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Abstract. Assessing the economic implications of droughts
has become increasingly important due to their substan-
tial impacts on agriculture. Existing empirical analyses
for drought damages are often conducted on a national
scale without spatially distributed data, which might bias
estimates. Furthermore, the cumulative effects of multi-
ple weather extremes, such as heat or preceded frost co-
occurring with drought, are often overlooked. Measuring the
direct biophysical impacts of such extremes on agriculture
is essential for more precise risk assessment. This study
presents a comprehensive approach to measure the cumula-
tive economic damages of droughts and other hydrometeo-
rological extremes on agriculture, focusing on eight major
field crops in Germany. By utilizing a statistical yield model,
we isolate the effects of multiple extremes on crop yields
from other influencing factors (such as pests and diseases or
farm management) and analyse their contribution to revenue
losses during droughts at the district level from 2016–2022.
Our findings indicate that the average annual direct biophys-
ical damage caused by extremes under drought conditions
during this period amounts to EUR 781 million (sensitivity
range: EUR 766 million–EUR 812 million) across Germany.
The study also reveals that biophysical impacts of extremes
alone account for 60 % of reported revenue damages dur-
ing widespread drought years. For maize, direct biophysical
damage explains up to 97 % (2018) of revenue losses. Addi-
tionally, comparison of national level damage estimates us-
ing aggregated and spatially disaggregated data shows that
the aggregated data matches overall results, but diverges for

maize and wheat, highlighting the importance of spatially
distributed damage assessment. In this paper, we provide de-
tailed estimates of extremes-driven direct biophysical dam-
ages at the district level, offering a high-resolution under-
standing of the spatial and temporal variability of these im-
pacts. Assessing the extent of revenue losses resulting from
these extremes alone can provide valuable insights for the de-
velopment of effective drought mitigation programmes and
guide policy planning at local and national levels to enhance
the resilience of the agricultural sector against future climate
extremes. Future integration of routine drought damage esti-
mation into operational monitoring and forecasting systems
would enhance early warning capabilities, improve economic
preparedness against increasing weather extremes, and sup-
port more proactive adaptation strategies.

1 Introduction

Recent decades have seen a significant change in global
temperature and precipitation patterns (Daramola and Xu,
2022). As climate change progresses, extreme events such as
droughts and heat waves are expected to increase (Samaniego
et al., 2018). The impacts of such hydrometeorological ex-
treme events on water resources and agriculture, which are
strongly linked to global food security, are already being felt
(Shukla et al., 2019). Quantifying the costs of these impacts
and understanding their drivers is a prerequisite for assessing
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vulnerabilities and designing adaptation measures to increase
the resilience of the agricultural sector (Rose, 2004).

A variety of factors including war (Appau et al., 2021),
disease and pests (Savary et al., 2019), and extreme weather
(Lesk et al., 2016) affect crop yields. Of these factors, cli-
mate variability has particularly pronounced impacts on yield
variations. In major agricultural production regions globally,
over 60 % of yield variability can be explained by climate
variability (Ray et al., 2015). Drought, in particular, is one of
the most severe climate-related hazards, significantly reduc-
ing crop yields and incurring high crop production losses.
For instance, it is estimated that the average crop production
impact of droughts (and heatwaves) has tripled from 1964 to
2015 across the European Union (Brás et al., 2021). Given
the profound impact of droughts on agriculture, it is crucial
to understand the economic consequences and the extent of
damage caused by such extremes. However, the complexity
of drought occurrences – characterized by their slow devel-
opment, spatial and temporal accumulation, and significant
variability in severity and intensity – makes research on their
economic impacts challenging (Eckhardt et al., 2019).

Droughts are periods of significantly reduced moisture
levels in the Earth system (Wilhite and Glantz, 1985), lead-
ing to restrictions in water availability and causing detri-
mental impacts on various environmental systems and eco-
nomic sectors. Generally, there are four types of droughts:
meteorological droughts (precipitation deficit), agricultural
droughts (soil moisture deficit), hydrological droughts (ab-
normal streamflow, groundwater, reservoir, or lake deficits),
and socioeconomic droughts (abnormal deficit due to im-
balance between supply and demand) (Wilhite and Glantz,
1985).

The impacts of droughts extend to agriculture, livestock,
forestry, energy, and industries, and even threaten human
safety (de Brito et al., 2020). Due to its sensitivity to weather
variability and soil moisture, the agricultural sector is of-
ten the first sector to be affected by drought (Ding et al.,
2011; Wilhite, 2000). Agricultural droughts are soil mois-
ture droughts that occur when crop water requirements are
not met during the growing season due to a reduced wa-
ter supply in the soil, mainly caused by decreased precipita-
tion or/and increased temperatures (Liu et al., 2016; Rakovec
et al., 2022). This lack of moisture affects crop growth and
yields, posing a significant threat to harvests. These impacts
can lead to a substantial decline in crop revenue and/or an in-
crease in production costs, ultimately reducing farm profits,
affecting farmers’ livelihoods and economic stability within
the sector, and threatening food security (FAO, 2023; Zi-
olkowska, 2016).

The impact of drought on agricultural production is not
solely determined by the severity of the drought itself, but
also by exposure to different weather extremes throughout
the growing season (Haqiqi et al., 2021; Peichl et al., 2018;
Schmitt et al., 2022). For example, extreme heat during sum-
mer droughts can intensify damage to crops such as maize,

further reducing yields (AghaKouchak et al., 2014). Simi-
larly, winter crops like wheat can suffer significant losses
from drought followed by periods of excessive rainfall, neg-
atively affecting yields and harvest quality (Ding et al., 2018;
Zampieri et al., 2017). Most research on measuring the eco-
nomic impacts of extreme events like droughts has been con-
fined to assessing the impacts of specific weather extremes,
despite growing evidence that such events are frequently
driven by multiple interrelated climate drivers that can occur
concurrently or successively within the same geographic area
(AghaKouchak et al., 2014; Deng et al., 2024; Rakovec et
al., 2022; Zscheischler et al., 2018, 2020). Failing to account
for such concurrently or successively occurring extremes is
likely to oversimplify the process leading to damages, un-
derestimate the cumulative effects of weather extremes on
crops, and may result in an incomplete risk perception and
inaccurate damage estimates (Meyer et al., 2013).

In this study, we address this bias by assessing the eco-
nomic damage of drought in combination with concurrent or
successive weather extremes in rainfed agriculture. The aim
of this study is to measure the direct biophysical damage of
extreme hydrometeorological drivers during droughts (here-
after called direct biophysically induced damages) and assess
the contribution of these biophysically induced damages to
the total reported agricultural revenue losses. These damages
refer to the loss in revenue caused by the effects of extreme
hydrometeorological drivers on crop yields without account-
ing for other economic impacts such as changes in costs.
They include the effects of droughts themselves, as well as
additional damage from concurrent or successive weather ex-
tremes that exacerbate drought-related effects in regions ex-
periencing drought conditions. To isolate the biophysical im-
pacts of these extremes on crop yields from other influencing
factors, we employ crop-specific statistical yield models. To
evaluate the contribution of these extremes in shaping ob-
served economic outcomes, we compare the direct biophys-
ically induced damages estimated from these models with
reported revenue losses. This allows us to identify the rel-
ative contribution of these extremes across different regions
and crops, which can guide more targeted drought adaptation
and enable better decision-making.

