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Abstract. Severe heat waves lasting for weeks and expand-
ing over hundreds of kilometers in the horizontal scale have
many harmful impacts on health, ecosystems, societies, and
the economy. Under the ongoing climate change, heat waves
are becoming even longer and hotter, and, as a proactive
adaptation, the development of early warning services is es-
sential.

Weather forecasts in the extended range (2 weeks to
1 month) tend to indicate a higher skill in predicting warm
extremes than average temperature events in Europe. We ver-
ified hindcasts of the European Centre for Medium-Range
Weather Forecasts (ECMWF) in forecasting heat wave days,
defined here as periods with the 5d mean temperature ex-
ceeding its 90th percentile. The verification was done in
5° x 2° resolution over Europe, based on the forecast week
(1 to 4 weeks). In the first forecast week, it is evident that,
across Europe, the accuracy of ECMWF heat wave forecasts
surpasses that of a climatological forecast. Even into the sec-
ond week, in many regions in Europe, the ECMWF forecasts
prove to be more reliable than their statistical counterparts.
However, if we extend the forecast lead time to 3—4 weeks,
predictability begins to decline to such a level that it can no
longer be said, except for southeastern Europe, that the fore-
casts in general were statistically significantly better than the
statistical forecast. Nonetheless, the persistence of prolonged

heat waves seems to have a higher-than-average level of pre-
dictability even at a 3-week lead time, offering early warning
services an indication of the potential duration of an ongoing
heat wave.

1 Introduction

The severest heat waves in Europe since the 1950s have
lasted for several weeks to even longer than a month, with
horizontal spatial ranges exceeding several hundred kilome-
ters, even 1000 km (Russo et al., 2015). In recent decades, the
number of extreme heat waves over Europe and across the
Northern Hemisphere has increased, and in the future, due to
the ongoing climate change, heat waves are expected to be-
come even more common and intense (IPCC, 2021; Russo et
al., 2014; Coumou and Rahmstorf, 2012; Kim et al., 2018;
Vogel et al., 2020; Ruosteenoja and Jylhd, 2023). This grow-
ing occurrence of heat waves underscores the urgent need to
understand their dynamics and improve forecasting methods,
especially for prolonged events with severe impacts.
Prolonged heat waves have negative impacts on, e.g., hu-
man health and well-being (Arsad et al., 2022; Guo et al.,
2017; Ruuhela et al., 2021; Gasparrini et al., 2022; Kivimaki
et al.,, 2023), labor productivity (Kjellstrom et al., 2009;
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Dunne et al., 2013; Orlov et al., 2019), energy and water
resources (Afiel et al., 2017; Hatvani-Kovacs et al., 2016;
van Vliet, 2023), transport systems (Mulholland and Feyen,
2021), wildfire safety (Rossiello and Szema, 2019; Ruffault
et al., 2020), agriculture (Heino et al., 2023; Vogel et al.,
2019), and livestock (Ahmed et al., 2022; Morignat et al.,
2014). As an example, during heat waves, apartments lack-
ing air conditioning gradually begin to overheat, increas-
ing heat stress (Velashjerdi Farahani et al., 2021, 2023,
2024a). In northern Europe, where apartments are typically
not equipped with mechanical cooling systems, the ther-
mal inertia of buildings plays a critical role. For instance, a
Finnish study observed that buildings required 5—6 d to reach
overheating conditions, highlighting the importance of the
5d mean temperature as a predictor for indoor heat stress
(Velashjerdi Farahani et al., 2024b). These findings empha-
size the relevance of forecasting tools capable of predict-
ing not only the occurrence but also the persistence of heat
waves.

Prolonged and intensive heat waves occurring over a wide
area can lead to significant and potentially catastrophic im-
pacts on public health. In Europe, the 2003 heat wave has
been estimated to have resulted in over 70 000 (Robine et al.,
2008) and the 2022 heat wave in over 60000 (Ballester et
al., 2023) heat-related deaths. As climate change progresses,
severe health effects of heat waves are expected to further
increase (Guo et al., 2018). Recognizing this, many coun-
tries in Europe and other parts of the world have developed
heat-health action plans over the past 20 years to mitigate
heat-related health risks (Kotharkar and Ghosh, 2022; Mar-
tinez et al., 2022, 2019; Matthies et al., 2008). A key ele-
ment of these preparedness plans consists of heat wave early
warning systems, the operation of which is based on weather
forecasts and pre-defined threshold criteria for triggering the
warning services (Casanueva et al., 2019; Prodhomme et al.,
2021). As health effects of heat exposure occur quickly, on
the same day or with a lag of a few days (Baccini et al., 2008),
it is imperative that the protection measures are implemented
rapidly when a potentially dangerous heat wave is forecasted.
However, organization of the response measures requires co-
ordination of actions between many stakeholders and distri-
bution of workforce, equipment, and other resources, which
takes time. The effectiveness of the systems in preventing
health effects depends on the ability to accurately forecast
the impending heat event and the warning lead time. The
lead time for heat wave warnings in each European coun-
try depends on the respective national meteorological and
hydrological services. Currently, heat wave warnings across
Europe are typically issued 2-5d in advance, and in some
countries, such as Germany and the UK, up to 7 d in advance.
Extending these lead times could significantly enhance pre-
paredness by allowing for earlier adaptive measures and bet-
ter resource allocation, particularly for prolonged heat waves.

Sub-seasonal forecasts, which cover the extended range of
2 weeks to 1 month, offer a promising avenue for improv-
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ing early warning systems. The skill of these extended-range
forecasts has been found to be atmospheric-flow-dependent
(Frame et al., 2013; Ferranti et al., 2015) and spatially het-
erogeneous. Vitart and Robertson (2018) highlighted the po-
tential of sub-seasonal predictions in forecasting the progres-
sion of prolonged events like heat waves spanning multiple
weeks. Moreover, Wulff and Domeisen (2019), and studies
by Pyrina and Domeisen (2023), emphasized that extended-
range predictions were more successful in forecasting ex-
treme hot summer temperatures in Europe compared to pre-
dicting average summer temperatures.

