 04318 Leipzig, Germany
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Bernd Klauer
Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Erik Gawel
Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Faculty of Economics and Business Management, University of Leipzig, 04109 Leipzig, Germany
Christian Klassert
Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
Related authors
No articles found.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, Yannis Markonis, and Miroslav Trnka
Hydrol. Earth Syst. Sci., 29, 3341–3358, https://doi.org/10.5194/hess-29-3341-2025, https://doi.org/10.5194/hess-29-3341-2025, 2025
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, with clusters of 775 and 630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 25, 2007–2029, https://doi.org/10.5194/nhess-25-2007-2025, https://doi.org/10.5194/nhess-25-2007-2025, 2025
Short summary
Short summary
The July 2021 flood in central Europe was one of the deadliest floods in Europe in the recent decades and the most expensive flood in Germany. In this paper, we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory had been only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps to better prepare for future extreme floods.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Kingsley Nnaemeka Ogbu, Oldrich Rakovec, Luis Samaniego, Gloria Chinwendu Okafor, Bernhard Tischbein, and Hadush Meresa
Proc. IAHS, 385, 211–218, https://doi.org/10.5194/piahs-385-211-2024, https://doi.org/10.5194/piahs-385-211-2024, 2024
Short summary
Short summary
In this study, the MPR-mHM technique was applied in four data-scarce basins in Nigeria. Remotely sensed rainfall datasets were used as model forcings to evaluate the mHM capability in reproducing observed stream discharge under single and multivariable model calibration frameworks. Overall, model calibration performances displayed satisfactory outputs as evident in the Kling-Gupta Efficiency (KGE) scores across most basins.
Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024, https://doi.org/10.5194/hess-28-899-2024, 2024
Short summary
Short summary
Global and regional models used to evaluate water shortages typically neglect the possibility that irrigated crop areas may change in response to future hydrological conditions, such as the fallowing of crops in response to drought. Here, we enhance a model used for water shortage analysis with farmer agents that dynamically adapt their irrigated crop areas based on simulated hydrological conditions. Results indicate that such cropping adaptation can strongly alter simulated water shortages.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022, https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables
environmental modelers to efficiently use extensive datasets for model setups.
It flexibly ingests the datasets using user-defined data–parameter relationships
and rescales parameter fields to given model resolutions. Modern
land surface models especially benefit from MPR through increased transparency and
flexibility in modeling decisions. Thus, MPR empowers more sound and robust
simulations of the Earth system.
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, https://doi.org/10.5194/hess-25-6523-2021, 2021
Short summary
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Cited articles
AghaKouchak, A., Cheng, L., Mazdiyasni, O., and Farahmand, A.: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought, Geophys. Res. Lett., 41, 8847–8852, https://doi.org/10.1002/2014GL062308, 2014.
Ahmad, M. M., Yaseen, M., and Saqib, S. E.: Climate change impacts of drought on the livelihood of dryland smallholders: Implications of adaptation challenges, Int. J. Disast. Risk Re., 80, 103210, https://doi.org/10.1016/j.ijdrr.2022.103210, 2022.
Appau, S., Awaworyi Churchill, S., Smyth, R., and Trinh, T.-A.: The long-term impact of the Vietnam War on agricultural productivity, World Dev., 146, 105613, https://doi.org/10.1016/j.worlddev.2021.105613, 2021.
Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.: A quantitative analysis to objectively appraise drought indicators and model drought impacts, Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, 2016.
Badolo, F. and Somlanare, R. K.: Rainfall shocks, food prices vulnerability and food security: Evidence for Sub-Saharan African Countries, in: Proceedings of the African Economic Conference, 30 October–2 November 2012, Kigali, Rwanda, https://www.afdb.org/sites/default/files/documents/publications/aec_2012_-_rainfall_shocks_food_prices_vulnerability_and_food_security-evidence_for_sub-saharan_african_countries.pdf (lass access: 11 December 2024), 2012.
Belleza, G. A. C., Bierkens, M. F. P., and Vliet, M. T. H. van: Sectoral water use responses to droughts and heatwaves: analyses from local to global scales for 1990–2019, Environ. Res. Lett., 18, 104008, https://doi.org/10.1088/1748-9326/acf82e, 2023.
Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., Van der Velde, M., and Makowski, D.: Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France, Nat. Commun., 9, 1627, https://doi.org/10.1038/s41467-018-04087-x, 2018.
Berhanu, M. and Wolde, A.: Review on Climate Change Impacts and its Adaptation strategies on Food Security in Sub-Saharan Africa, Agricultural Social Economic Journal, 19, 145–154, https://doi.org/10.21776/ub.agrise.2019.019.3.3, 2019.
Biazin, B. and Sterk, G.: Drought vulnerability drives land-use and land cover changes in the Rift Valley dry lands of Ethiopia, Agr. Ecosyst. Environ., 164, 100–113, https://doi.org/10.1016/j.agee.2012.09.012, 2013.
Blanchy, G., Bragato, G., Di Bene, C., Jarvis, N., Larsbo, M., Meurer, K., and Garré, S.: Soil and crop management practices and the water regulation functions of soils: a qualitative synthesis of meta-analyses relevant to European agriculture, SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, 2023.
Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., and Hostert, P.: National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data (2017, 2018 and 2019), Zenodo [data set], https://doi.org/10.5281/zenodo.5153047, 2021.
Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., and Hostert, P.: Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany, Remote Sens. Environ., 269, 112831, https://doi.org/10.1016/j.rse.2021.112831, 2022.
BMEL: Daten und Fakten Land-, Forst- und Ernährungswirtschaft mit Fischerei und Wein- und Gartenbau, Bundesministerium für Ernährung und Landwirtschaft (BMEL), https://www.bmel.de/SharedDocs/Downloads/DE/Broschueren/daten-fakten-2022.html (last access: 29 July 2024), 2022.
Brás, T. A., Seixas, J., Carvalhais, N., and Jägermeyr, J.: Severity of drought and heatwave crop losses tripled over the last five decades in Europe, Environ. Res. Lett., 16, 065012, https://doi.org/10.1088/1748-9326/abf004, 2021.
Conradt, T., Engelhardt, H., Menz, C., Vicente-Serrano, S. M., Farizo, B. A., Peña-Angulo, D., Domínguez-Castro, F., Eklundh, L., Jin, H., Boincean, B., Murphy, C., and López-Moreno, J. I.: Cross-sectoral impacts of the 2018–2019 Central European drought and climate resilience in the German part of the Elbe River basin, Reg. Environ. Change, 23, 32, https://doi.org/10.1007/s10113-023-02032-3, 2023.
COPA-COGECA: Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry Technical Report, Committee of Agricultural Organisations in the European Union, Brussels, http://docs.gip-ecofor.org/libre/COPA_COGECA_2004.pdf (last access: 13 April 2024), 2003.
Daramola, M. T. and Xu, M.: Recent changes in global dryland temperature and precipitation, Int. J. Climatol., 42, 1267–1282, https://doi.org/10.1002/joc.7301, 2022.
de Brito, M. M., Kuhlicke, C., and Marx, A.: Near-real-time drought impact assessment: a text mining approach on the 2018/19 drought in Germany, Environ. Res. Lett., 15, 1040a9, https://doi.org/10.1088/1748-9326/aba4ca, 2020.
Deng, S., Zhao, D., Chen, Z., Liu, L., Zhu, Y., Wang, K., Gao, X., Wu, H., and Zheng, D.: Global Distribution and Projected Variations of Compound Drought-Extreme Precipitation Events, Earths Future, 12, e2024EF004809, https://doi.org/10.1029/2024EF004809, 2024.
Deutscher Wetterdienst: Climate data center, Deutscher Wetterdienst, https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html, last access: 6 July 2024.
Diaz, D. and Moore, F.: Quantifying the economic risks of climate change, Nat. Clim. Change, 7, 774–782, https://doi.org/10.1038/nclimate3411, 2017.
Di Marcoberardino, D. and Cucculelli, M.: “Natural” disasters and regional governance: Evidence from European NUTS-3 regions, Pap. Reg. Sci., 103, 100003, https://doi.org/10.1016/j.pirs.2024.100003, 2024.
