Articles | Volume 24, issue 12
https://doi.org/10.5194/nhess-24-4293-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-4293-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using a convection-permitting climate model to assess wine grape productivity: two case studies in Italy
Laura T. Massano
CORRESPONDING AUTHOR
Scuola Universitaria Superiore IUSS, 2700 Pavia, Italy
Giorgia Fosser
Scuola Universitaria Superiore IUSS, 2700 Pavia, Italy
Marco Gaetani
Scuola Universitaria Superiore IUSS, 2700 Pavia, Italy
Cécile Caillaud
Centre National de Recherches Météorologiques CNRM, Groupe de Météorologie de Grande Échelle et Climat, 31057 Toulouse, France
Related authors
Chiara Musacchio, Graziano Coppa, Gaber Begeš, Christina Hofstätter-Mohler, Laura Massano, Guido Nigrelli, Francesca Sanna, and Andrea Merlone
Atmos. Meas. Tech., 14, 6195–6212, https://doi.org/10.5194/amt-14-6195-2021, https://doi.org/10.5194/amt-14-6195-2021, 2021
Short summary
Short summary
In the context of the overhaul of the WMO/CIMO guide (no. 8) on instruments and methods of observation, we performed an experiment to quantify uncertainties in air temperature measurements due to reflected solar radiation from a snow-covered surface. Coupled sensors with different radiation shields were put under different ground conditions (grass vs. snow) for a whole winter. Results show that different shields may reduce the influence of backward radiation, which can produce errors up to 3 °C.
Mohamed Hamitouche, Giorgia Fosser, Arezoo RafieeiNasab, and Alessandro Anav
EGUsphere, https://doi.org/10.5194/egusphere-2025-2752, https://doi.org/10.5194/egusphere-2025-2752, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Predicting how much water flows from rivers into the Mediterranean is challenging due to climate change and human impacts. We compared two computer models—CaMa-Flood and WRF-Hydro—to see which performs better. We found that WRF-Hydro, especially after calibration, more accurately simulates river discharge and seasonal flow changes. These results can help improve future water forecasts and support planning for floods and droughts in the region.
Nathalia Correa-Sánchez, Xiaoli Guo Larsén, Giorgia Fosser, Eleonora Dallan, Marco Borga, and Francesco Marra
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-111, https://doi.org/10.5194/wes-2025-111, 2025
Preprint under review for WES
Short summary
Short summary
We examined the power spectra of wind speed in three convection-permitting models in central Europe and found these models have a better representation of wind variability characteristics than standard wind datasets like the New European Wind Atlas, due to different simulation approaches, providing more reliable extreme wind predictions.
Marco Chericoni, Giorgia Fosser, Emmanouil Flaounas, Gianmaria Sannino, and Alessandro Anav
Weather Clim. Dynam., 6, 627–643, https://doi.org/10.5194/wcd-6-627-2025, https://doi.org/10.5194/wcd-6-627-2025, 2025
Short summary
Short summary
This study explores how sea surface energy influences both the atmosphere and ocean at various vertical levels during extreme Mediterranean cyclones. It focuses on cyclones' precipitation and wind speed response, as well as on ocean temperature variation. The findings highlight the regional coupled model's ability to coherently represent the thermodynamic and dynamic processes of the cyclones across both the atmosphere and the ocean.
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh
EGUsphere, https://doi.org/10.5194/egusphere-2025-446, https://doi.org/10.5194/egusphere-2025-446, 2025
Short summary
Short summary
The elemental composition and solubility of several metals, including iron, at a coastal site in Namibia in August–September 2017, indicate that natural and anthropogenic dust had different solubility depending on mineralogy but mostly to the processing by fluoride ions from marine emissions, pointing out to the complexity of atmospheric/oceanic interactions in this region of the world influenced by the Benguela current and significant aerosol load.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci., 29, 1221–1240, https://doi.org/10.5194/hess-29-1221-2025, https://doi.org/10.5194/hess-29-1221-2025, 2025
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-Multi-parameterisation (Noah-MP) land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modelling to better prepare for climate-related challenges.