Weather forecasts can be divided into two main categories:
deterministic and probabilistic forecasts. Deterministic fore-
casts provide a single specific scenario for future weather.
For example, “tomorrow will be hot” is a deterministic fore-
cast that offers one possible future event. Probability fore-
casts, on the other hand, provide various possible scenarios
and their associated probabilities, taking into account the un-
certainty of the forecast. For instance, “50 % chance of heat”
is a probability forecast indicating that heat may occur, but it
is not certain. As the uncertainty of extended-range forecasts
is known to be large, we evaluated their probabilistic rather
than deterministic skill. In theory and practice, probabilis-
tic forecasts have been shown to contain more information
and should be more valuable to users than categorical, deter-
ministic forecasts (e.g., Murphy, 1977; Richardson, 2001),
though their practical utility depends on users’ ability to in-
corporate such information into decisions (e.g., Lopez and
Haines, 2017; Ramos et al., 2013).

Our objective was to assess the probabilistic skill of the
extended-range forecasts made by the European Centre for
Medium-Range Weather Forecasts (ECMWF) in predicting
heat wave days, defined as periods when the local 5d mean
temperature exceeded the 90th percentile of the local sum-
mertime 5 d mean temperature distribution. We assessed the
reliability of forecasts predicting heat waves surpassing this
threshold, as this type of heat wave has been shown to signif-
icantly increase the risk of overheating in apartments in Fin-
land (Velashjerdi Farahani et al., 2024a) and elevate mortality
risk among the elderly (Kollanus et al., 2021). Our verifica-
tion process was conducted using a resolution of 5° longitude
and 2° latitude (5° x 2°) over Europe for the summers span-
ning 2000 to 2019. We examined hindcasts for various lead
times, ranging from 1 to 4 weeks. The novelty of the study
arises from the verification area encompassing the entirety of
the European region, which allows us to highlight potential
regional differences in the forecast skill, and from evaluating
the model’s ability to forecast the life cycle of heat waves,
taking into account the forecast initialization date relative to
the onset of the heat wave.
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2 Data and methods
2.1 Definition of heat wave days

In this study, heat wave days were defined as periods when
the local 5d moving average temperature (7°9) exceeded
its local summertime 90th percentile (90th73%). To calcu-
late 79, local daily mean temperatures over land areas were
averaged over a forward-looking 5d window. The thresh-
old 90th7> ¢ was determined using summer data (June—July—
August), ensuring that the definition reflected summertime
extreme temperatures. By applying this threshold, the contin-
uous variable 7°9 was converted into a binary variable: days
were categorized as either heat wave days (7°9 >90th7>¢)
or non-heat-wave days. In this study, heat wave days served
as the forecast target. The choice of the 5d moving aver-
age enables more robust identification of sustained heat wave
events by reducing the influence of short-term variability.
This is particularly important for extended-range forecast-
ing, since such forecasts are not expected to skillfully predict
small-scale, day-to-day variability.

Our definition of heat wave days is meaningful, as it aligns
with thresholds commonly used in epidemiological studies
on heat-related health effects, where heat waves are typi-
cally defined as periods when daily temperatures exceed the
90th percentile of the local annual or summertime temper-
ature distribution for 2 or more consecutive days (Arsad et
al., 2022). Such heat waves have been observed to lead to
increased mortality and morbidity worldwide (Arsad et al.,
2022; Guo et al., 2017). Although high temperature (dry
bulb) is the primary variable for assessing heat wave impacts,
other factors, such as humidity and wind speed, also con-
tribute to heat stress. Nevertheless, this study focuses solely
on temperature as the key driver of heat stress.

2.2 ERAS data
2.2.1 Thresholds for heat wave days

For defining observed heat wave days with a horizontal res-
olution of 5° longitude and 2° latitude (5° x 2°) over Europe
(36 to 70°N and —7.5 to 52.5°E) during summers 2000—
2019, we used the ERAS near-surface air temperature reanal-
ysis data (Hersbach et al., 2020). The ERAS data (Mufioz
Sabater, 2019), with a horizontal resolution of 0.1°, were bi-
linearly interpolated to a 5° x 2° grid, considering only land
grid points. To define heat wave days, we calculated the 5d
moving average temperatures (TFf]SAS) for each grid point
across Europe during the summers of 2000-2019 and defined
periods with TgﬁiAS exceeding its 90th percentile (9OthT§l§A5)
as observed during heat wave days. Figure la depicts a map
of the 90th percentile of the 5 d moving average temperature
(in summers 2000-2019) over Europe, based on ERAS. Days
having ERAS5 5d moving average temperatures above these
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thresholds, the 90th percentile, were, in this study, defined as
observed heat wave days.