The empirical analysis of direct biophysically induced
damages during droughts was done at the district (regional)
level for rainfed agriculture for eight major field crops in Ger-
many from 2016–2022. These estimates were derived from
the methodology used to measure the damages of the 2018
and 2019 droughts in Germany (Trenczek et al., 2022). We
have enhanced this methodology for our current assessment.

Additionally, we demonstrate the utility of high-resolution
damage assessment by comparing damages at the national
level derived using both national level and regional level data.
Existing research on measuring the damages of droughts on
agriculture often focuses on national level damage assess-
ments without considering spatially distributed data and typ-
ically examines-specific drought events (COPA-COGECA,
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2003; Trenczek et al., 2022). Alternatively, there are sev-
eral empirical studies analysing drought damages at the farm
level that often incorporate adaptation strategies (van Duinen
et al., 2015; Wens et al., 2021), input changes (Prasanna,
2018), and factors affecting localized responses to droughts
(Ahmad et al., 2022; Garbero and Muttarak, 2013; Gray
et al., 2009). Their findings are tailored to specific context
and may not be readily scalable to broader regions. Con-
versely, national level assessments, though comprehensive,
fail to capture the spatial variability of drought impacts.
As droughts can vary greatly across different locations and
times (Jaeger et al., 2013; Samaniego et al., 2013), there is
a need for consistent, spatially explicit damage assessments
(Meyer et al., 2013) bridging the gap between farm level de-
tail and national level scope. Our analysis reveals that high-
resolution damage assessment using regional level data pro-
vide a more accurate quantification of crop-specific damages,
which might not be captured by assessments using national
level data.

This study offers detailed, high-resolution estimates of
extremes-driven direct biophysically induced damages at the
district level, offering insights into the spatial and temporal
variability of these impacts. By accounting for concurrent
or successive weather extremes alongside droughts, our re-
search provides a more accurate assessment of revenue losses
during droughts. These findings can inform the development
of effective drought mitigation programmes and guide policy
planning at local and national levels to enhance the resilience
of the agricultural sector against future climate extremes.

2 Methodology

2.1 Overview of analytical approach

This study focuses on isolating the direct biophysically in-
duced damages of weather extremes during droughts on agri-
culture from other influencing factors and assessing their
contribution to revenue losses. Figure 1 outlines our ap-
proach to quantifying these damages in rainfed agriculture by
illustrating both the causal pathways by which droughts and
related extreme events lead to revenue losses during the year
the drought occurs and the empirical methods and data used
to measure them. In our analysis, we quantify the direct bio-
physical impacts of concurrently or successively occurring
weather-extremes (rather than changes in mean temperature,
precipitation, etc. as done in context of climate change) on
crop yields and the resulting damages.

Agricultural droughts occur when soil moisture levels are
insufficient to meet crop water requirements during the grow-
ing season, making soil moisture (anomalies) a more accu-
rate predictor of biophysical impacts than precipitation or
temperature alone (Bachmair et al., 2016). The importance
of soil moisture in informing agricultural damage assess-
ment is increasingly recognized (Haqiqi et al., 2021; Pe-

ichl et al., 2018). Declining soil moisture due to drought di-
rectly impedes crop growth and reduces crop yields, which
are referred to as the direct impacts of droughts on agricul-
ture (Meyer et al., 2013). These biophysical impacts can be
exacerbated by the occurrence of other weather extremes.
For example, heat, can exacerbate damage to summer-grown
crops like maize during droughts (AghaKouchak et al., 2014;
Haqiqi et al., 2021), while excessive wet conditions during
the growing season in addition to drought can lead to sub-
stantial damage to winter-grown crops like wheat (Ben-Ari
et al., 2018; Zampieri et al., 2017). Thus, under evolving cli-
mate conditions, it is crucial to assess the direct biophysical
impacts of droughts in conjunction with various hydromete-
orological extremes, as these factors collectively have been
shown to explain a significant proportion of crop yield vari-
ability (Schmitt et al., 2022; Vogel et al., 2019; Webber et
al., 2020). In our analysis, the direct biophysical effect of
extreme hydrometeorological drivers on crop yield is esti-
mated using crop-specific statistical yield models using tem-
perature, precipitation and soil moisture as key input vari-
ables (detailed in Sect. 2.3). As shown in Fig. 1, the soil
moisture data, which are central for defining drought con-
ditions, is derived using the mesoscale Hydrological Model
(mHM) (Samaniego et al., 2010). Additionally, the sources
of temperature and precipitation data (German Weather Ser-
vice, DWD) are also indicated for consistency.

The impact of declining soil moisture because of drought
is more pronounced in rainfed agriculture, where crop yields
can be significantly affected in the short term (Kurukula-
suriya et al., 2006). Conversely, irrigation helps buffer the
impact of low soil moisture on crop yields. However, if the
drought persists and leads to acute water shortage and com-
petition for water use by other users, it can still cause con-
siderable damage to irrigated agriculture during droughts
(Smith and Edwards, 2021).

While the analysis presented in this paper focuses on mea-
suring direct biophysically induced damages in rainfed agri-
culture, it is important to note that the impacts of droughts
extend beyond these direct effects. For completeness, Fig. S1
in the Supplement presents the broader economic impacts of
drought and related weather extremes within a drought year,
incorporating both rainfed and irrigated agriculture. These
economic impacts arise because the direct damage to crop
yields by drought and other weather extremes sets in mo-
tion a series of economic processes (Diaz and Moore, 2017).
The biophysical impact on crop yields results in a decrease in
harvest that leads to negative supply shocks which can raise
the prices of agricultural products. These price increases are
known as indirect impacts of droughts and must be con-
sidered in economic impact assessments (Ding et al., 2011;
Rose, 2004). Beyond these indirect impacts, farmers may im-
plement various short-term risk mitigation strategies, such
as adjusting their inputs or employing supplemental irriga-
tion, to lessen the impact of the drought. These strategies,
however, come with associated costs that need to be consid-
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Figure 1. Schematic illustration of the approach for quantifying the direct biophysically induced damages, measured as the farmers’ revenue
losses due to hydrometeorological extremes during droughts. Temperature and precipitation data from the German Weather Service (DWD)
and soil moisture estimates from the mesoscale Hydrological Model (mHM) serve as key hydrometeorological inputs in a statistical yield
model to estimate the direct impact of drought and related extremes on crop yields. These effects are isolated from other influencing factors,
such as soil quality and farm management, to focus on the direct biophysical drivers of yield losses.

ered when estimating drought damages and are referred to
as adaptation costs. The total economic impact of droughts
and related extreme events (referred to as extremes-driven
impacts) thus encompass indirect impacts on prices, changes
in inputs and costs, in addition to the direct damages. In some
cases, farmers may benefit from higher prices if the percent-
age increase in price exceeds the decrease in supply. This
is particularly profitable for farmers operating outside the
drought-affected area or farmers using irrigation. However,
such impacts are difficult to measure using only national data
and may require more detailed spatial assessments at the sub-
national level. Moreover, given that droughts are unevenly
distributed over space, it is important to incorporate suffi-
ciently detailed spatial disaggregation to assess the economic
impacts on a national scale.

It is important to note that typically, all these impacts
have an effect in a single production cycle. However, long-
term impacts may also occur, including adjustments like be-
havioural changes in farmers that result in land use change
(Biazin and Sterk, 2013; Henchiri et al., 2020). These long-
term adjustments, while significant, are not measured or ac-
counted for in this analysis.