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024, https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary
Short summary
Modeling snow cover in climate and weather forecasting models is a challenge even for high-resolution models. Recent simulations with CNRM-AROME have shown difficulties when representing snow in the European Alps. Using remote sensing data and in situ observations, we evaluate modifications of the land surface configuration in order to improve it. We propose a new surface configuration, enabling a more realistic simulation of snow cover, relevant for climate and weather forecasting applications.
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024, https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Short summary
Palaeoclimate reconstructions suggest that, around 6000 years ago, a greening of the Sahara took place, accompanied by climate changes in the Northern Hemisphere at middle to high latitudes. In this study, a climate model is used to investigate how this drastic environmental change in the Sahara impacted remote regions. Specifically, climate simulations reveal significant modifications in atmospheric circulation over the North Atlantic, affecting North American and European climates.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521, https://doi.org/10.5194/acp-23-15507-2023, https://doi.org/10.5194/acp-23-15507-2023, 2023
Short summary
Short summary
Using a numerical atmospheric model, we found that cooling sea surface temperatures along the southern coast of West Africa in July cause the “little dry season”. This effect reduces humidity and pollutant transport inland, potentially enhancing West Africa's synoptic and seasonal forecasting.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Cyrille Flamant, Marco Gaetani, Jean-Pierre Chaboureau, Patrick Chazette, Juan Cuesta, Stuart John Piketh, and Paola Formenti
Atmos. Chem. Phys., 22, 5701–5724, https://doi.org/10.5194/acp-22-5701-2022, https://doi.org/10.5194/acp-22-5701-2022, 2022
Short summary
Short summary
Rivers of smoke extend from tropical southern Africa towards the Indian Ocean during the winter fire season, controlled by the interaction of tropical easterly waves, and westerly waves at mid latitudes. During the AEROCLO-sA field campaign in 2017, a river of smoke was directly observed over Namibia. In this paper, the evolution and atmospheric drivers of the river of smoke are described, and the role of a mid-latitude cut-off low in lifting the smoke to the upper troposphere is highlighted.
Marco Gaetani, Benjamin Pohl, Maria del Carmen Alvarez Castro, Cyrille Flamant, and Paola Formenti
Atmos. Chem. Phys., 21, 16575–16591, https://doi.org/10.5194/acp-21-16575-2021, https://doi.org/10.5194/acp-21-16575-2021, 2021
Short summary
Short summary
During the dry austral winter, biomass fires in tropical Africa emit large amounts of smoke in the atmosphere, with large impacts on climate and air quality. The study of the relationship between atmospheric circulation and smoke transport shows that midlatitude atmospheric disturbances may deflect the smoke from tropical Africa towards southern Africa. Understanding the distribution of the smoke in the region is crucial for climate modelling and air quality monitoring.
Chiara Musacchio, Graziano Coppa, Gaber Begeš, Christina Hofstätter-Mohler, Laura Massano, Guido Nigrelli, Francesca Sanna, and Andrea Merlone
Atmos. Meas. Tech., 14, 6195–6212, https://doi.org/10.5194/amt-14-6195-2021, https://doi.org/10.5194/amt-14-6195-2021, 2021
Short summary
Short summary
In the context of the overhaul of the WMO/CIMO guide (no. 8) on instruments and methods of observation, we performed an experiment to quantify uncertainties in air temperature measurements due to reflected solar radiation from a snow-covered surface. Coupled sensors with different radiation shields were put under different ground conditions (grass vs. snow) for a whole winter. Results show that different shields may reduce the influence of backward radiation, which can produce errors up to 3 °C.
Aurélien Chauvigné, Fabien Waquet, Frédérique Auriol, Luc Blarel, Cyril Delegove, Oleg Dubovik, Cyrille Flamant, Marco Gaetani, Philippe Goloub, Rodrigue Loisil, Marc Mallet, Jean-Marc Nicolas, Frédéric Parol, Fanny Peers, Benjamin Torres, and Paola Formenti
Atmos. Chem. Phys., 21, 8233–8253, https://doi.org/10.5194/acp-21-8233-2021, https://doi.org/10.5194/acp-21-8233-2021, 2021
Short summary
Short summary
This work presents aerosol above-cloud properties close to the Namibian coast from a combination of airborne passive remote sensing. The complete analysis of aerosol and cloud optical properties and their microphysical and radiative properties allows us to better identify the impacts of biomass burning emissions. This work also gives a complete overview of the key parameters for constraining climate models in case aerosol and cloud coexist in the troposphere.