As our definition of heat waves was based on 5d mean
temperatures, rather than daily mean temperatures, as com-
monly used in epidemiological studies on heat-related health
effects, we examined the proportion of days where the daily
mean temperature, the TEl}gAS’ exceeded its 90th percentile
(9OthTE11§A5) within periods when T§£A5 exceeded its 90th
percentile, here defined as heat waves. For this, we com-
puted daily mean temperatures, the TElIgAs’ and their 90th per-
centiles (90thTEllgA5) across European land areas from 2000
to 2019. For each grid point, we determined the percentage
of 5d periods exceeding the 9OthT]§1§‘A5 that included days
where the TElﬁiAS exceeded its 90th percentile. Our analysis
showed that our definition for heat waves based on exceeding
the 90thTES£A5, covered 26 % of the 1d heat waves based on
exceeding the 90thT; lﬁiAS. For the 2 d heat waves based on ex-
ceeding the 9OthTElR A5» Our definition covered 61 %. The 3d
heat waves based on exceeding the 9OthTEll§A5 were covered
96 % by our definition. For 4 or more consecutive day heat
wave events based on exceeding the 90thTE]IgA5, our defini-
tion covered 100 %. These statistics show that the 5 d moving
average definition covers nearly all longer heat wave events
(such as 3 to 4d heat waves), but only a portion of shorter
ones (1 to 2d heat waves), indicating that the 5d moving
average is particularly useful for identifying sustained heat
wave events.

During the period 2000-2019, the summer of 2010 was
characterized by a particularly long-lasting heat wave over
Europe (e.g., Trenberth and Fasullo, 2012). Therefore, we in-
vestigated the weight of this event on our results by compar-
ing our results for the period 2000-2019 with and without the
year 2010. Figure 1b gives a spatial distribution, with 1 °C in-
tervals, for the threshold of the heat wave days for the period
2000-2019 excluding the summer of 2010. Figure 1c shows
the impact of including 2010: in most of western and south-
ern Europe, the difference is £0.1 °C, while in eastern and
northeastern parts of Europe the impact is mostly between 0
and 4-0.55 °C, except for very northern Fennoscandia where
the impact is between —0.2 and 0 °C. Compared to the large
northwest—southeast gradient of the absolute values of the
90th percentile in Fig. 1a and b, these differences are minor.

2.2.2 Frequency and duration of heat wave days

To identify the summer with the longest heat wave, we ex-
amined the frequency and duration of heat wave days in the
ERAS reanalysis data. A heat wave was considered to be any
period of at least 1 d where the 5d moving average temper-
ature remained above the 90th percentile of TFflSAS. The heat
wave was considered interrupted when there were 2 consecu-
tive days with temperatures falling below the 90th percentile
of TESISAS. To clarify, a single day below the threshold did not
end the heat wave, as long as it continued afterward.

Nat. Hazards Earth Syst. Sci., 25, 1865-1879, 2025
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The 90th percentile of the summer 5 days moving average temperature (°C)
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Figure 1. The lower thresholds of heat wave days: the 90th percentile of the 5 d moving average temperature in summers 2000-2019 (first
column) and in summers 2000-2009 and 2011-2019 (i.e., 2000-2019 excluding 2010, middle column) of the ERAS reanalyses (a, b) and (d,
e, g, h, j, k, m, n) of the ensembles of the ECMWF’s hindcasts in different forecast weeks. The last column shows the difference between

these two.

The durations of the longest heat wave events in each grid
point over Europe in summers 2000-2019, as derived from
ERAS, are depicted in Fig. 2a. The heat wave events were
longest in eastern Europe. Figure 2a highlights the extreme
heat wave of 2010 in the east, the heat wave of 2018 in the
north, and parts of central Europe and the heat wave of 2003
in parts of southern and southwest Europe. Figure 2b indi-
cates that if the summer of 2010 is excluded, other years (e.g.,
2014) appear in eastern Europe/western Russia, compared to
Fig. 2a, and the duration of the longest period of heat wave
days becomes shorter there. Figure 2c, showing the number
of different heat wave events, highlights that in these sum-
mers (2000-2019) the heat wave days in northern Europe and
in many parts of eastern Europe were concentrated within
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fewer periods, whereas in central and southwestern Europe,
the same number of heat wave days was distributed across a
larger number of periods. Figure 2d shows that if the summer
of 2010 is excluded, especially in those areas where 2010 had
the longest period of heat wave days, there is an increase in
the number of periods with heat wave days, as 10 % of the
hottest days are now distributed to a larger number of events.

2.3 Hindcasts
Hindcasts, also known as reforecasts, are a type of retrospec-
tive weather forecast. Hindcasts are forecasts of past weather

conditions, generated using forecasting models, data assimi-
lation methods, and observational data identical to those used

https://doi.org/10.5194/nhess-25-1865-2025
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The duration and year of the longest period of heat
wave days in the ERAS reanalyses in 2000-2019
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Figure 2. The duration and the year (marked as 0-19) of the longest period of heat wave days defined from the ERAS reanalysis data of
(a) summers 2000-2019 and (b) summers 2000-2009 and 2011-2019 (i.e., 2000-2019 excluding 2010) and the number of periods with heat
wave days (c) in the ERAS reanalyses during 2000-2019 and (d) 2000-2009 and 2011-2019 (i.e., 2000-2019 excluding 2010).

for real-time weather predictions. Here, we verified hindcasts
of the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Integrated Forecasting System (IFS; Cycles
46r1 and 47r1; Vitart, 2014). These hindcasts were run at
the ECMWEF in 2020 twice a week, on Mondays and Thurs-
days, initialized using the ERAS analyses. We investigated
240 hindcasts, which were run with a weekly interval for the
summers 2000-2019, i.e., 20 years x 12 weeks = 240 hind-
casts; for details, see Table 1.

We examined the 2 m temperature (i.e., the near-surface
air temperature) from the hindcasts with lead times of 1 to
32d of the Monday runs. As the 2 m temperature has a large
temporal autocorrelation, using both the Monday and Thurs-
day initializations would not have added much information
and would only have complicated the statistical analysis. We
therefore arbitrarily decided to use only the Monday runs.
The ECMWEF reforecasts were initially run at a horizontal
resolution of approximately 18 km for the first 15 d and then
re-initialized at a coarser resolution of around 36 km for days
15 to 46. For our verifications, we used ECMWF’s hindcasts
at a horizontal resolution of 0.4°, which were bilinearly inter-
polated to a 5° x 2° grid, considering only land grid points.