Measurement of damages requires comparing actual con-
ditions (hazard impact) as described above with counterfac-
tual conditions (i.e. what would have happened in the ab-
sence of hazard). However, assessing the true counterfac-
tual conditions is often challenging. A common practice in
drought impact assessments in agriculture to compare agri-
cultural production in drought years with that of recent non-
drought years, which serve as a proxy for the counterfac-
tual conditions. There is, however, a lack of consensus on

the length of non-drought years, with some analyses using
single-year (COPA-COGECA, 2003), 3-year (Musolino et
al., 2018), 5-year (Trenczek et al., 2022), or 6-year (Conradt
et al., 2023) periods. Determining the optimal length of non-
drought years to use as counterfactual conditions requires
further research and is not addressed in this paper. Here, we
use the 5-year length to estimate counterfactual conditions
following the approach of Trenczek et al. (2022) as detailed
in Sect. 2.2.

Another critical factor in defining counterfactual condi-
tions is determining which years qualifies as a drought year.
This becomes even more complicated due to the numerous
factors influencing crop yields, such as soil quality, input
materials, mechanization, and farm management practices,
which can mask biophysical drought effects. Establishing
indicators for drought declaration in the agricultural sector
could prove useful in this regard. This would help consis-
tently categorize a year and a region (treated in our anal-
ysis as a district) as drought or non-drought, ensuring ac-
curate assessment of damages, even for small-scale drought
events, and avoiding focusing solely on widespread droughts.
We use an indicator based on the soil moisture, described in
Sect. 2.4.

The empirical analysis was conducted in Germany, where
the agricultural sector plays a significant role with half of
its land area dedicated to agricultural use (BMEL, 2022).
The analysis was performed at the district level in Germany
from 2016–2022, focusing on eight key field crops: winter
wheat, winter barley, rapeseed, maize, spring barley, spring
oats, sugar beets, and potatoes. Together, these crops ac-
count for 75 % of Germany’s agricultural area (Statistisches
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Bundesamt (Destatis), 2022a). Given that German agricul-
ture is predominantly rainfed, with less than 10 % of the area
equipped with irrigation (McNamara et al., 2024), our as-
sessment primarily reflects damages on rainfed agriculture.
The empirical analysis that follows focuses on the direct bio-
physical impacts of these extremes and their role in revenue
losses, excluding any indirect impacts beyond the immedi-
ate consequences of biophysically induced yield losses or
the adaptation costs incurred by the farmers during droughts.
Additionally, we assess the utility of high-resolution damage
assessment, given that numerous studies suggest the need for
such detailed assessment.

2.2 Damage measurement

The damageD in agricultural revenues during a drought year
t is quantified as the sum of difference between the expected
revenue under counterfactual conditions and the actual rev-
enue for each crop c across eight crops. This can be expressed
as

Dt =

8∑
c=1

(
Rexpected,c,t −Ractual,c,t

)
, (1)

where Rexpected,c,t is the expected revenue for crop c and
Ractual,c,t is the actual revenue for crop c during the year t .

The counterfactual conditions aim to represent the aver-
age non-drought conditions specific to each region. In the
context of ongoing climate variability, it is critical that the
counterfactual conditions represent the evolving regional cli-
matology (Suarez-Gutierrez et al., 2023) rather than relying
on an idealized “normal” year in the traditional sense, which
may no longer occur in practice. In this analysis, we define
the counterfactual conditions as the average conditions in the
preceding 5 non-drought years. We selected a 5-year win-
dow following Trenczek et al. (2022), who used it to estimate
damages for 2018 and 2019 droughts in Germany. The rea-
son for this number of years is a trade-off: using more years
could in theory further enhance the statistical representative-
ness regarding local climatic conditions, but it risks introduc-
ing bias by masking changing market and production condi-
tions, as well as the overall trend in climate change, which
also influence local yields and revenues (Lobell et al., 2011).

We determine drought (and non-drought) years based on
the soil moisture. In order to do so, we use the soil moisture
index (SMI) metric, as explained in Sect. 2.4, and exclude
any drought years in the average estimation, an improvement
over existing approaches in the literature. This approach al-
lows us to calculate revenue deviations using only normal
(non-drought) years yield data without bias from multiple re-
cent drought occurrences.

While the counterfactual is designed to exclude drought
years, it is possible that some exposure to other extremes
could still be reflected in the yields of non-drought years.
Any potential yield anomalies in non-drought years, which

could lead to over- or under-estimating drought damages, are
addressed through the approach of estimating expected rev-
enue based on the 5-year average. The helps smooth out any
random yield fluctuations and minimize the influence of non-
drought related anomalies. Specifically, the expected revenue
is estimated using the average yield over the preceding 5 non-
drought years i and the price in the drought year t and actual
revenue Ractual,c is the revenue in the drought year. There-
fore, for the present analysis, Eq. (1) can be rewritten as

Dt =

8∑
c=1

[(
1
5

5∑
i=1

Yi,c

)
·Pt,c−Yt,c ·Pt,c

]
, (2)

where Yi,c denotes the average crop yield for crop c over
the preceding 5 non-drought years i (i.e., from year t − 1 to
t − 5). Yt,c is the crop yield for crop c in the drought year t
and Pt,c is the price of crop c in the drought year t . The use
of drought-year prices to estimate expected revenues reflects
contemporaneous market conditions during the drought year
and maintains consistency with previous studies. While using
in-year prices for estimating expected revenues might cap-
ture the indirect effects of droughts on prices (Badolo and
Somlanare, 2012; Berhanu and Wolde, 2019; Foreign Pol-
icy Research Institute, 2024), it would also incorporate other
agricultural market developments unrelated to local droughts
or extremes, complicating the attribution of damages to re-
gional extreme hydrometeorological drivers. Holding prices
constant ensures that the damage estimates focus solely on
the yield changes induced by extreme hydrometeorological
drivers, providing a precise estimation of biophysically in-
duced direct damages in monetary terms.

To isolate the direct biophysical impacts of extreme hy-
drometeorological drivers on crop yields from other influ-
encing factors, we define the crop yield Yc for crop c as a
function of crop-specific extreme weather events (EWE), de-
rived from data on precipitation (PR), temperature (T ) and
SMI:

Yc = fc (EWEc)= fc (gc (PRc,Tc,SMIc)) . (3)

These crop yields are simulated using a statistical crop yield
model, which is described in the next section. We use simu-
lated crop yields to estimate actual revenue for drought years
and expected revenue under counterfactual conditions for
non-drought years, in order to calculate damages in Eq. (1).
This ensures that the damage estimates are explicitly based
on yield variability driven by EWE as described in Eq. (3),
while excluding other factors unrelated to extreme hydrom-
eteorological drivers. Along with the assumption of con-
stant prices, this methodology ensures that the revenue de-
viation between expected and actual revenues is attributed
solely to the direct biophysically induced yield impacts dur-
ing droughts.
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2.3 Statistical crop yield model

We apply a statistical crop yield model to isolate the impact
of hydrometeorological extremes including droughts on crop
yields developed by Heilemann et al. (2024). The model pre-
dicts changes in crop yields based on different hydrometeo-
rological extremes, including drought. The statistical model
is based on the least absolute shrinkage and selection oper-
ator (LASSO) approach. It is a method for selecting rele-
vant features via penalized multiple linear regression to avoid
multicollinearity and obtain a higher predictive performance
(Tibshirani, 1996). The statistical relationship between dis-
trict level crop yields and hydrometeorological extreme vari-
ables was formulated using the following equation:

Y =

p∑
j=1

βjXij + ε, (4)

where Y is the yield anomaly of a crop, Xij represents the
vector of different crop-specific extreme weather events dur-
ing sensitive growth phases in different months/seasons (ex-
plained below) and β1, . . .,βp represent the model coeffi-
cients to be estimated. Each field crop used for the analysis
is modelled separately.