Cited articles
Adão, F., Campos, J. C., Santos, J. A., Malheiro, A. C., and Fraga, H.: Relocation of bioclimatic suitability of Portuguese grapevine varieties under climate change scenarios, Front. Plant Sci., 14, https://doi.org/10.3389/fpls.2023.974020, 2023.
Agnoli, L., Charters, S., Marks, D., and Tavilla, V.: Old world assessment of new world provenance cues: An Italian perspective, Int. J. Market Res., 65, 708–725, https://doi.org/10.1177/14707853231202759, 2023.
Agyeman, R. Y. K., Huo, F., Li, Z., Li, Y., Elshamy, M. E., and Hwang, Y.: Impact of climate change under the RCP8.5 emission scenario on multivariable agroclimatic indices in Western Canada from convection-permitting climate simulation, Anthropocene, 44, 100408, https://doi.org/10.1016/j.ancene.2023.100408, 2023.
Amerine, M. A. and Winkler, A. J.: Composition and quality of musts and wines of California grapes, J. Agricult. Sci., 15, 493–673, 1944.
Anderson, J. D., Jones, G. V., Tait, A., Hall, A., and Trought, M. C. T.: Analysis of viticulture region climate structure and suitability in New Zealand, OENO One, 46, 149, https://doi.org/10.20870/oeno-one.2012.46.3.1515, 2012.
Aswad, F., Yousif, A., and Ibrahim, S.: Trend Analysis Using Mann-kendall And Sen's Slope Estimator Test for Annual And Monthly Rainfall for Sinjar District, Iraq, J. Univers. Duhok, 23, 501–508, https://doi.org/10.26682/csjuod.2020.23.2.41, 2020.
Badr, G., Hoogenboom, G., Abouali, M., Moyer, M., and Keller, M.: Analysis of several bioclimatic indices for viticultural zoning in the Pacific Northwest, Clim. Res., 76, 203–223, https://doi.org/10.3354/cr01532, 2018.
Bagagiolo, G., Rabino, D., Biddoccu, M., Nigrelli, G., Berro, D. C., Mercalli, L., Spanna, F., Capello, G., and Cavallo, E.: Effects of inter-annual climate variability on grape harvest timing in rainfed hilly vineyards of piedmont (NW Italy), Ital. J. Agrometeorol., 2021, 37–49, https://doi.org/10.36253/ijam-1083, 2021.
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011.
Bamba, A., Kouadio, K., Toure, D. E., Jackson, L., Marsham, J., Roberts, A., and Yoshioka, M.: Simulating the impact of varying vegetation on West African monsoon surface fluxes using a regional convection-permitting model, Plant-Environ. Interact., 4, 134–145, https://doi.org/10.1002/pei3.10107, 2023.
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D., Berthou, S., Brisson, E., Cardoso, R. M., Chan, S. C., Christensen, O. B., Fernández, J., Fita, L., Frisius, T., Gašparac, G., Giorgi, F., Goergen, K., Haugen, J. E., Hodnebrog, Ø., Kartsios, S., Katragkou, E., Kendon, E. J., Keuler, K., Lavin-Gullon, A., Lenderink, G., Leutwyler, D., Lorenz, T., Maraun, D., Mercogliano, P., Milovac, J., Panitz, H. J., Raffa, M., Remedio, A. R., Schär, C., Soares, P. M. M., Srnec, L., Steensen, B. M., Stocchi, P., Tölle, M. H., Truhetz, H., Vergara-Temprado, J., de Vries, H., Warrach-Sagi, K., Wulfmeyer, V., and Zander, M. J.: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation, Clim. Dynam., 57, 275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021.
Berg, P., Wagner, S., Kunstmann, H., and Schädler, G.: High resolution regional climate model simulations for Germany: part I – validation, Clim. Dynam., 40, 401–414, https://doi.org/10.1007/s00382-012-1508-8, 2013.