The hindcasts consisted of a control forecast and 10 per-
turbed ensemble members, making up 11 members in total. It
is important to distinguish between the hindcasts and the op-
erational real-time forecasts, which initially had 51 members
and now consist of 101 members (IFS Cycle 48r1). Conse-
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quently, the results obtained here from the 11-member hind-
casts serve as a baseline measure of skill (see, e.g., Richard-
son, 2001; Ferro et al., 2008), and the larger operational en-
semble is expected to provide improved estimates of the nor-
mal distribution parameters, thereby enhancing skill to some
extent.

2.3.1 Thresholds for forecast heat wave days

For verification of the hindcasts, we defined the 5 d moving
average temperatures in the ECMWEF’s hindcasts, TFde. The
calculations of Tﬁjcd were performed separately for each of
the 11 ensemble members, covering each day from 1 June
to 27 August (88d) over the summers of 2000-2019. For
each day within this period, we incorporated forecast daily
mean temperatures for that day and the subsequent 4 d into
the calculations of TE5Cd. For each grid point and each fore-
cast week, ranging from week 1 to week 4, we determined
the threshold for a forecast heat wave day by calculating the
90th percentile, the 9OthTESé1 , of the 5 d moving average tem-
peratures, TE5Cd, from all days under consideration during the
summers of 2000-2019. The forecast data used for the fore-
cast weeks were partially overlapping due to the use of 5d
moving averages with forward-looking window: the forecast
week 1 used data of days 1 to 11, the forecast week 2 data
of days 8 to 18, forecast week 3 data of days 15 to 25, and
forecast week 4 data of days 22 to 32, as depicted in Table 1.

Nat. Hazards Earth Syst. Sci., 25, 1865-1879, 2025
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Table 1. This table shows the investigated hindcast data. Each row contains one run, a total of 12 runs per year. The coloring of the boxes
shows the coverage of the hindcast data. The first red boxes on each row show the initialization date of the hindcasts, which are the same for
all years 2000-2019. The colors of the boxes indicate for which lead time (i.e., forecast week) the data were used: red for 1 week, blue for
2 weeks, yellow for 3 weeks, and gray for 4 weeks. The data used for the different lead times were partially overlapping due to the use of
5 d moving averages with forward-looking window: a lead time of 1 week used data from days 1 to 11, 2 weeks used data of days 8 to 18, 3
weeks used data from days 15 to 25, and 4 weeks used data from days 22 to 32. The data used for two lead times are here marked with two
colors. Note: for a lead time of 1 week, we used data of 12 runs; for 2 weeks, 11 runs; for 3 weeks, 10 runs; and for 4 weeks, 9 runs (per
summer).

June July August
Day | 1[2 3] 4] o] o] 7[ s[ Sfo[u[i2]i3fais 11 qis]ooclzpasfoaspslorfasfaofao] ] 2] 3[ <[ 5[ o] 7] 8 e[ [\ e 1S i rs1ofad 2tpalosfed oo asfasfsofs 1[ 2 3] o] 5[ o] [ o] o] u]ssua]s]1q] 1 sfu5[ee 2 oofosl2dashsfor
un Tl
R Data used for
! forecast weck
2 m
3 m
w3
4 o4
5
7
8
9
10
11
12 [T
In Fig. 1, the first column depicts maps of the 90th In the verification, the forecast model-based probability of
percentile of the 5d moving average temperature (in the a heat wave day, p, was compared to the observed heat wave

summers of 2000-2019) over Europe, based on ERAS days (Sect. 2.2.1), as derived from the ERAS dataset. Since
(Fig. 1a), and in the ECMWEF hindcasts for forecast weeks 1— we used the data from the entire period (years 2000-2019) to
4 (Fig. 1d, g, j, and m). The ECMWF hindcasts capture the define the heat wave day thresholds, we may achieve an over-

northwest—southeast gradient in the threshold of heat wave estimation of the forecast skill in the verification, compared
days. Although the absolute values in the hindcasts are some- to using a leave-one-out method (in which 1 year is excluded
what lower than in ERAS — with the difference increasing at a time from the dataset when defining the threshold). How-
with lead time — this does not affect our verification, as we ever, as shown in the last column of Fig. 1, excluding even the
use model-specific thresholds. most extreme year has only a minimal impact on the thresh-

Summer 2010 was marked by an unusually prolonged heat old definition. Therefore, it is reasonable to assume that the
wave over Europe. In Fig. 1, the middle column depicts the effect on the skill is not substantial.

spatial distribution of the thresholds for observed and fore-

cast heat wave days over the period 2000-2019, excluding 2.4 Skill scores

the summer of 2010. The last column of Fig. 1 (Fig. 1c, f, i,

1, and o) illustrates the impact of including 2010. Compared The Brier scores (BSs, Brier, 1950) of the probabilistic fore-
to the large northwest—southeast gradient of the absolute heat casts, p, were calculated separately for each grid point and

wave day thresholds in the first two columns, the differences forecast weeks 1 to 4 as follows:
in the last column are minor. For assessing the impact of the
summer of 2010 on the probabilistic skill of heat wave fore- 1 N 2
BS=— — 1
casts, the threshold values in the middle column are used. S N Zt=‘ (Pr = o00)%, M

where p; is the forecast probability of a heat wave day, rang-
ing from O to 1, and oy is the actual outcome (based on ERAS
reanalysis) of the heat wave day at instance ¢ (0 if there is no