By including the penalty parameter λ, the LASSO coeffi-
cients β̂Lλ minimize the residual sum of squares of the regres-
sion models (James et al., 2013):

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

∣∣βj ∣∣ . (5)

The model employs a 10 fold cross-validation to determine
two key values of λ: λmin, which minimizes the mean squared
error (MSE) of the model, and λ1SE, which is defined as λmin
plus the standard error of λ that results in the minimum loss.
Following the approach outlined by Vogel et al. (2021), the
stronger penalty term λ1SE is selected as a target, leading to
the elimination of a greater number of variables compared to
λmin.

While we want to assess the damage of droughts on agri-
culture, other extreme weather events can co-occur and inter-
act with drought. The statistical crop yield model employed
accounts for this by taking nine different extreme weather
events into consideration which pose significant threats to
crops in Germany (Table 1), such as frost, heat, heavy rain,
rain during harvest, precipitation scarcity, drought, and wa-
terlogging. By focusing on extreme events rather than mean
temperature changes, the statistical yield model can more ac-
curately capture the effects of extreme weather events (Web-
ber et al., 2020), making it better suited for assessing the im-
pact of such events (Newman and Noy, 2023). In Sect. 2.4,
we describe how we delineate a drought occurrence and then
estimate the compound effect of multiple weather extremes
during the drought.

The timing of these events is crucial in determining crop
damage. Therefore, the indicators for frost, heat, heavy rain,

rain during harvest, and precipitation scarcity are included in
the model as monthly features assessed during the relevant
months of the growing season using crop-specific thresholds
(Gömann et al., 2015). These indicators are calculated by
counting the days in a month that exceed or fall below the de-
fined thresholds. The indicators of drought and waterlogging
are determined using the seasonal SMI value calculated from
the monthly SMI value for the topsoil (25 cm soil depth), tai-
lored to the growing period of each crop. To this end, the
monthly drought and waterlogging intensity as the difference
between a SMI below 0.2 for drought, or above 0.8 for wa-
terlogging is calculated. The model uses the seasonal drought
and waterlogging intensity as the average of the monthly in-
tensities. All features are used as continuous variables to ac-
count for stronger effects on crop yields through more intense
extremes.

Based on the extreme event features, the LASSO mod-
els predict the annual yield anomaly (in %) as the depen-
dent variable, representing the deviation of yields from the
district level mean yield for 1999–2022. Details on the stan-
dardized coefficients of the crop-specific LASSO models can
be found in Table S2 of Heilemann et al. (2024). To illus-
trate the adequacy of the 1999–2022 period in identifying
extremes, temporal histograms of all extreme weather events
for the maize crop, used as a representative crop, are provided
in the Supplement (Figs. S2–S3). These histograms demon-
strate that the selected period captures a substantial number
of extreme events, notably the exceptional droughts of 2003,
2018–2020, and 2022, waterlogging in 2001, 2007, 2010,
and 2013 as well as severe frost and heat events. To simulate
crop yields (in decitonnes per hectare – dt ha−1), we multiply
the predicted yield anomaly by the district level mean yield.
This approach allows us to isolate crop yields attributable to
hydrometeorological extremes defined in Table 1, including
droughts. These simulated yields are then used for damage
assessment in drought-affected districts categorized using the
SMI (as described in next section), aligning with the objec-
tive of quantifying the economic damages during droughts
driven by the biophysical impacts of droughts and their in-
teraction with other extremes. Descriptive statistics for the
simulated yields, including their annual mean, minimum, and
maximum values, are provided in Appendix A.

2.4 Drought categorization

To identify districts experiencing agricultural drought, we
categorize the occurrence of drought in each district and
year using the SMI (Samaniego et al., 2013) estimated from
monthly soil moisture derived from the mHM. The SMIk rep-
resents the monthly soil water quantile at a grid cell at time k
relative to the range of historical observations. A given cell is
considered to be experiencing a soil moisture drought when
SMIk < τ . The threshold τ denotes that the cell is experienc-
ing a soil moisture deficit occurring less than τ×100% of the
time. For our analysis, τ was set as 0.2 indicating moderate

Nat. Hazards Earth Syst. Sci., 25, 2115–2135, 2025 https://doi.org/10.5194/nhess-25-2115-2025



M. Nagpal et al.: Measuring extremes-driven direct biophysical impacts in agricultural drought damages 2121

Table 1. Thresholds for extreme weather events from Heilemann et al. (2024).

Thresholds for extreme Time horizon of Variable
weather events feature variable name

Black frost Tmin<−25/−20/−10/−5 °C monthly BF
Late frost Tmin< 0 °C monthly LF
Alternating frost Tmin>−3 °C & Tmax> 3 °C monthly AF
Heat Tmax> 28/30 °C monthly Heat
Heavy rain P > 20 mm d−1 monthly HR
Rain during harvest P > 5 mm d−1 monthly RdH
Precipitation scarcity P = 0 mm d−1 monthly PS
Drought SMI< 0.2 seasonal Dr
Waterlogging SMI> 0.8 seasonal Wl

drought conditions that may pose potential harm to crops and
pastures (Zink et al., 2016). To consider the seasonal varia-
tions in water supply related impacts, we focus on the SMI
during the active vegetative period from April to October.
While recent studies have shown varying relationships be-
tween monthly SMI and crop yields (Peichl et al., 2021), we
chose to utilize the average SMI during the active vegetative
period to establish a neutral classification of drought impact-
ing different crops.

Using monthly SMI data, at a resolution of 4 km× 4 km
and covering the Germany entirely, the monthly average area
under drought conditions was estimated (Nagpal et al., 2024)
for each district. The drought categorization based on the
SMI reflects regional differences in climatic conditions as
the SMI is calculated relative to the local historical soil mois-
ture distribution in each district. To classify the occurrence of
drought at a district level, it was considered that at least 20 %
area of each district must have an SMI< 0.2 per month, and
this condition should persist for at least three months during
the active vegetative period, i.e. the months of April to Oc-
tober in a given year (Belleza et al., 2023). This approach
accounts for the slow development and spatial and temporal
accumulation characteristics of droughts. By using a thresh-
old of SMI< 0.2, we comprehensively capture all districts
affected by droughts, including those experiencing varying
intensities from severe (SMI< 0.1) to exceptional conditions
(SMI< 0.02). This method enables the identification of non-
drought years of a district, necessary for estimating expected
revenues under counterfactual conditions. To evaluate the ef-
fect of this drought classification approach on damage es-
timates, we conducted sensitivity analyses by varying the
threshold for the proportion of affected area (±5 %), to con-
firm the robustness of damage estimates under alternative
drought classification criteria.

2.5 Data

2.5.1 Yield model inputs

Here, we provide a concise overview of the data used in the
yield model used to analyse the direct biophysically induced
damage during drought on agriculture. Crop yields are simu-
lated at the district level in Germany for eight field crops:
winter wheat, winter barley, rapeseed, maize, spring bar-
ley, spring oats, sugar beets, and potatoes, using the LASSO
model. Detailed information on the input data used for yield
estimation can be found in Heilemann et al. (2024).

