Articles | Volume 25, issue 6
https://doi.org/10.5194/nhess-25-1865-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-1865-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The probabilistic skill of extended-range heat wave forecasts over Europe
Natalia Korhonen
CORRESPONDING AUTHOR
Weather and Climate Change Impact Research, Finnish Meteorological Institute, Helsinki, Finland
Otto Hyvärinen
Weather and Climate Change Impact Research, Finnish Meteorological Institute, Helsinki, Finland
Virpi Kollanus
Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
Timo Lanki
Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
School of Medicine, University of Eastern Finland, Kuopio, Finland
Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
Juha Jokisalo
Department of Mechanical Engineering, Aalto University, Espoo, Finland
Risto Kosonen
Department of Mechanical Engineering, Aalto University, Espoo, Finland
College of Urban Construction, Nanjing Tech University, Nanjing, China
David S. Richardson
Forecasts and Services Department, European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
Kirsti Jylhä
Weather and Climate Change Impact Research, Finnish Meteorological Institute, Helsinki, Finland
Related authors
Otto Hyvärinen, Terhi K. Laurila, Olle Räty, Natalia Korhonen, Andrea Vajda, and Hilppa Gregow
Adv. Sci. Res., 18, 127–134, https://doi.org/10.5194/asr-18-127-2021, https://doi.org/10.5194/asr-18-127-2021, 2021
Short summary
Short summary
Wind speed forecasts have many potential users that could benefit from skilful forecasts. We validated weekly mean speed forecasts for Finland using
forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). We concentrate on winter (November, December and January) forecasts.
The forecasts proved to be skilful until the third week, but the longest skilful lead time depends on how the skill is calculated and what is used as the reference.
Meri Virman, Taru Olsson, Petter Lind, and Kirsti Jylhä
EGUsphere, https://doi.org/10.5194/egusphere-2025-3663, https://doi.org/10.5194/egusphere-2025-3663, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
We use a kilometer-scale regional climate model to investigate the occurrence and intensity of sea-effect snowfall in the Baltic Sea area in northern Europe in the period 1998–2018. Sea-effect snowbands occur most frequently in November–February when low-level winds have an easterly component near the eastern coast of Sweden and the southern coast of Finland. Over the southern Baltic Sea, snowbands tend to occur when the low-level winds have a northerly component and typically in December–March.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Mika Rantanen, Kirsti Jylhä, Jani Särkkä, Jani Räihä, and Ulpu Leijala
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-314, https://doi.org/10.5194/nhess-2021-314, 2021
Revised manuscript not accepted
Short summary
Short summary
Using sea level and precipitation observations, we analysed the meteorological characteristics of days when heavy precipitation and high sea level occur simultaneously in Finland. We found that around 5 % of all heavy precipitation and high sea level events on the Finnish coast are so called compound events when they both occur simultaneously, and these events were associated with close passages of mid-latitude cyclones. Our results act as a basis for compound flooding research in Finland.
Otto Hyvärinen, Terhi K. Laurila, Olle Räty, Natalia Korhonen, Andrea Vajda, and Hilppa Gregow
Adv. Sci. Res., 18, 127–134, https://doi.org/10.5194/asr-18-127-2021, https://doi.org/10.5194/asr-18-127-2021, 2021
Short summary
Short summary
Wind speed forecasts have many potential users that could benefit from skilful forecasts. We validated weekly mean speed forecasts for Finland using
forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). We concentrate on winter (November, December and January) forecasts.
The forecasts proved to be skilful until the third week, but the longest skilful lead time depends on how the skill is calculated and what is used as the reference.
Andrea Vajda and Otto Hyvärinen
Adv. Sci. Res., 17, 269–277, https://doi.org/10.5194/asr-17-269-2020, https://doi.org/10.5194/asr-17-269-2020, 2020
Short summary
Short summary
We studied the applicability of seasonal forecast outputs in agriculture in Finland. The quality of seasonal forecasts output was assessed, and six tailored seasonal forecast indices were co-designed, developed in close collaboration with the Central Union of Agricultural Producers and Forest Owners and piloted with over 200 farmers. Although the tested seasonal forecast indices had a limited skill and need further improvements, the farmers found the climate outlooks useful.
Cited articles
Ahmed, H., Tamminen, L. M., and Emanuelson, U.: Temperature, productivity, and heat tolerance: Evidence from Swedish dairy production, Clim. Change, 175, 10, https://doi.org/10.1007/s10584-022-03461-5, 2022.