2.3.2 Probability forecasts

The forecast probability of a heat wave day, p, was here heat wave day, and 1 if there is a heat wave day), and N
based on fitting a normal distribution to the TESCd forecasts is the number of forecasting instances. The BS is thus here
of the 11-member ensemble (practically a set of determinis- equivalent to the mean squared error of the probability of a

tic forecasts) and defining the probability of the forecast Tpfcd heat wave day, and ranges from O to 1. The lower the BS, the
being above the 9OthTES(§j on each day. Hence, a heat wave better the predictions.

in the forecast is defined relative to the forecast model’s cli- It follows from the use of the 90th percentile to define a
matology. The comparison of the hindcasts to the lead-time- heat wave day (Sect. 2.2) that the expected probability py
dependent model climatology is expected to remove the sys- of a heat wave day is 0.1. This value, also referred to as the
tematic frequency bias resulting from the forecast model drift climatological base rate py, was used in Eq. (1) to calculate
(Manzanas, 2020). BSef, 1.€., the Brier score of the reference forecast. The Brier
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skill score (BSS) can now be defined as

BS

ref

BSS=1-

(©))

The value of the BSS ranges from —oo to 41, whereas posi-
tive values indicate better skill than that of the reference fore-
casts, and a BSS value of 1 represents the best possible score.

Initially, we calculated the BSS for each grid point using
data from all 240 hindcasts. To demonstrate the impact of
long heat waves on the overall BSS of all hindcasts, we also
determined the BSS while excluding the data from the sum-
mer with the longest heat wave (as detailed in Sect. 2.2.2).
Importantly, this analysis was conducted separately for each
grid point, acknowledging that the summer with the longest
heat wave may vary from one grid point to another. Further,
to demonstrate the impact of the summer of 2010 (with the
long heat wave in Europe) on the probabilistic skill of the
heat wave forecasts, we also determined the BSS while ex-
cluding data from summer 2010. Importantly, for this test, we
excluded the 2010 data already when defining the thresholds
for the heat wave days from the ERAS and hindcast data, and
hence, the thresholds were as in Fig. 1, in the middle column.

For each grid point and lead time, we determined whether
the hindcasts were considered more skillful than the refer-
ence forecasts by assessing the BSS using a bootstrap resam-
pling procedure. First, we calculated the BSS 5000 times,
each time sampling the original data with replacement (i.e.,
the data points could be selected multiple times). The BSS
was required to be statistically significantly above zero for
the hindcasts to be considered more skillful than the refer-
ence forecasts. To assess this issue, we calculated the statis-
tical significance level, i.e., the p value under the null hy-
pothesis, that the BSS is zero. The p value is then the pro-
portion of the bootstrap samples greater than zero. However,
because the statistical test on the map is repeated many times,
small p values are bound to occur by chance alone, and the
null hypothesis is rejected too often. Unadjusted p values,
therefore, overestimate the significance of the results (Wilks,
2016). We adjusted the p values following the false discovery
rate (FDR) concept. The FDR-controlling procedures limit
the expected proportion of false discoveries (hypotheses that
should not have been rejected) among the rejected hypothe-
ses. By setting this threshold ¢ to 0.1, which is twice the
conventional 0.05, as suggested by Wilks (2016), and using
the Benjamini—Hochberg (B-H) procedure (e.g., Benjamini
and Hochberg, 1995), we ensured that, on average, no more
than 10 % of the rejected null hypotheses are false discov-
eries. In the B-H procedure, we first ordered the p values
from the smallest to the largest. Then, we rejected the null
hypothesis if p; < g x i/m, where i was the position, and m
was the number of p values. In practice, we can use readily
available p-value adjustment functions (such as p.adjust in
R) that change p values to the smallest threshold ¢ at which
we would reject a particular null hypothesis.
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Figure 3. (a) The sharpness diagram and (b) reliability diagram of
the 1-4 week probabilistic heat wave day forecasts, p, over Europe
(all land grid points) in summers 2000-2019.

3 Results

3.1 Reliability of probabilistic forecasts for heat wave
days

First, we examined the proportion of heat wave forecasts in
each category of forecast probabilities (p < 0.1, 0.1 < p <
0.2, ..., p > 0.9) (sharpness diagram in Fig. 3a) and how of-
ten heat wave days occurred following a forecast in each cat-
egory of forecast probabilities (reliability diagram Fig. 3b).
If all the forecasts were perfect, then in Fig. 3a, 90 % of the
forecasts would have p = 0 and 10 % would have p =1, and
in Fig. 3b there would be only two points, [0,0] and [1,1], for
each forecast week. However, for the first week, in Fig. 3a,
roughly 80 % of the forecasts belong to the lowest proba-
bility class, and 5 % to the highest one. As the lead time in-
creases, both these portions decrease, while the share of fore-
casts with 0.1 < p < 0.9 increases. The sharpness of fore-
casts drops as the lead time increases.

In Fig. 3b, the forecast probabilities are displayed on the
x axis and observed frequencies on the y axis. In a per-
fectly calibrated forecast, the points on the reliability dia-
gram would fall along a 45° diagonal line from the bottom
left to the upper right corner. This line represents perfect re-
liability, where the forecast probabilities equal the observed
frequencies. The climatological probability line in the re-
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liability diagram represents the expected frequency of heat
wave days (0.1) based on climatology. The points above the
no skill line contribute positively to the BSS with climatol-
ogy as the reference. The points on the reliability diagram
above the perfect reliability line indicate underforecasting,
meaning that the forecast probabilities are too low compared
to the observed frequency. Conversely, the points on the re-
liability diagram below the perfect reliability line indicates
overforecasting, meaning that the forecast probabilities are
too high compared to the observed frequency.