The annual yield data, used to simulate the yields, is
sourced from the Federal Statistical Office of Germany avail-
able for the district level from 1999–2022 (Statistisches Bun-
desamt (Destatis), 2022b). Meteorological data encompass-
ing minimum and maximum daily temperature and daily
precipitation is obtained from the German Weather Service
(DWD) through a network of stations (Deutscher Wetter-
dienst, 2024). Additionally, the monthly SMI for Germany
is derived from the mHM model (Samaniego et al., 2010,
2013).

2.5.2 Damage assessment

For the assessment of biophysically induced damages of ex-
tremes under droughts, we use data on crop acreage at the
district level for the years 2016–2022. The data for cultiva-
tion on the arable land by crop (in ha) at the district level
are collected periodically by the statistical office in Germany
and are not available for all years. Consequently, we use offi-
cial statistical data for the years 2016 and 2020 (Statistisches
Bundesamt (Destatis), 2020). For the remaining years, we
rely on spatially explicit, remote-sensing-based crop maps
with 10 m resolution for Germany (Blickensdörfer et al.,
2022). The area under the eight crops analysed in this study
was extracted from the high-resolution crop map data at the
district level using QGIS and R.

Yearly producer prices (EUR dt−1) for crops in Germany
are accessible from the European Statistical Office, except
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for sugar beets and maize (EUROSTAT, 2022). To achieve
spatially differentiated prices at a higher resolution, we scale
this data using prices provided by the Kuratorium für Technik
und Bauwesen in der Landwirtschaft (KTBL) calculator on
the standard gross margin (KTBL, 2023). For further details,
please refer to Nagpal et al. (2024). For sugar beets, prices
from KTBL at the country level are used, which were homo-
geneous until 2017 due to production limits imposed by the
European Union and price guarantees provided to producers
(Wimmer and Sauer, 2020). Since silage maize in Germany
is not directly marketed but is used for fodder or biogas pro-
duction (FNR, 2023), prices for silage maize are estimated
by accounting for both these uses separately as described in
Nagpal et al. (2024).

3 Results

3.1 Relevance of spatially disaggregated damage
assessment

To show the utility of spatially disaggregated damage assess-
ment and to understand the potential biases in using national
level data, we apply the methodology outlined in (Trenczek
et al., 2022) using both national level and district (regional)
level reported crop yields, prices and land use data for Ger-
many. The referenced report calculated damage estimates for
2018 and 2019 based on national level reported data by deter-
mining the difference between expected and actual revenue.
Expected revenue was derived from the average crop yields
of the 5-year period of 2013–2017, combined with the prices
and cultivated area from the assessment year.

While the report provided crop-wise damages specifically
for winter wheat and silage maize and aggregate the dam-
ages for all other crops into a single category, our analysis
extends this methodology to estimate damages for six ad-
ditional crops: winter barley, rapeseed, spring barley, spring
oats, sugar beets, and potatoes. In our analysis, crop-specific
damages are calculated both at the national level, using ag-
gregated national data, and at the regional level, using re-
ported yields from each district. Regional level damages are
then summed to obtain national totals for comparison with
aggregated national level results. This approach allows us to
compare the extent of differences in damage estimates be-
tween national level and regional level data sources while re-
taining a crop-specific focus in both cases, providing insights
into the potential biases that may arise from relying solely on
national level data.

In our analysis, we found moderate difference between the
total damages derived from national level data and regional
level data. For 2018, the aggregated damages across all crops
based on both national level data and regional level data are
estimated at approximately EUR 2.6 billion. For 2019, the
aggregated damages across all crops based on national level
data (EUR 1.4 billion) are slightly lower than those based on

regional level data (1.6 billion). However, there are notable
differences in the damages across two major crops grown
across Germany – maize and winter wheat (Fig. 2). In both
2018 and 2019, the spatially distributed damages on winter
wheat are lower than those based on aggregated national data
while they are significantly higher for maize. These results
demonstrate that the use of spatially disaggregated data pro-
vides a more accurate quantification of crop-wise damages,
which might not be captured by national level assessments.

3.2 Spatiotemporal analysis of direct biophysical
damages

Using the yields simulated by the statistical yield model
(Eq. 4), we evaluated the direct biophysically induced dam-
ages during droughts at the district level in Germany from
2016 to 2022. This evaluation was done by comparing the
actual revenue during a drought year with the expected rev-
enue of non-drought years (Eq. 2) for all districts affected by
drought. The revenues are estimated using simulated yields
that isolate the direct biophysical impacts of extremes on
crop yields from other influencing factors. The bottom row of
panels in Fig. 3a, labelled as “biophysical”, shows the spatial
distribution of these estimated biophysically induced dam-
ages during droughts from 2016–2022.

Our analysis reveals that the average annual direct bio-
physically induced damage across Germany, weighted by the
proportion of agricultural area affected by drought (Sect. S2
in the Supplement), is estimated to be EUR 781 million.
The highest direct biophysically induced damage occurred
in the years 2018 and 2022, with revenue losses estimated at
EUR 1.7 billion and EUR 850 million, respectively. In north-
ern Germany, a particularly notable decrease in revenues is
observed, likely due to the substantial yield losses in these
regions (Fig. S6).

These biophysically induced damages include the effects
of all hydrometeorological extremes, as captured by the
LASSO yield models. Because the model accounts for multi-
ple extremes, it is not possible to isolate the effects of drought
alone from these damage estimates. To address this, we es-
timate the relative contribution of individual hydrometeoro-
logical extreme to total damages using the average feature
contributions (in percentage) to predicted yield anomalies,
based on the model coefficients. These contributions are then
used to add weights to the total simulated damages, allow-
ing us to approximate the share of revenue losses linked to
individual extremes such as drought (Fig. 3b).

In years with high damages – 2018, 2019, and 2022 –
drought accounts for the largest share of total biophysical
damages. Notably, heat and precipitation scarcity also con-
tribute substantially during these years. This co-occurrence
suggests that these extremes do not act in isolation and most
likely interact with each other. For example, heat and pre-
cipitation scarcity may exacerbate the impacts of drought by
adding further stress on crops or drought conditions may am-
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Figure 2. Authors’ crop-wise damage assessment based on the methodology outlined in (Trenczek et al., 2022) for the years 2018 and 2019
with both national level and regional level reported yield data for Germany.

plify the negative effects of high temperatures or low rainfall.
This underscores the importance of including multiple hy-
drometeorological extremes in the assessment of damages in
drought-affected regions.

However, it is important to note that our approach also
leads to positive values for biophysically induced damages in
districts and years that are not classified as drought (Fig. S7).
This is because the yield model includes multiple extremes,
which may still influence the non-drought years used to esti-
mate expected yield and revenue in Eq. (2). While this may
introduce bias, it is not large in magnitude. Our approach
may therefore slightly overestimate damages in droughts,
whereas excluding the effects of other extremes would likely
underestimate the total impacts in drought-affected districts
and years. The true damages likely fall between these two
cases. By including multiple hydrometeorological extremes,
our approach captures the biophysical effects related to ex-
tremes more comprehensively in drought affected regions.
We further demonstrate the robustness of these estimates

through sensitivity analyses that test alternative counterfac-
tual periods and drought classification thresholds in Sect. 3.5.

To further understand the relevance of impacts of extreme
weather on agriculture during droughts, we compare the es-
timated direct biophysically induced damages (using simu-
lated yields) with the damages calculated from the yields
reported in official statistics (hereafter called reported dam-
ages). This comparison helps understand the extent of direct
damage specifically caused by extreme hydrometeorological
drivers on agriculture during droughts. The reported damages
are presented in the top row of panels in Fig. 3a.