Bernetti, I., Menghini, S., Marinelli, N., Sacchelli, S., and Sottini, V. A.: Assessment of climate change impact on viticulture: Economic evaluations and adaptation strategies analysis for the Tuscan wine sector, Wine Econ. Policy, 1, 73–86, https://doi.org/10.1016/j.wep.2012.11.002, 2012.
Berthou, S., Kendon, E. J., Rowell, D. P., Roberts, M. J., Tucker, S., and Stratton, R. A.: Larger Future Intensification of Rainfall in the West African Sahel in a Convection-Permitting Model, Geophys. Res. Lett., 46, 13299–13307, https://doi.org/10.1029/2019GL083544, 2019.
Blanco-Ward, D., García Queijeiro, J. M., and Jones, G. V.: Spatial climate variability and viticulture in the Miño River Valley of Spain, Vitis, 46, 63–70, 2007.
Brisson, E., Van Weverberg, K., Demuzere, M., Devis, A., Saeed, S., Stengel, M., and van Lipzig, N. P. M.: How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics?, Clim. Dynam., 47, 3043–3061, https://doi.org/10.1007/s00382-016-3012-z, 2016.
Cabré, F. and Nuñez, M.: Impacts of climate change on viticulture in Argentina, Reg. Environ. Change, 20, 12, https://doi.org/10.1007/s10113-020-01607-8, 2020.
Caillaud, C., Somot, S., Alias, A., Bernard-Bouissières, I., Fumière, Q., Laurantin, O., Seity, Y., and Ducrocq, V.: Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model, Clim. Dynam., 56, 1717–1752, https://doi.org/10.1007/S00382-020-05558-Y, 2021.
Cerenzia, I. M. L., Giordani, A., Paccagnella, T., and Montani, A.: Towards a convection-permitting regional reanalysis over the Italian domain, Meteorol. Appl., 29, e2092, https://doi.org/10.1002/met.2092, 2022.
Chapman, S., Birch, C. E., Pope, E., Sallu, S., Bradshaw, C., Davie, J., and Marsham, J. H.: Impact of climate change on crop suitability in sub-Saharan Africa in parameterized and convection-permitting regional climate models, Environ. Res. Lett., 15, 094086, https://doi.org/10.1088/1748-9326/ab9daf, 2020.
Chapman, S., Bacon, J., Birch, C. E., Pope, E., Marsham, J. H., Msemo, H., Nkonde, E., Sinachikupo, K., and Vanya, C.: Climate Change Impacts on Extreme Rainfall in Eastern Africa in a Convection-Permitting Climate Model, J. Climate, 36, 93–109, https://doi.org/10.1175/JCLI-D-21-0851.1, 2023.
Chou, C., Marcos-Matamoros, R., Garcia, L. P., Pérez-Zanón, N., Teixeira, M., Silva, S., Fontes, N., Graça, A., Dell'Aquila, A., Calmanti, S., and González-Reviriego, N.: Advanced seasonal predictions for vine management based on bioclimatic indicators tailored to the wine sector, Clim. Serv., 30, 100343, https://doi.org/10.1016/j.cliser.2023.100343, 2023.
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On the need for bias correction of regional climate change projections of temperature and precipitation, Geophys. Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694, 2008.
Coppola, E., Sobolowski, S., Pichelli, E., Raffaele, F., Ahrens, B., Anders, I., Ban, N., Bastin, S., Belda, M., Belusic, D., Caldas-Alvarez, A., Cardoso, R. M., Davolio, S., Dobler, A., Fernandez, J., Fita, L., Fumiere, Q., Giorgi, F., Goergen, K., Güttler, I., Halenka, T., Heinzeller, D., Hodnebrog, Jacob, D., Kartsios, S., Katragkou, E., Kendon, E., Khodayar, S., Kunstmann, H., Knist, S., Lavín-Gullón, A., Lind, P., Lorenz, T., Maraun, D., Marelle, L., van Meijgaard, E., Milovac, J., Myhre, G., Panitz, H. J., Piazza, M., Raffa, M., Raub, T., Rockel, B., Schär, C., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Stocchi, P., Tölle, M. H., Truhetz, H., Vautard, R., de Vries, H., and Warrach-Sagi, K.: A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean, Clim. Dynam., 55, 3–34, https://doi.org/10.1007/s00382-018-4521-8, 2020.