The reliability of the heat wave day forecasts was best
for shorter lead times and dropped with growing lead times
(Fig. 3b). During forecast weeks 1 and 2, the overall relia-
bility of heat wave day forecasts across Europe was nearly
flawless when p < 0.4. Subsequently, for p > 0.4, the fore-
cast probabilities tended to be slightly elevated compared
to the observed frequencies, suggesting a tendency toward
overforecasting; however, it should be noted that for lead
times of 2 weeks (and longer), there are far fewer samples
in the higher probability bins, making these points consider-
ably more uncertain.

3.2 Probabilistic forecast skill scores for heat wave days

Figure 3b depicts the average reliability of the heat wave day
forecasts over the whole of Europe. Next, we will take a look
at the forecast skill across different regions in Europe to find
out how the accuracy varies in different regions. First, we
assess the performance of all the hindcasts of all summers
from 2000 to 2019. Second, we examine hindcasts of sum-
mers from 2000 to 2019, excluding the hindcasts of the sum-
mer with the longest heat wave, and third, we focus on the
hindcasts excluding the summer of 2010. In the first column
of Fig. 4, we present the BSS of all hindcasts of the summers
2000-2019. During the first forecast week, the forecasts of
heat wave days in Europe demonstrate strong performance,
with BSS values ranging between 0.5 and 0.8. Based on the
adjusted p values, these values of BSS are statistically sig-
nificantly greater than O at every grid point. However, in later
forecast weeks, the skill diminishes. In the second forecast
week, the BSS ranges from 0.1 to 0.4 in Europe, the fore-
casts remain better than the reference forecast in most grid
points across the continent. The exceptions include certain
grid points over the northern parts of the Iberian Peninsula,
eastern central Europe, and northeast of the Caspian Sea.
Moving to forecast weeks 3 and 4, BSS values in Europe
range between —0.1 and 0.2, exhibiting statistical signifi-
cance only in specific grid points across eastern and south-
eastern Europe.

In the middle column in Fig. 4, we illustrate the BSS
for each grid point of all hindcasts, excluding the summer
with the longest heat wave (as defined in Sect. 2.2.2). The
BSS excluding such a heat wave summer differs mostly only
40.05 from the BSS of all summers, except in eastern Eu-
rope, where the BSS is even 0.1 lower in forecast weeks 2—4.
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In more detail, in the first forecast week, the BSSs of the
hindcasts excluding the summer with the longest heat wave
are between 0.4 and 0.7, and in all grid points, statistically
significantly higher than 0, i.e., better than the reference fore-
cast. In the second week, the BSS of the hindcasts excluding
the summer with the longest period of heat wave days is be-
tween 0 and 0.4 and still statistically significantly higher than
0 in the majority of the grid points. In the third and fourth
week, however, the BSS is statistically significantly higher
than O only in some grid points in southeastern parts of the
map.

In Fig. 4, the last column shows the BSS of the hindcasts
excluding the summer of 2010. In some areas, leaving out
2010 seems to have less impact on the probabilistic skill of
heat wave forecasts than leaving out, in each grid point, the
summer with the longest heat wave (the middle column). For
example, in Finland, the skill remains for the third week, and
in the southeast parts of the study domain, the skill also ap-
pears to remain. These results suggest that the skill in fore-
casting heat waves decreased when excluding the longest pe-
riod of heat wave days, whether it was the 2010 heat wave or
a heat wave from another year.

3.3 Verification by probability ranges

In the reliability diagram (Fig. 3b), the ERAS5-based tempera-
ture data are used only as either no hot day (0) or hot day (1).
Next, we conducted verification of heat wave day forecasts
based on forecast probabilities falling within the ranges de-
fined here as low: p < 0.33, intermediate: 0.33 < p < 0.66,
and high: p > 0.66; i.e., we transformed the probabilistic
forecast to a categorical one. In Fig. 5, boxplots depict all the
observed ERAS temperatures (as percentiles) across different
levels of p. The parts of the boxes above the 90th percentile
(gray horizontal line) indicate heat wave days in the ERAS
temperature reanalysis. It is important to note that each box
has a different amount of data, marked as »n above each box.
Due to the different amounts of hindcast data in each forecast
week, as depicted in Table 1, the total amount of data differs
for each lead time. The category with the most forecasts is
within the low (p < 0.33) range, which was also visible in
Fig. 3a.

If all the heat wave day forecasts were perfect, in Fig. 5,
the boxes

— for p < 0.33 would be totally below the gray line, i.e.,
heat wave days would occur in 0 % of cases;

— for the 0.33 < p < 0.66 category would be empty;

— and for p > 0.66 would be totally above the gray line,
i.e., heat wave days would occur in 100 % of cases.

All in all, the forecast skill improves when more of the
data points in p < 0.33 fall below the gray line, and those in
p > 0.66 are above the gray line. At a glance, forecast week
1 (Fig. 5a) appears to have good skill, while forecast week
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Brier skill scores (BSS) of the probabilistic heat wave days forecasts, p

Hindcasts excluding the
All 240 hindcasts summer with the Hincasts excluding
longest period of heat the summer 2010
wave days
Forecast
week 1
BSS

1.0

Forecast

week 2 0.5
0.0

Forecast

week 3 -0.5
-1.0

Forecast

week 4

Figure 4. The Brier skill scores (BSSs) of the probabilistic heat wave day forecasts, p, during all summers 2000-2019 (first column), in
hindcasts excluding the summer with the longest period of heat wave days (middle column), and in hindcasts excluding the summer of 2010
(last column). The statistical occurrence p = 0.1 for heat wave days was used as the reference forecasts. The dotted areas show where the
BSS is greater than zero with the false discovery rate no more than 10 %.