Añel, J.A., Fernández-González, M., Labandeira, X., López-Otero, X., and De la Torre, L.: Impact of Cold Waves and Heat Waves on the Energy Production Sector, Atmosphere, 8, 209, https://doi.org/10.3390/atmos8110209, 2017.
Arsad, F. S., Hod, R., Ahmad, N., Ismail, R., Mohamed, N., Baharom, M., Osman, Y., Radi, M. F. M., and Tangang, F.: The Impact of Heatwaves on Mortality and Morbidity and the Associated Vulnerability Factors: A Systematic Review, Int. J. Environ. Res. Pu., 19, 16356, https://doi.org/10.3390/ijerph192316356, 2022.
Baccini, M., Biggeri, A., Accetta, G., Kosatsky, T., Katsouyanni, K., Analitis, A., Anderson, H.R., Bisanti, L., D'Ippoliti, D., Danova, J., Forsberg, B., Medina, S., Paldy, A., Rabczenko, D., Schindler, C., and Michelozzi, P.: Heat effects on mortality in 15 European cities, Epidemiology, 19, 711–719, https://doi.org/10.1097/EDE.0b013e318176bfcd, 2008.
Ballester, J., Quijal-Zamorano, M., Méndez Turrubiates, R. F., Pegenaute, F., Herrmann, F. R., Robine, J. M., Basagaña, X., Tonne, C., Antó, J. M., and Achebak, H.: Heat-related mortality in Europe during the summer of 2022, Nat. Med., 29, 1857–1866, https://doi.org/10.1038/s41591-023-02419-z, 2023.
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. Roy. Stat. Soc. B, 57, 289–300, https://doi.org/10.1111/J.2517-6161.1995.TB02031.X, 1995.
Brier, G. W.: Verification of forecasts expressed in terms of probability, Mon. Weather Rev., 78, 1–3, 1950.
Casanueva, A., Burgstall, A., Kotlarski, S., Messeri, A., Morabito, M., Flouris, A. D., Nybo, L., Spirig, C., and Schwierz, C.: Overview of Existing Heat-Health Warning Systems in Europe, Int. J. Environ. Res. Pu., 16, 2657, https://doi.org/10.3390/ijerph16152657, 2019.
Coumou, D. and Rahmstorf, S.: A decade of weather extremes, Nat. Clim. Change, 2, 491–496, https://doi.org/10.1038/nclimate1452, 2012.
Dunne, J. P., Stouffer, R. J., and John, J. G.: Reductions in labour capacity from heat stress under climate warming, Nat. Clim. Change, 3, 563–566, https://doi.org/10.1038/nclimate1827, 2013.
Ferranti, L., Corti, S., and Janousek, M.: Flow-dependent verification of the ECMWF ensemble over the Euro-Atlantic sector, Q. J. Roy. Meteor. Soc., 141, 916–924, https://doi.org/10.1002/qj.2411, 2015.
Ferro, C. A. T., Richardson, D. S., and Weigel, A. P.: On the effect of ensemble size on the discrete and continuous ranked probability scores, Meteor. Appl., 15, 19–24, https://https://doi.org/10.1002/met.45, 2008.
Frame, T. H. A., Methven, J., Gray, S. L., and Ambaum, M. H. P.: Flow-dependent predictability of the North Atlantic jet, Geophys. Res. Lett., 40, 2411–2416, https://doi.org/10.1002/grl.50454, 2013.
Gasparrini, A., Masselot, P., Scortichini, M., Schneider, R., Mistry, M. N., Sera, F., Macintyre, H. L., Phalkey, R., and Vicedo-Cabrera, A. M.: Small-area assessment of temperature-related mortality risks in England and Wales: a case time series analysis, Lancet Planetary Health, 6, E557–E564, https://doi.org/10.1016/S2542-5196(22)00138-3, 2022.
Guo, Y., Gasparrini, A., Armstrong, B.G., Tawatsupa, B., Tobias, A., Lavigne, E., de Sousa Zanotti Stagliorio Coelho, M., Pan, X., Kim, H., Hashizume, M., Honda, Y., Guo, Y. L., Wu, C., Zanobetti, A., Schwartz, J. D., Bell, M. L., Scortichini, M., Michelozzi, P., Punnasiri, K., Li, S., Tian, L., Osorio Garcia, S. D., Seposo, X., Overcenco, A., Zeka, A., Goodman, P., Dang, T. N., Van, D. D., Mayvaneh, F., Saldiva, P. H. N., Williams, G., and Tong, S.: Heat wave and mortality: A multicountry, multicommunity study, Environ. Health Persp., 125, 087006, https://doi.org/10.1289/EHP1026, 2017.