According to our analysis, the direct biophysically induced
damages account for an average of 45 % of reported rev-
enue losses during droughts between 2016 and 2022. In years
with widespread droughts (2018, 2019, and 2022), the di-
rect biophysically induced damages represent an average of
60 % of reported revenue damages (64 %, 52 %, and 65 %
respectively). These results demonstrate that the direct bio-
physically induced damages of extremes constitute a consid-
erable contribution to the overall revenue losses experienced
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Figure 3. Estimated total revenue losses in drought-affected districts of Germany from 2016–2022. (a) Spatial distribution of damages in
German district level administrative units based on (bottom row) yields simulated using statistical crop yield model that isolates the effect of
hydrometeorological extremes on yields and (top row) reported yields reported in official statistics. The different colours indicate the total
revenue losses (million Euros) in the districts. (b) Relative contribution of individual hydrometeorological extremes to total biophysically
induced damages by year.

by farmers during the period of widespread droughts in Ger-
many.

3.3 Crop-wise analysis of direct biophysical damages

We present the aggregated crop-wise damages during
droughts for 4 years with the highest revenue losses in Ger-
many (2018, 2019, 2020, and 2022) in Fig. 4. Our analy-
sis reveals that silage maize suffered the most notable di-
rect biophysically induced damage due to droughts, followed
by potatoes and winter wheat. When comparing these direct
biophysically induced damages with reported damages, we
note a similar trend for maize and potatoes; however, re-
ported losses for winter wheat are considerably higher than
their direct biophysically induced losses. Specifically, the im-
pacts of extreme hydrometeorological drivers on wheat crops
are found to be 62 % lower than the reported drought im-
pacts. The situation is somewhat similar for other winter
crops like winter barley and rapeseed. These findings in-
dicate that drought-prone summer-grown maize and pota-
toes incur greater direct biophysically induced damage com-
pared to winter-grown wheat and barley. The direct biophys-
ically induced damages explain up to 97 % (2018) of revenue
losses for maize and up to 32 % (2019) for winter wheat. For
the year 2020, the direct biophysically induced damage of

drought is significantly lower in comparison to the reported
damages. This could be attributed to the fact that the dry con-
ditions in 2020 were primarily limited to the spring season
(van der Wiel et al., 2023) and, therefore, had limited impact
on crop yields (Fig. S5).

The spatial distribution of direct biophysically induced
damages by crop for the 4 years with the highest rev-
enue losses is depicted in Fig. 5. The drought resulted in
widespread revenue loss for almost all crops in Germany in
2018, 2019, and 2022 with some exceptions (like rapeseed in
2019 and 2022 and spring barley and spring oats in 2022).
Notably, potatoes experienced the highest revenue losses per
ha amongst all crops across almost all districts in Germany
given their high economic value (high yields per ha and high
prices per ha). Drought-prone maize suffered significantly
higher losses in the major production regions of the north
(Lower Saxony and the surrounding districts) compared to
the south (districts in Bavaria and Baden-Württemberg). In
contrast, despite being the most widely cultivated crop across
Germany, winter wheat showed much lower revenue losses
than maize. In 2020, spring barley incurred more widespread
crop losses than any other crop. Interestingly, in 2019, 2020,
and 2022, only limited losses were observed for sugar beets
in Mecklenburg-Vorpommern (northeast Germany) and the
bordering districts of Lower Saxony (northwest Germany)
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Figure 4. Crop-wise estimates of revenue loss in the 4 years with the largest aggregate losses during droughts across Germany based on
yields simulated using the statistical yield model that isolates the impact of hydrometeorological extremes on yields (orange bars, labelled
“biophysical’) and yields reported in regional statistics (blue bars, labelled “reported”).

Figure 5. Spatial distribution of direct biophysically induced crop-specific damages during droughts in German district level administrative
units in the 4 years with the highest revenue losses. The different colours indicate different levels of revenue losses (in EUR per ha) in the
districts.

and Saxony-Anhalt (east-central Germany), despite a consid-
erable share of area in these regions dedicated to growing this
crop.

3.4 Contribution of droughts and various
hydrometeorological extremes to direct
biophysically induced damages

Next, we examine to which degree droughts and other hy-
drometeorological extreme events contributed to fluctuations
in yields during 2016–2022, in order to understand the rela-
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tive importance of their impacts on agriculture. This is done
by calculating the feature contributions to the predicted yield
change using the coefficients estimated with the LASSO
models at the optimal penalty parameter λ1SE (Heilemann et
al., 2024). Figure 6 displays the average contribution of vari-
ous hydrometeorological extremes to yield anomalies across
Germany, which vary by crop and year. Contrary to intuition,
some extremes also have positive effects on yield anomalies,
although this is dependent upon the season/month of occur-
rence, the intensity of extremes, and the specific crop affected
(Heilemann et al., 2024; Schmitt et al., 2022). For example,
precipitation scarcity in March was found to benefit spring
barley, rapeseed, and winter barley if soils still held suffi-
cient winter moisture (Gömann et al., 2015). Similarly, heavy
rainfall in July may increase yields for summer crops such as
potatoes and silage maize by mitigating drought stress in late
summer when soils tend to be dryer (Samaniego et al., 2013).

In 2016, 2017, and 2021, positive yield effects from
weather extremes outweighed the negative impacts on crop
yields. Despite limited drought-affected areas in Germany
(Fig. S4), the negative impacts of droughts are evident in var-
ious crops during these years. Except 2020, the years with
widespread droughts in Germany (2018, 2019, and 2022)
saw droughts and heat contributing to negative yield anoma-
lies for almost all crops. While there are some exceptions
(sugar beets in 2018, and spring oats in 2019), droughts
generally cause more severe impacts than heat. In 2019,
the effect of drought, and heat was coupled with precipita-
tion scarcity during spring (meteorological drought) which
led to notable negative yield anomalies in spring oats and,
to some extent, in spring barley and winter wheat. In con-
trast, negative yield anomalies in 2020 were largely driven by
meteorological drought during spring instead of soil mois-
ture drought. Meteorological droughts during spring com-
monly threaten agricultural productivity, as sufficient rainfall
in spring is critical for distributing fertilizers throughout the
soil (Gömann et al., 2015). Beyond drought and heat, Fig. 6
also highlights the influence of other extreme events on crop
yield anomalies in Germany. For example, black frost had
notable effects on winter crops in 2021 and 2022 and alter-
nating frost adversely affected rapeseed during these years.
In contrast, waterlogging appears to have had a beneficial
effect yield anomalies for most crops. These results show
the complex interplay of weather extremes and their vary-
ing combinations, which determine the extent of yield losses
from compounding and overlapping events in different years,
as captured by the yield model.

3.5 Sensitivity analysis of estimated direct
biophysically induced damages

To evaluate the robustness of the direct biophysically in-
duced damages, two sensitivity analyses were conducted:
(1) adjusting the counterfactual period to include 4-year
and 6-year averages for estimating expected revenues and

(2) modifying the drought classification by testing variations
in the area threshold of each district with an SMI< 0.2 per
month. Specifically, we tested ±5 % changes in the original
20 % threshold for the categorization of district affected by
drought.