4 (Fig. 5d) shows relatively poor skill. Further, in Fig. 5, on
occasions, the forecast probability for heat wave days was
low (p < 0.33), heat wave days occurred in 2 % (lead time 1
week), 7 % (lead time 2 weeks), 10 % (lead time 3 weeks),
or 11 % (lead time 4 weeks) of cases. Moreover, on occa-
sions the forecast probability for heat wave days was inter-
mediate (0.33 < p <0.66), heat wave days occurred in 45 %
(lead time 1 week), 39 % (lead time 2 weeks), 30 % (lead
time 4 weeks), or 28 % (lead time 4 weeks) of cases. On oc-
casions when the forecast probability for the heat wave days
was high (p > 0.66), heat wave days occurred in 86 % (lead
time 1 week), 68 % (lead time 2 weeks), 67 % (lead time 4
weeks), or 38 % (lead time 4 weeks) of cases. Hence, higher
probabilities (p > 0.66) show that a heat wave event is more
likely, but for forecast weeks 3 and 4, the forecasting signal
is not very strong due to the relatively low proportion of n
(amount of data) in group p > 0.66. Additionally, p < 0.33
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provides a good indication that a heat wave is unlikely. Based
on the data, the lower the p (below 0.33), the less likely a
heat wave is to occur, as, e.g., on occasions when p < 0.1
(no figure), heat wave days occurred only in 1 % (lead time 1
week), 4 % (lead time 2 weeks), 6 % (lead time 3 weeks), or
8 % (lead time 4 weeks) of cases.

It should be noted that Fig. 5 also shows how often fore-
casts were followed by a heat wave or near-heat wave con-
ditions (e.g., temperatures exceeding the 85th percentile) in
the ERAS dataset. For instance, in situations where p > 0.66,
temperatures surpassing the 85th percentile (rather than the
90th percentile) occurred even in 95 % (lead time 1 week),
78 % (lead time 2 weeks), 74 % (lead time 3 weeks), or 44 %
(lead time 4 weeks) of cases.
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Figure 5. Boxplots of the ERAS 5d moving average temperature over Europe in each grid point across different levels of p (the forecast
probability of a heat wave day) with lead times of (a) 1 week, (b) 2 weeks, (¢) 3 weeks, and (d) 4 weeks. The horizontal line dividing each
box into two parts shows the median of the data, the ends of the box show the lower and upper quartiles, and the whiskers indicate the 5th and
95th percentiles of the ERAS data in each group. The width of each box and the n written above each box indicate the number of observations
in each group. The gray horizontal line indicates the 90th percentile, i.e., the threshold of a heat wave day, and the percentiles above (and
below) the gray line depict the fraction of observed heat wave days (and non-heat-wave days) after the different levels of forecast probability.

3.4 Predicting the life cycle of a heat wave

Next, we shall evaluate the capacity of the probabilistic heat
wave day forecasts (p) to predict the life cycle of heat waves,
taking into account the forecast initialization (date) relative
to the onset of the heat wave. In Fig. 6, p values are shown for
days categorized according to the corresponding ERAS5 data
as “before the heat wave”, “during the heat wave”, and “af-
ter the heat wave”, across the entire European region at each
land grid point. If there were no heat wave days during the
entire summer at that grid point according to the ERAS data,
the temporal distance to the nearest heat wave day during all
the heatless days of that summer was classified as “over 21d
before the heat wave”. Dashed green boxes delineate fore-
casts where, at the time of issuance, a heat wave in that grid
point was about to begin within a week. Solid green boxes
indicate forecasts where, at the time of issuance, a heat wave
was ongoing in that grid point. If the forecasts were perfectly
aligned with reality, p should be zero in the categories “be-
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fore the heat wave” and “after the heat wave”, and in the
category “during the heat wave”, p should be 1 (i.e., 100 %).

In heat wave day forecasts both 1 week in advance
(Fig. 6a) and 2 weeks in advance (Fig. 6b), the forecasts
show higher p for days within the heat wave than outside, es-
pecially for the forecasts in the green boxes, indicating that
the heat wave was just starting or already underway when
these forecasts were issued. Additionally, there is some over-
estimation, particularly 1-2 d before or after the heat waves,
indicating slight inaccuracy in forecasting the exact day of
the start and end of the heat wave. For heat wave days, fore-
casts are made 3 weeks in advance (Fig. 6¢), higher p for
days within the heat wave remains more apparent than for
days outside the heat wave. Especially for the third, fourth,
and fifth weeks of heat wave days, higher p values are evi-
dent compared to non-heat-wave days. These forecasts are in
the green box, indicating that the heat wave was just starting
or already underway when the forecast was issued. In heat
wave day forecasts 4 weeks in advance (Fig. 6d), there are
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only slightly higher p values during the heat wave than be-
fore and after. Particularly, a small portion of the data where
the fifth week of the heat wave (days 29 to 35) is in progress
shows higher p. These forecasts are in the green box, indi-
cating an ongoing heat wave when the forecast was issued.

We also plotted the heat wave life cycle figure without the
year 2010, here shown as Fig. S1 in the Supplement. Leav-
ing out the year 2010 removes most of the very longest heat
waves, i.e., with lengths above 28 d. However, in the same
way as when including the year 2010 (Fig. 6), in the fore-
cast weeks 1-3, there is still a signal of enhanced accuracy in
forecasting several-week-long heat waves at the time that the
heat wave had initiated prior to the forecast issuance. Thus,
the differences remain negligible.

4 Discussion

4.1 Skill of the verified probabilistic heat wave
forecasts

We examined the skill of hindcasts of the ECMWF in fore-
casting the probability of heat wave days over Europe 1 to 4
weeks ahead. The assessed hindcasts demonstrated varying
levels of accuracy across different regions, and decreasing
levels with increasing forecasting lead times, which is in line
with many earlier studies, e.g., Wulff and Domeisen (2019),
and Pyrina and Domeisen (2023). This outcome could be
seen as expected, as we employed the same forecasting
model and verification region as in these previous works.
However, our method for determining the probability of heat
wave days was novel, providing a fresh perspective that sets
our study apart from earlier research using the same model
and verification region.