Guo, Y., Gasparrini, A., Li, S., Sera, F., Vicedo-Cabrera, A. M., de Sousa Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., Lavigne, E., Tawatsupa, B., Punnasiri, K., Overcenco, A., Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Jaakkola, J. J. K., Ryti, N. R. I., Goodman, P. G., Zeka, A., Michelozzi, P., Scortichini, M., Hashizume, M., Honda, Y., Seposo, X., Kim, H., Tobias, A., Iniguez, C., Forsberg, B., Astrom, D. O., Guo, Y. L., Chen, B., Zanobetti, A., Schwartz, J., Dang, T. N., Van, D. D., Bell, M. L., Armstrong, B., Ebi, K. L., and Tong, S.: Quantifying excess deaths related to heatwaves under climate change scenarios: A multi-country time series modelling study, PLoS Med., 15, e1002629, https://doi.org/10.1371/journal.pmed.1002629, 2018.
Hatvani-Kovacs, G., Belusko, M., Pockett, J., and Boland, J.: Assessment of Heatwave Impacts, Procedia Engineer., 169, 316–323, https://doi.org/10.1016/j.proeng.2016.10.039, 2016.
Heino, M., Kinnunen, P., Anderson, W., Ray, D. K., Puma, M. J., Varis, O., Siebert, S., and Kummu, M.: Increased probability of hot and dry weather extremes during the growing season threatens global crop yields, Sci. Rep., 13, 3583, https://doi.org/10.1038/s41598-023-29378-2, 2023.
Hersbach, H., Bell, B. Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021.
Kim, S., Sinclair, V. A., Räisänen, J., and Ruuhela, R.: Heat waves in Finland: present and projected summertime extreme temperatures and their associated circulation patterns, Inte. J. Climatol., 38, 1393–1408, https://doi.org/10.1002/joc.5253, 2018.
Kivimäki, M., Batty, G. D., Pentti, J., Suomi, J., Nyberg, S. T. Merikanto, J., Nordling, K., Ervasti, J., Suominen, S. B., Partanen, A.-I., Stenholm, S., Käyhkö, J., and Vahtera, J.: Climate Change, Summer Temperature, and Heat-Related Mortality in Finland: Multicohort Study with Projections for a Sustainable vs. Fossil-Fueled Future to 2050, Environ. Health Persp., 131, 127020, https://doi.org/10.1289/EHP12080, 2023.
Kjellstrom, T., Kovats, R. S., Lloyd, S. J., Holt, T., and Tol, R. S. J.: The direct impact of climate change on regional labor productivity, Arch. Environ. Occup. H., 64, 217–227, https://doi.org/10.1080/19338240903352776, 2009.
Kollanus, V., Tiittanen, P., and Lanki T.: Mortality risk related to heatwaves in Finland – Factors affecting vulnerability, Environ. Res., 201, 111503, https://doi.org/10.1016/j.envres.2021.111503, 2021.
Korhonen, N.: Files containing data in Figures 1-7 in the manuscript Korhonen N. et al., ”The probabilistic skill of Extended-Range Heat wave forecasts over Europe”, Finnish Meteorological Institute [data set], https://doi.org/10.57707/FMI-B2SHARE.372EC54BE8014B399AF3900DD253925A, 2024.
Kotharkar, R. and Ghosh, A.: Progress in extreme heat management and warning systems: A systematic review of heat-health action plans (1995–2020), Sustain. Cities Soc., 76, 103487, https://doi.org/10.1016/j.scs.2021.103487, 2022.
Lopez, A. and Haines, S.: Exploring the Usability of Probabilistic Weather Forecasts for Water Resources Decision-Making in the United Kingdom, Weather Clim. Soc., 9, 701–715, https://https://doi.org/10.1175/WCAS-D-16-0072.1, 2017.
Manzanas, R.: Assessment of model drifts in seasonal forecasting: sensitivity to ensemble size and implications for bias correction, J. Adv. Model. Earth Sy., 12, e2019MS001751, https://doi.org/10.1029/2019MS001751, 2020.
MARS: ERF data of the European Centre for Medium-Range Weather Forecasts' Integrated Forecasting System cycles 46r1 and 47r1, https://apps.ecmwf.int/mars-catalogue/, last access: 29 February 2024.