In our analysis, we found that the average annual dam-
age estimates ranged from EUR 766 million (under the 6-
year counterfactual) to EUR 812 million (under the 4-year
counterfactual). Adjusting the drought area threshold led to
variations in damage estimates, ranging from EUR 767 mil-
lion (under a 5 % decrease in the threshold) to EUR 798 mil-
lion (under a 5 % increase in the threshold). The variation in
the length of counterfactual period as well as drought area
thresholds modifies the average expected revenue, which
serves as the benchmark for damage calculations, thus lead-
ing to different damages estimates. Nevertheless, our main
results presented in previous sections fall within the range of
these variations, underscoring the robustness of the estimates
while accounting for potential uncertainties in the counter-
factual definition and drought classification area.

Figure 7 presents the annual direct biophysically induced
damages for years 2016–2022 across all sensitivity scenar-
ios. The figure shows that the temporal patterns are consis-
tent across scenarios. Consequently, these findings confirm
that our damage estimations are robust to reasonable varia-
tions in both the baseline period and the drought classifica-
tion threshold.

4 Discussion

For our analysis of direct biophysically induced damages of
extremes during droughts, we aggregate the impacts of eight
field crops in Germany. The direct biophysically induced
damages of droughts were estimated by comparing the rev-
enue generated during the drought year with that of the pre-
ceding 5 non-drought years across all districts in Germany.
Recent research by Di Marcoberardino and Cucculelli (2024)
has highlighted the significant impact of extreme events like
droughts and heatwaves on the local economies across Eu-
rope, underscoring their localized nature. Providing a spa-
tially distributed assessment is especially important for en-
hancing risk management as it can help communicate risk to
stakeholders and inform targeted policies and support pro-
grammes (Brás et al., 2021; Rose, 2004). Our analysis, com-
paring regional level and national level data for estimating
drought damages, reveals that using spatially disaggregated
information yields more accurate assessments of revenue
losses by crop that may not be reflected in national level as-
sessments. The spatially distributed approach used here can
be adapted in other regions to provide more precise assess-
ment of revenue losses and to inform policy planning.

Our findings reveal that the average direct biophysically
induced damage driven by extremes during droughts from
2016 to 2022 was EUR 781 million per year (sensitivity
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Figure 6. Contribution factors of hydrometeorological extremes to yield anomalies across different crops computed from the LASSO regres-
sion model.

Figure 7. Sensitivity analysis of direct biophysically induced damages across different assumptions. The bars represent annual estimated
damages under variations in drought area classification thresholds (−5 % and +5 %) and different counterfactual lengths (4 and 6 years),
compared to the main results.
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range: EUR 766 million–EUR 812 million) across Germany.
The years 2018 and 2022 experienced the highest losses, esti-
mated at EUR 1.7 billion and EUR 850 million respectively.
Since the yield model includes all hydrometeorological ex-
tremes, the non-drought years used to estimate expected rev-
enue may still be influenced by these extremes. This can in-
troduce small biases in the damage estimates. To address this,
we use a 5-year average of non-drought years, which helps
smooth fluctuations and reduce the influence of other anoma-
lies. The results are robust to alternative definitions of the
counterfactual baseline which supports the reliability of our
approach.

The spatial distribution of the total damage we found for
2018 is consistent with previous research. The sector-wise
analysis of the impacts of droughts for 2018, conducted by
de Brito et al. (2020), show that agriculture in eastern Ger-
many had the highest impacts. Conradt et al. (2023) found
that the German part of the Elbe River basin in northern Ger-
many suffered the highest yield losses in 2018. During years
of widespread droughts, the revenue losses were greater in
northern Germany compared to southern Germany. In south-
ern Germany, there is some evidence that drought stress has
little impact on crop yields (Lüttger and Feike, 2018). Our
analysis of the spatial distribution of annual average yield
loss for all crops during droughts across Germany also found
similar patterns (Fig. S6). These findings underscore the need
for spatially targeted polices and interventions, particularly
in northern and eastern Germany, where agriculture is dis-
proportionally affected during droughts.

The comparison of the direct biophysically induced rev-
enue losses with reported losses shows that in years of
widespread drought, biophysical factors like hydrometeoro-
logical extremes explain 60 % of the revenue losses in Ger-
many. These losses are largely driven by varying combi-
nations of droughts, heat, and precipitation scarcity. While
drought and heat dominate the impacts, the yield model also
captures the effects of other extremes – such as frost and wa-
terlogging – whose contributions vary by crop and year. This
is consistent with emerging research on the joint impacts of
extreme events on crop yields, which has identified drought
and heat as the most relevant concurrent extremes in Europe,
both in the current and future climate (Brás et al., 2021; von
Buttlar et al., 2018; Orth et al., 2022; Webber et al., 2018).
The contribution of this study lies in quantifying the extent
to which economic damages are directly driven by the bio-
physical yield impacts of these drivers. It helps disentangling
the contributions of extreme hydrometeorological drivers of
yields vis à vis other drivers of yields to revenue losses, un-
derlining the importance of these factors in shaping agricul-
tural outcomes. While several weather extremes driving dam-
ages during droughts have been assessed and included, this
assessment cannot be considered comprehensive. Important
factors such as the impacts of pests and diseases (Khodaverdi
et al., 2016; Meisner and de Boer, 2018), soil water retention
capacity (Blanchy et al., 2023), as well as farm management

practices (Soares et al., 2023) are not included in these dam-
age estimates.

The crop-wise examination of revenue losses during
drought in Germany revealed that summer crops like maize
suffered the highest aggregate losses, followed by potatoes.
Maize is particularly vulnerable to droughts, as highlighted
by previous studies (Schmitt et al., 2022; Webber et al.,
2020), and this vulnerability was evident in the high rev-
enue losses we observed in almost all years. According to
our analysis, up to 97.4 % (2018) of maize’s revenue loss can
be explained by the direct biophysical impacts of extremes.
These results are consistent with findings of Reinermann
et al. (2019) who analysed drought impacts using satellite-
based vegetation indices. Interestingly, potatoes, which are
typically considered a high-value cash crop grown under ir-
rigation, suffered the highest losses in Lower Saxony, a state
with extensive irrigation infrastructure. This could be be-
cause the potato yield losses during droughts are mostly due
to increased temperatures, rather than a reduction in precipi-
tation which could be mitigated through irrigation only up to
a certain degree (Egerer et al., 2023).

In comparison to our findings, García-León et al. (2021)
estimated that agricultural losses due to droughts in Italy
ranged from EUR 0.55 billion and EUR 1.75 billion per year,
while Howitt et al. (2015) reported crop revenue losses in
California, United States of approximately USD 902 mil-
lion to USD 940 million per year. Our result that maize was
the most effected crop during recent droughts in Germany
is consistent with the findings of Brás et al. (2021), who
found maize as experiencing the highest production losses
among cereals across Europe due to droughts and heatwaves
between 1964 and 2015. Maize’s vulnerability to drought
is not limited to Europe. In the United States, substantial
yield variability in maize has been linked to drought and
heat stress (Zipper et al., 2016). Similarly, in China, maize
yield losses have been shown to increase with the severity
of drought, contributing to significant reductions in maize
production across the country (Liu et al., 2022). These com-
parisons highlight the dual challenge of mitigating economic
losses across diverse cropping systems and addressing the
specific vulnerabilities of drought-sensitive crops like maize.
They underscore the importance of globally coordinated ef-
forts to enhance agricultural resilience in the face of increas-
ing weather extremes.