Ding, J., Huang, Z., Zhu, M., Li, C., Zhu, X., and Guo, W.: Does cyclic water stress damage wheat yield more than a single stress?, PLoS One, 13, e0195535, https://doi.org/10.1371/journal.pone.0195535, 2018.
Ding, Y., Hayes, M. J., and Widhalm, M.: Measuring economic impacts of drought: a review and discussion, Disaster Prev. Manag., 20, 434–446, https://doi.org/10.1108/09653561111161752, 2011.
Eckhardt, D., Leiras, A., and Thomé, A. M. T.: Systematic literature review of methodologies for assessing the costs of disasters, Int. J. Disast. Risk Re., 33, 398–416, https://doi.org/10.1016/j.ijdrr.2018.10.010, 2019.
Egerer, S., Puente, A. F., Peichl, M., Rakovec, O., Samaniego, L., and Schneider, U. A.: Limited potential of irrigation to prevent potato yield losses in Germany under climate change, Agr. Syst., 207, 103633, https://doi.org/10.1016/j.agsy.2023.103633, 2023.
EUROSTAT: Agriculture-Database. Selling prices of crop products (absolute prices) – annual price (from 2000 onwards), EUROSTAT, https://ec.europa.eu/eurostat/databrowser/view/apri_ap_crpouta/default/table?lang=en (last access: 3 July 2023), 2022.
FAO: The impact of disasters on agriculture and food security 2023, FAO, Rome, https://doi.org/10.4060/cc7900en, 2023.
FNR: https://pflanzen.fnr.de/energiepflanzen/pflanzen/mais, last access: 7 March 2023.
Foreign Policy Research Institute: The Impact of Climate Change on Africa's Economies, Foreign Policy Research Institute, https://www.fpri.org/article/2021/10/the-impact-of-climate-change-on-africas-economies/, last access: 11 December 2024.
Frame, D. J., Rosier, S. M., Noy, I., Harrington, L. J., Carey-Smith, T., Sparrow, S. N., Stone, D. A., and Dean, S. M.: Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought, Climatic Change, 162, 781–797, https://doi.org/10.1007/s10584-020-02729-y, 2020.
Garbero, A. and Muttarak, R.: Impacts of the 2010 Droughts and Floods on Community Welfare in Rural Thailand: Differential Effects of Village Educational Attainment, Ecol. Soc., 18, 27, https://doi.org/10.5751/ES-05871-180427, 2013.
García-León, D., Standardi, G., and Staccione, A.: An integrated approach for the estimation of agricultural drought costs, Land Use Policy, 100, 104923, https://doi.org/10.1016/j.landusepol.2020.104923, 2021.
Gömann, H., Bender, A., Bolte, A., Dirksmeyer, W., Englert, H., Feil, J.-H., Frühauf, C., Hauschild, M., Krengel, S., Lilienthal, H., Löpmeier, F.-J., Müller, J., Mußhof, O., Natkhin, M., Offermann, F., Seidel, P., Schmidt, M., Seintsch, B., Steidl, J., Strohm, K., and Zimmer, Y.: Agrarrelevante Extremwetterlagen und Möglichkeiten von Risikomanagementsystemen: Studie im Auftrag des Bundesministeriums für Ernährung und Landwirtschaft (BMEL), Johann Heinrich von Thünen-Institut, DE, https://doi.org/10.22004/ag.econ.206716, 2015.
Gray, M., Hunter, B., and Edwards, B.: A Sunburnt Country: The Economic and Financial Impact of Drought on Rural and Regional Families in Australia in an Era of Climate Change, Australian Journal of Labour Economics, 12, 108–131, 2009.
Haqiqi, I., Grogan, D. S., Hertel, T. W., and Schlenker, W.: Quantifying the impacts of compound extremes on agriculture, Hydrol. Earth Syst. Sci., 25, 551–564, https://doi.org/10.5194/hess-25-551-2021, 2021.
Heilemann, J.: LASSO-crop-yield-projection, GitLab [code], https://git.ufz.de/heileman/lasso-crop-yield-projection, last access: 27 June 2025.