We investigated the impact of the longest heat waves on
the forecast skill (BSS) in two ways: (i) by excluding the
summer with the longest heat wave observed at each grid
point and (ii) by excluding the summer of 2010, which saw
a prolonged and widespread heat wave in Europe. We found
that the skill in forecasting heat waves decreased when ex-
cluding the longest period of heat wave days, whether it was
the 2010 heat wave or a heat wave of some other year.

Figures 6 and S1 present a novel way to evaluate the ability
of probabilistic heat wave day forecasts to capture the life cy-
cle of heat waves, taking into account the timing of forecast
issuance relative to heat wave onset. This approach could be
developed further by adding information about the spread of
the ensemble to the figure, and it could be applied to the veri-
fication of other extended-range models’ heat wave forecasts
in future studies.

4.2 Potential added value of probabilistic heat wave
forecasts

Currently, most heat warning systems in Europe have lead
times of only a few days (Casanueva et al., 2019). However,
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in this study, the probabilistic heat wave day forecasts seem
to have high potential in warning of heat risk in 1-2 weeks in
advance, as for lead times for 1-2 weeks, there is a signal that
lower probability (probabilities below 0.33) forecasts could
be valuable for indicating periods when it is unlikely that a
heat wave will occur, and higher-probability (probabilities
above 0.66) forecasts could be valuable for indicating peri-
ods when a heat wave could occur. Further, the persistence
of heat waves seems to have a higher level of predictability
up to 3 weeks, offering early warning services an indication
of the potential duration of an ongoing heat wave.

To the knowledge of the authors, there has been no pub-
lished research on how warning lead time contributes to the
effectiveness of heat-health warning systems. However, con-
sidering the short lag between heat exposure and worsening
of health conditions, extending warning lead times from the
current level of a few days is acknowledged to be valuable to
public health, as prevention and emergency measures need to
be in place and operational at the onset of a hazardous heat
event (WHO, 2021). Organization of the measures, such as
communication campaigns, establishing cooling centers, ar-
rangements to protect vulnerable population groups, and en-
suring adequate supply and distribution of workforce, equip-
ment, and other resources, requires time and would benefit
from receiving early warnings 1-2 weeks ahead, particularly
because heat waves often occur at times when organizations
and services are already short-staffed due to the summer hol-
iday season. Longer lead time is especially important for ex-
ceptionally severe and prolonged hot periods, which chal-
lenge the functioning of society on a wider scale and may
require large-scale interagency and even transboundary re-
sponse. The likelihood of these types of events can be ex-
pected to increase in Europe as climate change progresses.

5 Conclusions

Our examination of ECMWF hindcasts for predicting heat
wave days (periods when the local 5 d mean temperature ex-
ceeded the 90th percentile of the local summertime 5 d mean
temperature distribution) of summers 2000-2019 across Eu-
rope, 1 to 4 weeks in advance, showed varying accuracy lev-
els across forecast lead times and regions, aligning with pre-
vious research. The examined ECMWF hindcasts showed,

— in the first forecast week (1 to 7d in advance), strong
forecast skill in predicting heat wave days;

— in the second forecast week (8 to 14d in advance),
statistically significantly better skill than the reference
forecast in most grid points over Europe;

— in forecast weeks 3—4 (15 to 32d in advance), statisti-
cally significantly better skill than the reference forecast
only in some grid points across southeastern Europe;
and
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Figure 6. This figure shows the forecast probabilities of heat wave days for days that (in ERAS) were 21 to 1 d before the heat wave, the 1st
to 35th heat wave day during the heat wave, and 1 to 21 d after the heat wave, with lead times of (a) 1 week, (b) 2 weeks, (c¢) 3 weeks, and
(d) 4 weeks. Dashed green boxes indicate forecasts where, at the time of issuance, a heat wave in that grid point was about to begin within a
week. Solid green boxes indicate forecasts where, at the time of issuance, a heat wave was already ongoing in that grid point. In the boxplots,
a horizontal line dividing the box into two parts shows the median of the data; the ends of the box show the lower and upper quartiles, and
the whiskers indicate the 5th and 95th percentiles of the data in each group. The boxplots include all forecast data across the European region
at each land grid point. The width of each box and the n written above each box indicate the number of observations in each group.

— in forecast weeks 1-3, enhanced accuracy in forecasting
several-week-long heat waves at the time that the heat
wave had already started.

These findings underscore the potential of ECMWEF’s heat
wave day forecasts to serve as early warnings for impending
heat risks 1-2 weeks in advance. Notably, the higher-than-
average predictability for intense and prolonged heat waves
(at the time they have already started) offers the potential
for early warnings even at a 3 week lead time. However, it
is crucial to highlight the known uncertainty in the 3 week
lead time forecast. Building on these insights, future research
could investigate at which stage of the heat wave develop-
ment extended-range weather forecast models in general, not
only the specific model system considered here, begin to pre-
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dict heat wave occurrence, potentially enhancing early warn-
ing capabilities.

Data availability. The extended-range forecast (ERF) data
of the ECMWF’s IFS cycles 46rl and 47r1 were retrieved
from the ECMWF’s MARS archive at https://apps.ecmwf.int/
mars-catalogue/ (MARS, 2024). The ERAS reanalysis data were
retrieved from the Copernicus Climate Change Service Climate

Data Store (CDS) at https://doi.org/10.24381/cds.e2161bac
(Mufioz ~ Sabater, 2019). The data for Figs. 1-6
and S1 are available at https://doi.org/10.57707/FMI-

B2SHARE.372EC54BE8014B399AF3900DD253925A
rhonen, 2024).
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