Martinez, G. S., Kendrovski, V., Salazar, M. A., de'Donato, F., and Boeckmann, M.: Heat-health action planning in the WHO European Region: Status and policy implications, Environ. Res., 214, 113709, https://doi.org/10.1016/j.envres.2022.113709, 2022.
Martinez, G. S., Linares, C., Ayuso, A., Kendrovski, V., Boeckmann, M., and Diaz, J.: Heat-health action plans in Europe: Challenges ahead and how to tackle them, Environ. Res., 176, 108548, https://doi.org/10.1016/j.envres.2019.108548, 2019.
Matthies, F., Bickler, G., Marin, N. C., and Hales, S. (Eds.): Heat-health action plans: guidance, World Health Organization, Copenhagen, Denmark, ISBN 9789289071918, 2008.
Morignat, E., Perrin, J. B., Gay, E., Vinard, J. L., Calavas, D., and Hénaux, V.: Assessment of the impact of the 2003 and 2006 heat waves on cattle mortality in France, PLoS One, 9, e93176, https://doi.org/10.1371/journal.pone.0093176, 2014.
Mulholland, E. and Feyen, L.: Increased risk of extreme heat to European roads and railways with global warming, Clim. Risk. Manag., 34, 100365, https://doi.org/10.1016/j.crm.2021.100365, 2021.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Murphy, A. H.: The Value of Climatological, Categorical and Probabilistic Forecasts in the Cost-Loss Ratio Situation, Mon. Weather Rev., 105, 803–816, https://doi.org/10.1175/1520-0493(1977)105<0803:TVOCCA>2.0.CO;2, 1977.
Orlov, A., Sillmann, J., Aaheim, A., and Aunan, K.: Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of Europe, Economics of Disasters and Climate Change, 3, 191–211, https://https://doi.org/10.1007/s41885-019-00044-0, 2019.
Prodhomme, C., Materia, S., Ardilouze, C. White, R. H., Batté, L., Guemas, V., Fragkoulidis, G., and García-Serrano, J.: Seasonal prediction of European summer heatwaves, Clim. Dynam. 58, 2149–2166, https://doi.org/10.1007/s00382-021-05828-3, 2021.
Pyrina, M. and Domeisen, D. I. V.: Subseasonal predictability of onset, duration, and intensity of European heat extremes, Q. J. Roy. Meteor. Soc., 149, 84–101, https://doi.org/10.1002/qj.4394, 2023.
Ramos, M. H., van Andel, S. J., and Pappenberger, F.: Do probabilistic forecasts lead to better decisions?, Hydrol. Earth Syst. Sci., 17, 2219–2232, https://doi.org/10.5194/hess-17-2219-2013, 2013.
Richardson, D. S.: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size, Q. J. Roy. Meteor. Soc., 127, 2473–2489, https://https://doi.org/10.1256/smsqj.57714, 2001.
Robine, J. M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J. P., and Herrmann, F. R.: Death toll exceeded 70,000 in Europe during the summer of 2003, C. R. Biol., 331, 171–178, https://doi.org/10.1016/J.CRVI.2007.12.001, 2008.
Rossiello, M. R. and Szema, A.: Health effects of climate change-induced wildfires and heatwaves, Cureus, 11, e4771, https://doi.org/10.7759/cureus.4771, 2019.
Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Pimont, F., Martin-StPaul, N., Barbero, R., Dupuy, J. L., Russo, A., and Belhadj-Khedher, C.: Increased likelihood of heat-induced large wildfires in the Mediterranean Basin, Sci. Rep., 10, 13790, https://doi.org/10.1038/s41598-020-70069-z, 2020.
Ruosteenoja, K. and Jylhä K.: Average and extreme heatwaves in Europe at 0.5–2.0° C global warming levels in CMIP6 model simulations, Clim. Dynam., 61, 4259–4281, https://doi.org/10.1007/s00382-023-06798-4, 2023.
Russo, S., Dosio, A., Graversen, R. G., Sillmann, J., Carrao, H., Dunbar, M. B., Singleton, A., Montagna, P., Barbola, P., and Vogt, J. V.: Magnitude of extreme heat waves in present climate and their projection in a warming world, J. Geophys. Res.-Atmos., 119, 500–512, https://doi.org/10.1002/2014JD022098, 2014.
Russo, S., Sillmann, J., and Fischer, E.: Top ten European heatwaves since 1950 and their occurrence in the coming decades, Environ. Res. Lett., 10, 124003, https://doi.org/10.1088/1748-9326/10/12/124003, 2015.