Costantini, E. A. C., Fantappié, M., and L'Abate, G.: Climate and Pedoclimate of Italy, Springer, 19–37, https://doi.org/10.1007/978-94-007-5642-7_2, 2013.
Dalla Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G., and Orlandini, S.: Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area, J. Agricult. Sci., 148, 657–666, https://doi.org/10.1017/S0021859610000432, 2010.
Daniel, M., Lemonsu, A., Déqué, M., Somot, S., Alias, A., and Masson, V.: Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions, Clim. Dynam., 52, 2745–2764, https://doi.org/10.1007/s00382-018-4289-x, 2019.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L.,Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dell'Aquila, A., Graça, A., Teixeira, M., Fontes, N., Gonzalez-Reviriego, N., Marcos-Matamoros, R., Chou, C., Terrado, M., Giannakopoulos, C., Varotsos, K. V., Caboni, F., Locci, R., Nanu, M., Porru, S., Argiolas, G., Bruno Soares, M., and Sanderson, M.: Monitoring climate related risk and opportunities for the wine sector: The MED-GOLD pilot service, Clim. Serv., 30, 100346, https://doi.org/10.1016/j.cliser.2023.100346, 2023.
Dodge, Y.: The Concise Encyclopedia of Statistics, Springer, New York, NY, https://doi.org/10.1007/978-0-387-32833-1, 2008.
Düring, H.: Potential frost resistance of grape: Kinetics of temperature-induced hardening ofRiesling and Silvaner buds, Vitis, 36, 213–214, 1997.
Eccel, E., Zollo, A. L., Mercogliano, P., and Zorer, R.: Simulations of quantitative shift in bio-climatic indices in the viticultural areas of Trentino (Italian Alps) by an open source R package, Comput. Electron. Agric., 127, 92–100, https://doi.org/10.1016/j.compag.2016.05.019, 2016.
Evers, D., Molitor, D., Rothmeier, M., Behr, M., Fischer, S., and Hoffmann, L.: Efficiency of different strategies for the control of grey mold on grapes including gibberellic acid (Gibb3), leaf removal and/or botrycide treatments, Journal International des Sciences de la Vigne et du Vin, 44, 151–159, https://doi.org/10.20870/OENO-ONE.2010.44.3.1469, 2010.
Fosser, G., Kendon, E. J., Stephenson, D., and Tucker, S.: Convection-Permitting Models Offer Promise of More Certain Extreme Rainfall Projections, Geophys. Res. Lett., 47, e2020GL088151, https://doi.org/10.1029/2020GL088151, 2020.
Fosser, G., Gaetani, M., Kendon, E. J. M., Adinolfi, M., Ban, N., Belušić, D., Caillaud, C., Cardoso, R. M., Coppola, E., Demory, M.-E., De Vries, H., Dobler, A., Feldmann, H., Görgen, K., Lenderink, G., Pichelli, E., Schär, C., Soares, P. M. M., Somot, S., and Tölle, M. H.: Convection-permitting climate models offer more certain extreme rainfall projections, npj Clim. Atmos. Sci., 7, 51, https://doi.org/10.21203/rs.3.rs-3365617/v1, 2024.
Fraga, H., García de Cortázar Atauri, I., Malheiro, A. C., and Santos, J. A.: Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe, Global Chang Biol., 22, 3774–3788, https://doi.org/10.1111/gcb.13382, 2016.
Fumière, Q., Déqué, M., Nuissier, O., Somot, S., Alias, A., Caillaud, C., Laurantin, O., and Seity, Y.: Extreme rainfall in Mediterranean France during the fall: added value of the CNRM-AROME Convection-Permitting Regional Climate Model, Clim. Dynam., 55, 77–91, https://doi.org/10.1007/s00382-019-04898-8, 2020.
Gaitán, E. and Pino-Otín, M. R.: Using bioclimatic indicators to assess climate change impacts on the Spanish wine sector, J. Atmos. Res., 286, 106660, https://doi.org/10.1016/j.atmosres.2023.106660, 2023.