While our estimates provide robust insights into the bio-
physical damages of droughts and associated extremes in
drought affected districts, there are some limitations to con-
sider. First, our analysis is focused on short-term impacts
damages and does not include adaptation costs or indirect
impacts beyond the immediate consequences of biophysi-
cally induced yield losses. Second, the estimation of rev-
enue losses might be underestimated due to the inherent lim-
itations of the statistical yield model in simulating extreme
crop yields. This underestimation partially arises from the
use of pre-defined thresholds for extreme events. Since the
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study relied on an established statistical model, we did not
assess the sensitivity of these thresholds, which should be
explored in future research to improve robustness. Last, this
yield model is based on anomalies relative to district level
means which limits our ability to fully control for the bio-
physical impacts of weather extremes in the counterfactual.
While a non-extreme weather events counterfactual could
have provided valuable insights into the interplay between
droughts and other extremes, this was not feasible within the
current modelling framework.

5 Conclusion

This study presents an empirical illustration to facilitate the
understanding and estimation of economic damages of hy-
drometeorological extremes associated with droughts in agri-
culture. We measured spatially distributed, direct biophys-
ically induced damages on farmers’ revenue at the district
level in Germany during droughts. Our estimates bridge gaps
related to consistent economic damage assessment that can
be used for the assessment of the costs of climate change
(Frame et al., 2020). Farmers’ decision-making in the context
of drought would also benefit from such analysis, especially
if these assessments are extended and linked with drought
monitoring and early warning systems (Muller et al., 2024).
Additionally, we show the utility of spatially distributed data
for accurate crop-specific damage assessments.

Our analysis revealed an average annual revenue loss
due to biophysical impacts of extremes of EUR 781 million
across Germany during drought, accounting for 45 % of re-
ported revenue losses. In years with widespread droughts
(2018, 2019, and 2022), the direct biophysically induced
damages represent an average of 60 % of reported revenue
loss, highlighting the dominant role of hydrometeorological
extremes in driving the revenue losses experienced by farm-
ers. By isolating the impacts of hydrometeorlogical extremes
from other drivers of revenue losses in droughts, the find-
ings emphasize the critical need to adapt to such extremes not
only in the present-day climate but also in the future, where
such extremes are expected to become more frequent and in-
tense.

Our results underscore the role of hydrometeorlogical
extremes in revenue losses during droughts in Germany.
Specifically, for drought-prone, summer-grown crops like
maize, the hydrometeorological extremes, such as reduced
soil moisture, can explain up to 97 % of the reported losses
in 2018. In contrast, for the winter-grown crops like wheat,
the contribution of hydrometeorological extremes is less pro-
nounced, explaining up to 32 % of the reported losses in
2019. These results can guide more targeted adaptation dur-
ing droughts, focusing on specific crop types. For example,
insuring summer-grown crops against simultaneous or suc-
cessive extremes, such as drought and heat, or enhancing
breeding effectiveness.

While this study provides detailed understanding of bio-
physical damages during droughts, future research could ex-
pand the analysis to include adaptation costs, indirect im-
pacts, and a more refined counterfactual approach to bet-
ter capture the interplay between weather extremes and
droughts. Nonetheless, our analysis provides valuable in-
sights into the far-reaching economic consequences of
droughts in the agricultural sector. These insights should be
of significant interest to decision-makers, guiding the de-
velopment of effective strategies for mitigating the effects
of droughts and implementing measures to build resilience
in affected regions. Future work should focus on routinely
estimating these losses within operational drought monitor-
ing systems such as the German Drought Monitor (Zink et
al., 2016), and forecasting frameworks like Hydroclimatic
Subseasonal-to-Seasonal forecasting system (Hydroclimatic
Forecasting System, 2025). By linking hydrometeorological
variables with projected economic damages, such integration
would enhance early warning capabilities, improve economic
preparedness against increasing weather extremes, and sup-
port more proactive adaptation strategies.
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Appendix A

Table A1. Descriptive statistics for simulated crop yields, including
annual mean, minimum, and maximum values for each crop during
2016–2022.

Crop/year Mean yield Min yield Max yield
(dt ha−1) (dt ha−1) (dt ha−1)

Maize

2016 456.88 212.62 599.47
2017 459.23 224.28 596.93
2018 369.89 182.05 488.38
2019 421.74 184.88 525.93
2020 444.48 207.60 551.97
2021 480.78 226.55 644.59
2022 383.01 194.34 503.36

Potatoes

2016 371.61 230.49 523.78
2017 381.81 240.83 563.83
2018 320.73 211.40 472.44
2019 356.77 212.72 519.60
2020 377.98 220.23 541.00
2021 388.03 246.48 572.54
2022 335.88 197.96 518.20

Rapeseed

2016 36.24 20.61 46.47
2017 36.80 18.21 47.82
2018 34.13 17.09 46.00
2019 32.80 17.44 42.66
2020 35.45 20.80 48.23
2021 35.33 21.47 44.95
2022 38.52 20.54 50.55

Spring barley

2016 50.45 22.13 75.95
2017 50.11 21.06 71.83
2018 47.56 20.78 72.09
2019 47.86 18.73 71.69
2020 48.22 20.62 77.13
2021 49.30 22.77 73.02
2022 51.64 21.92 77.76

Spring oat

2016 49.51 22.56 72.71
2017 47.03 21.59 66.36
2018 45.25 21.42 63.03
2019 42.13 14.64 64.48
2020 46.40 20.40 68.18
2021 46.16 22.01 67.33
2022 45.27 20.52 66.36

Table A1. Continued.

Crop/year Mean yield Min yield Max yield
(dt ha−1) (dt ha−1) (dt ha−1)

Sugar beets

2016 641.65 444.39 834.22
2017 660.26 459.06 844.77
2018 616.90 417.44 821.43
2019 642.56 444.91 841.17
2020 682.29 472.42 892.76
2021 655.47 455.41 858.88
2022 637.20 443.13 874.71

Winter barley

2016 66.53 38.09 88.69
2017 68.56 36.95 93.26
2018 62.45 32.75 85.36
2019 66.40 35.90 91.93
2020 63.04 36.30 86.66
2021 66.19 38.69 91.92
2022 68.81 37.26 93.76

Winter wheat

2016 73.64 39.60 96.00
2017 73.05 38.34 97.14
2018 70.92 36.29 94.15
2019 71.81 36.09 99.69
2020 73.17 39.35 96.68
2021 73.19 39.66 99.00
2022 72.75 37.92 99.85

Code and data availability. The statistical yield model code is
available at https://git.ufz.de/heileman/lasso-crop-yield-projection
(Heilemann, 2025; Heilemann et al., 2024). Additional scripts
used to process data and reproduce the results of this study are
available from the corresponding author upon request. Annual
district level crop yield and acreage data are provided by the
Regional Database of the Federal Statistical Office of Ger-
many: https://www.regionalstatistik.de/genesis/online?operation=
table&code=41141-02-02-4#astructure (Statistisches Bunde-
samt (Destatis), 2020) and https://www.regionalstatistik.de/
genesis//online?operation=table&code=41241-01-03-4&bypass=
true&levelindex=1&levelid=1677842497003#abreadcrumb
(Statistisches Bundesamt (Destatis), 2022b). Supplemen-
tary crop acreage data for other years were derived from
remote-sensing-based crop maps (Blickensdörfer et al., 2022),
available at https://doi.org/10.5281/zenodo.5153047 (Blickens-
dörfer et al., 2021). Monthly soil moisture index (SMI) data
from 1951 to 2022 are available for download from UFZ:
https://www.ufz.de/index.php?de=37937 (Helmholtz Centre for
Environmental Research, 2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/nhess-25-2115-2025-supplement.
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