Ruuhela, R., Votsis, A., Kukkonen, J., Jylhä, K., Kankaanpää, S., and Perrels, A.: Temperature-Related Mortality in Helsinki Compared to Its Surrounding Region Over Two Decades, with Special Emphasis on Intensive Heatwaves, Atmosphere, 12, 46, https://doi.org/10.3390/atmos12010046, 2021.
Trenberth, K. E. and Fasullo, J. T.: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010, J. Geophys. Res., 117, D17103, https://doi.org/10.1029/2012JD018020, 2012.
van Vliet, M. T. H.: Complex interplay of water quality and water use affects water scarcity under droughts and heatwaves, Nat. Water, 1, 902–904, https://doi.org/10.1038/s44221-023-00158-6, 2023.
Velashjerdi Farahani, A., Jokisalo, J., Korhonen, N., Jylhä, K., Ruosteenoja, K., and Kosonen, R.: Overheating Risk and Energy Demand of Nordic Old and New Apartment Buildings during Average and Extreme Weather Conditions under a Changing Climate, Appl. Sci., 11, 3972, https://doi.org/10.3390/app11093972, 2021.
Velashjerdi Farahani, A., Kravchenko, I., Jokisalo, J., Korhonen, N., Jylhä, K., and Kosonen, R.: Overheating assessment for apartments during average and hot summers in the Nordic climate, Build. Res. Inf., 52, 273–291, https://doi.org/10.1080/09613218.2023.2253338, 2023.
Velashjerdi Farahani, A. V., Jokisalo, J., Korhonen, N., Jylhä, K., and Kosonen, R.: Simulation analysis of Finnish residential buildings' resilience to hot summers under a changing climate, Journal of Building Engineering, 82, 108348, https://doi.org/10.1016/j.jobe.2023.108348, 2024a.
Velashjerdi Farahani, A. V., Jokisalo, J., Korhonen, N., Jylhä, K., and Kosonen, R.: Hot summers in Nordic apartments: Exploring the correlation between outdoor weather conditions and indoor temperature, Buildings, 14, 1053, https://doi.org/10.3390/buildings14041053, 2024b.
Vitart, F.: Evolution of ECMWF sub-seasonal forecast skill scores, Q. J. Roy. Meteor. Soc., 140, 1889–1899, https://doi.org/10.1002/qj.2256, 2014.
Vitart, F. and Robertson, A. W.: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events, npj Clim. Atmos. Sci., 1, 3, https://https://doi.org/10.1038/s41612-018-0013-0, 2018.
Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen M., Ray D. K., Karoly, D., Meinshausen N., and Frieler, K.: The effects of climate extremes on global agricultural yields, Environ. Res. Lett., 14, 054010, https://doi.org/10.1088/1748-9326/ab154b, 2019.
Vogel, M. M., Zscheischler, J., Fischer, E. M., and Seneviratne, S. I.: Development of future heatwaves for different hazard thresholds, J. Geophys. Res.-Atmos., 125, e2019JD032070, https://doi.org/10.1029/2019JD032070, 2020.
WHO (World Health Organization): Heat and health in the WHO European Region: updated evidence for effective prevention, Copenhagen, WHO Regional Office for Europe, ISBN 9789289055406, 2021.
Wilks, D. S.: “The Stippling Shows Statistically Significant Grid Points”: How Research Results are Routinely Overstated and Overinterpreted, and What to Do about It, B. Am. Meteor. Soc., 97, 2263–2273, https://doi.org/10.1175/BAMS-D-15-00267.1, 2016.
Wulff, C. O. and Domeisen, D. I.: Higher subseasonal predictability of extreme hot European summer temperatures as compared to average summers, Geophys. Res. Lett., 46, 11520–11529, https://doi.org/10.1029/2019GL084314, 2019.
Short summary
The skill of hindcasts from the European Centre for Medium-Range Weather Forecasts in forecasting heat wave days, defined as periods with the 5 d moving average temperature exceeding its local summer 90th percentile over Europe 1 to 4 weeks ahead, is examined. Forecasts of heat wave days show potential for warning of heat risk 1 to 2 weeks in advance and enhanced accuracy in forecasting prolonged heat waves up to 3 weeks ahead, when the heat wave had already begun before forecast issuance.
The skill of hindcasts from the European Centre for Medium-Range Weather Forecasts in...
Altmetrics
Final-revised paper
Preprint