Heilemann, J., Klassert, C., Samaniego, L., Thober, S., Marx, A., Boeing, F., Klauer, B., and Gawel, E.: Projecting Impacts of Extreme Weather Events on Crop Yields Using Lasso Regression, Weather and Climate Extremes, 46, 100738, https://doi.org/10.1016/j.wace.2024.100738, 2024.
Helmholtz Centre for Environmental Research: Dürremonitor Deutschland, Helmholtz-Zentrum für Umweltforschung (UFZ) [data set], https://www.ufz.de/index.php?de=37937, last access: 26 February 2025.
Henchiri, M., Liu, Q., Essifi, B., Javed, T., Zhang, S., Bai, Y., and Zhang, J.: Spatio-Temporal Patterns of Drought and Impact on Vegetation in North and West Africa Based on Multi-Satellite Data, Remote Sens., 12, 3869, https://doi.org/10.3390/rs12233869, 2020.
Howitt, R., MacEwan, D., Medellín-Azuara, J., Lund, J., and Sumner, D.: Economic Analysis of the 2015 Drought For California Agriculture, Center for Watershed Sciences, University of California – Davis, Davis, CA, https://watershed.ucdavis.edu/sites/g/files/dgvnsk8531/files/products/2021-05/Economic_Analysis_2015_California_Drought__Main_Report.pdf (last access: 3 November 2024), 2015.
Hydroclimatic Forecasting System: https://www.ufz.de/index.php?en=47304, last access: 26 February 2025.
Jaeger, W. K., Plantinga, A. J., Chang, H., Dello, K., Grant, G., Hulse, D., McDonnell, J. J., Lancaster, S., Moradkhani, H., Morzillo, A. T., Mote, P., Nolin, A., Santelmann, M., and Wu, J.: Toward a formal definition of water scarcity in natural-human systems, Water Resour. Res., 49, 4506–4517, https://doi.org/10.1002/wrcr.20249, 2013.
James, G., Witten, D., Hastie, T., and Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R, Springer US, New York, NY, https://doi.org/10.1007/978-1-0716-1418-1, 2013.
Khodaverdi, H., Fowles, T., Bick, E., and Nansen, C.: Does Drought Increase the Risk of Insects Developing Behavioral Resistance to Systemic Insecticides?, J. Econ. Entomol., 109, 2027–2031, https://doi.org/10.1093/jee/tow188, 2016.
Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL): SDB – Standarddeckungsbeiträge, Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), https://daten.ktbl.de/sdb/welcome.do (last access: 6 March 2023), 2023.
Kurukulasuriya, P., Mendelsohn, R., Hassan, R., Benhin, J., Deressa, T., Diop, M., Eid, H. M., Fosu, K. Y., Gbetibouo, G., Jain, S., Mahamadou, A., Mano, R., Kabubo-Mariara, J., El-Marsafawy, S., Molua, E., Ouda, S., Ouedraogo, M., Séne, I., Maddison, D., Seo, S. N., and Dinar, A.: Will African Agriculture Survive Climate Change?, World Bank Econ. Rev., 20, 367–388, https://doi.org/10.1093/wber/lhl004, 2006.
Lesk, C., Rowhani, P., and Ramankutty, N.: Influence of extreme weather disasters on global crop production, Nature, 529, 84–87, https://doi.org/10.1038/nature16467, 2016.
Liu, S., Xiao, L., Sun, J., Yang, P., Yang, X., and Wu, W.: Probability of maize yield failure increases with drought occurrence but partially depends on local conditions in China, Eur. J. Agron., 139, 126552, https://doi.org/10.1016/j.eja.2022.126552, 2022.
Liu, X., Zhu, X., Pan, Y., Li, S., Liu, Y., and Ma, Y.: Agricultural drought monitoring: Progress, challenges, and prospects, J. Geogr. Sci., 26, 750–767, https://doi.org/10.1007/s11442-016-1297-9, 2016.
Lobell, D. B., Schlenker, W., and Costa-Roberts, J.: Climate Trends and Global Crop Production Since 1980, Science, 333, 616–620, https://doi.org/10.1126/science.1204531, 2011.
Lüttger, A. B. and Feike, T.: Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany, Theor. Appl. Climatol., 132, 15–29, https://doi.org/10.1007/s00704-017-2076-y, 2018.
McNamara, I., Flörke, M., Uschan, T., Baez-Villanueva, O. M., and Herrmann, F.: Estimates of irrigation requirements throughout Germany under varying climatic conditions, Agr. Water Manage., 291, 108641, https://doi.org/10.1016/j.agwat.2023.108641, 2024.
Meisner, A. and de Boer, W.: Strategies to Maintain Natural Biocontrol of Soil-Borne Crop Diseases During Severe Drought and Rainfall Events, Front. Microbiol., 9, 2279, https://doi.org/10.3389/fmicb.2018.02279, 2018.
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.
Muller, L. C. F. E., Schaafsma, M., Mazzoleni, M., and Van Loon, A. F.: Responding to climate services in the context of drought: A systematic review, Climate Services, 35, 100493, https://doi.org/10.1016/j.cliser.2024.100493, 2024.
Musolino, D. A., Massarutto, A., and de Carli, A.: Does drought always cause economic losses in agriculture? An empirical investigation on the distributive effects of drought events in some areas of Southern Europe, Sci. Total Environ., 633, 1560–1570, https://doi.org/10.1016/j.scitotenv.2018.02.308, 2018.
Nagpal, M., Klassert, C., Heilemann, J., Klauer, B., and Gawel, E.: Measuring Crop Acreage Adaptation to Changing Yields and Prices: An Empirical Analysis for Agriculture in Germany, SSRN (Elsevier) [preprint], https://doi.org/10.2139/ssrn.4728661, 16 February 2024.
Newman, R. and Noy, I.: The global costs of extreme weather that are attributable to climate change, Nat. Commun., 14, 6103, https://doi.org/10.1038/s41467-023-41888-1, 2023.
Orth, R., O, S., Zscheischler, J., Mahecha, M. D., and Reichstein, M.: Contrasting biophysical and societal impacts of hydro-meteorological extremes, Environ. Res. Lett., 17, 014044, https://doi.org/10.1088/1748-9326/ac4139, 2022.
Peichl, M., Thober, S., Meyer, V., and Samaniego, L.: The effect of soil moisture anomalies on maize yield in Germany, Nat. Hazards Earth Syst. Sci., 18, 889–906, https://doi.org/10.5194/nhess-18-889-2018, 2018.
Peichl, M., Thober, S., Samaniego, L., Hansjürgens, B., and Marx, A.: Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany, Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, 2021.
Prasanna, R. P. I. R.: Economic costs of drought and farmers' adaptation strategies: evidence from Sri Lanka, Sri Lanka Journal of Economic Research, 5, 61–79, https://doi.org/10.4038/sljer.v5i2.49, 2018.
Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S., Hanel, M., and Kumar, R.: The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe, Earths Future, 10, e2021EF002394, https://doi.org/10.1029/2021EF002394, 2022.
Ray, D. K., Gerber, J. S., MacDonald, G. K., and West, P. C.: Climate variation explains a third of global crop yield variability, Nat. Commun., 6, 5989, https://doi.org/10.1038/ncomms6989, 2015.
Reinermann, S., Gessner, U., Asam, S., Kuenzer, C., and Dech, S.: The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics, Remote Sens., 11, 1783, https://doi.org/10.3390/rs11151783, 2019.
Rose, A.: Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation, in: Modeling Spatial and Economic Impacts of Disasters, edited by: Okuyama, Y. and Chang, S. E., Springer Berlin Heidelberg, Berlin, Heidelberg, 13–36, https://doi.org/10.1007/978-3-540-24787-6_2, 2004.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, 47–68, https://doi.org/10.1029/2008WR007327, 2010.
Samaniego, L., Kumar, R., and Zink, M.: Implications of Parameter Uncertainty on Soil Moisture Drought Analysis in Germany, J. Hydrometeorol., 14, 47–68, https://doi.org/10.1175/JHM-D-12-075.1, 2013.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming exacerbates European soil moisture droughts, Nat. Clim. Change, 8, 421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018.
Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A.: The global burden of pathogens and pests on major food crops, Nat. Ecol. Evol., 3, 430–439, https://doi.org/10.1038/s41559-018-0793-y, 2019.
Schmitt, J., Offermann, F., Söder, M., Frühauf, C., and Finger, R.: Extreme weather events cause significant crop yield losses at the farm level in German agriculture, Food Policy, 112, 102359, https://doi.org/10.1016/j.foodpol.2022.102359, 2022.
Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, S., Ferrat, M., Haughey, S., Luz, Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, H., Kissick, K., Belkacemi, M., and Malley, J.: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, IPCC, Cambridge University Press, https://doi.org/10.1017/9781009157988, 2019.
Smith, S. M. and Edwards, E. C.: Water storage and agricultural resilience to drought: historical evidence of the capacity and institutional limits in the United States, Environ. Res. Lett., 16, 124020, https://doi.org/10.1088/1748-9326/ac358a, 2021.
Soares, P. R., Harrison, M. T., Kalantari, Z., Zhao, W., and Ferreira, C. S. S.: Drought effects on soil organic carbon under different agricultural systems, Environ. Res. Commun., 5, 112001, https://doi.org/10.1088/2515-7620/ad04f5, 2023.
Statistisches Bundesamt (Destatis): Regionaldatenbank Deutschland, 41141-02-02-4: Anbau auf dem Ackerland in landwirtschaftlichen Betrieben nach Fruchtarten, 2010–2020, Statistisches Bundesamt (Destatis) [data set], https://www.regionalstatistik.de/genesis/online?operation=table&code=41141-02-02-4#astructure (last access: 3 March 2023), 2020.
Statistisches Bundesamt (Destatis): Fachserie 3, R 3.1.2, Bodennutzung der Betriebe (Landwirtschaftlich genutzte Flächen), Statistisches Bundesamt (Destatis), https://www.destatis.de/DE/Service/Bibliothek/_publikationen-fachserienliste-3.html#631572 (last access: 29 July 2024), 2022a.
Statistisches Bundesamt (Destatis): Regionaldatenbank Deutschland. 41241-01-03-4: Erträge ausgewählter Feldfrüchte – Jahressumme, Statistisches Bundesamt (Destatis) [data set], https://www.regionalstatistik.de/genesis//online?operation=table&code=41241-01-03-4&bypass=true&levelindex=1&levelid=1677842497003#abreadcrumb (last access: 3 March 2023), 1999–2022, 2022b.
Suarez-Gutierrez, L., Müller, W. A., and Marotzke, J.: Extreme heat and drought typical of an end-of-century climate could occur over Europe soon and repeatedly, Commun. Earth Environ., 4, 1–11, https://doi.org/10.1038/s43247-023-01075-y, 2023.
Tibshirani, R.: Regression Shrinkage and Selection via the Lasso, J. Roy. Stat. Soc. B, 58, 267–288, 1996.
Trenczek, J., Lühr, O., Eiserbeck, L., Sandhövel, M., and Ibens, D.: Schäden der Dürre-und Hitzeextreme 2018 und 2019-eine ex-post-Analyse, Prognos AG, Berlin, https://www.prognos.com/sites/default/files/2022-07/Prognos_KlimawandelfolgenDeutschland_Detailuntersuchung%20Hitzesommer%2018_19_AP2_3a_.pdf (last access: 3 August 2024), 2022.
van der Wiel, K., Batelaan, T. J., and Wanders, N.: Large increases of multi-year droughts in north-western Europe in a warmer climate, Clim Dyn, 60, 1781–1800, https://doi.org/10.1007/s00382-022-06373-3, 2023.
van Duinen, R., Filatova, T., Geurts, P., and van der Veen, A.: Coping with drought risk: empirical analysis of farmers' drought adaptation in the south-west Netherlands, Reg. Environ. Change, 15, 1081–1093, https://doi.org/10.1007/s10113-014-0692-y, 2015.
Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., Meinshausen, N., and Frieler, K.: The effects of climate extremes on global agricultural yields, Environ. Res. Lett., 14, 054010, https://doi.org/10.1088/1748-9326/ab154b, 2019.
Vogel, J., Rivoire, P., Deidda, C., Rahimi, L., Sauter, C. A., Tschumi, E., van der Wiel, K., Zhang, T., and Zscheischler, J.: Identifying meteorological drivers of extreme impacts: an application to simulated crop yields, Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, 2021.
von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., Menzer, O., Arain, M. A., Buchmann, N., Cescatti, A., Gianelle, D., Kiely, G., Law, B. E., Magliulo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani, L., Oechel, W., Pavelka, M., Peichl, M., Rambal, S., Raschi, A., Scott, R. L., Vaccari, F. P., van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones, Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, 2018.
Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., Bourgault, M., Martre, P., Ababaei, B., Bindi, M., Ferrise, R., Finger, R., Fodor, N., Gabaldón-Leal, C., Gaiser, T., Jabloun, M., Kersebaum, K.-C., Lizaso, J. I., Lorite, I. J., Manceau, L., Moriondo, M., Nendel, C., Rodríguez, A., Ruiz-Ramos, M., Semenov, M. A., Siebert, S., Stella, T., Stratonovitch, P., Trombi, G., and Wallach, D.: Diverging importance of drought stress for maize and winter wheat in Europe, Nat. Commun., 9, 4249, https://doi.org/10.1038/s41467-018-06525-2, 2018.
Webber, H., Lischeid, G., Sommer, M., Finger, R., Nendel, C., Gaiser, T., and Ewert, F.: No perfect storm for crop yield failure in Germany, Environ. Res. Lett., 15, 104012, https://doi.org/10.1088/1748-9326/aba2a4, 2020.
Wens, M. L. K., Mwangi, M. N., van Loon, A. F., and Aerts, J. C. J. H.: Complexities of drought adaptive behaviour: Linking theory to data on smallholder farmer adaptation decisions, Int. J. Disast. Risk Re., 63, 102435, https://doi.org/10.1016/j.ijdrr.2021.102435, 2021.
Wilhite, D. A.: Drought as a Natural Hazard: Concepts and Definitions, in: Drought: A Global Assessment, 3–18, Routledge, ISBN 9780415168335, 2000.
Wilhite, D. A. and Glantz, M. H.: Understanding: the Drought Phenomenon: The Role of Definitions, Water Int., 10, 111–120, https://doi.org/10.1080/02508068508686328, 1985.
Wimmer, S. and Sauer, J.: Profitability Development and Resource Reallocation: The Case of Sugar Beet Farming in Germany, J. Agr. Econ., 71, 816–837, https://doi.org/10.1111/1477-9552.12373, 2020.
Zampieri, M., Ceglar, A., Dentener, F., and Toreti, A.: Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales, Environ. Res. Lett., 12, 064008, https://doi.org/10.1088/1748-9326/aa723b, 2017.
Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schäfer, D., and Marx, A.: The German drought monitor, Environ. Res. Lett., 11, 074002, https://doi.org/10.1088/1748-9326/11/7/074002, 2016.
Ziolkowska, J. R.: Socio-Economic Implications of Drought in the Agricultural Sector and the State Economy, Economies, 4, 19, https://doi.org/10.3390/economies4030019, 2016.
Zipper, S. C., Qiu, J., and Kucharik, C. J.: Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes, Environ. Res. Lett., 11, 094021, https://doi.org/10.1088/1748-9326/11/9/094021, 2016.
Zscheischler, J., Westra, S., Hurk, B. J. J. M. V. D., Seneviratne, S. I., Ward, P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Short summary
This study measures the direct effects of droughts in association with other extreme weather events on agriculture in Germany at the district level. Using a statistical yield model, we quantify the direct damage of extremes on crop yields and farm revenue. Extreme events during drought cause an average annual damage of EUR 781 million, accounting for 45 % of reported revenue losses. The insights herein can help develop better strategies for managing and mitigating the effects of future climate extremes.
This study measures the direct effects of droughts in association with other extreme weather...
Altmetrics
Final-revised paper
Preprint