Gentilucci, M.: Temperature variations in Central Italy (Marche region) and effects on wine grape production, Theor. Appl. Climatol., 140, 303–312, 2020.
Giordani, A., Cerenzia, I. M. L., Paccagnella, T., and Di Sabatino, S.: SPHERA, a new convection-permitting regional reanalysis over Italy: Improving the description of heavy rainfall, Q. J. Roy. Meteorol. Soc., 149, 781–808, https://doi.org/10.1002/qj.4428, 2023.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, 1–4, https://doi.org/10.1029/2006GL025734, 2006.
Gladstones, J. S.: Viticulture and environment: a study of the effects of environment on grapegrowing and wine qualities, with emphasis on present and future areas for growing winegrapes in Australia, Winetitles, 286, ISBN 1875130128, 1992.
Gori, C. and Alampi Sottini, V.: The role of the Consortia in the Italian wine production system and the impact of EU and national legislation, Wine Econ. Policy, 3, 62–67, https://doi.org/10.1016/j.wep.2014.05.001, 2014.
Hanif, M. F., Mustafa, M. R. U., Liaqat, M. U., Hashim, A. M., and Yusof, K. W.: Evaluation of Long-Term Trends of Rainfall in Perak, Malaysia, Climate, 10, 44, https://doi.org/10.3390/cli10030044, 2022.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Huglin, M: Nouveau mode d'évaluation des possibilités héliothermiques d'un milieu viticole, Comptes Rendus de l'Académie d'Agriculture de France, 64, 1117–1126, 1978.
Hunter, J. J. and Bonnardot, V.: Suitability of some climatic parameters for grapevine cultivation in South Africa, with focus on key physiological processes, S. Afr. J. Enol. Viticult., 32, 137–154, https://doi.org/10.21548/32-1-1374, 2011.
Jaeger, E. B. and Seneviratne, S. I.: Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model, Clim. Dynam., 36, 1919–1939, https://doi.org/10.1007/s00382-010-0780-8, 2011.
James, G., Witten, D., Hastie, T., and Tibshirani, R.: An Introduction to Statistical Learning: With Applications in R, in: 1st Edn., Springer, https://doi.org/10.1007/978-1-4614-7138-7, 2013.
James, G., Witten, D., Hastie, T., and Tibshirani, R.: An Introduction to Statistical Learning with Applications in R Second Edition, Springer, 197–206, ISBN 1071614177, 2021.
Jones, G. V., White, M. A., Cooper, O. R., and Storchmann, K.: Climate Change and Global Wine Quality, Climatic Change, 73, 319–343, https://doi.org/10.1007/s10584-005-4704-2, 2005.
Kassambara, A.: Machine learning essentials, Practical Guide in R, in: 1st Edn., Create Space Independent Publishing Platform, 77–82, ISBN 1986406857, 2018.
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do convection-permitting regional climate models improve projections of future precipitation change?, B. Am. Meteorol. Soc., 98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017.
Koufos, G., Mavromatis, T., Koundouras, S., Fyllas, N. M., and Jones, G. V.: Viticulture-climate relationships in Greece: the impacts of recent climate trends on harvest date variation, Int. J. Climatol., 34, 1445–1459, https://doi.org/10.1002/joc.3775, 2014.
Kuhn, M. and Johnson, K.: Applied Predictive Modeling, in: 1st Edn., Springer New York, https://doi.org/10.1007/978-1-4614-6849-3, 2013.
Kyselý, J. and Plavcová, E.: A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations, J. Geophys. Res.-Atmos., 115, D23118, https://doi.org/10.1029/2010JD014123, 2010.
Lamichhane, J. R.: Rising risks of late-spring frosts in a changing climate, Nat. Clim. Change, 11, 554–555, https://doi.org/10.1038/s41558-021-01090-x, 2021.
Leoni, B., Spreafico, M., Patelli, M., Soler, V., Garibaldi, L., and Nava, V.: Long-term studies for evaluating the impacts of natural and anthropic stressors on limnological features and the ecosystem quality of Lake Iseo, Adv. Oceanogr. Limnol., 10, 81–93, https://doi.org/10.4081/aiol.2019.8622, 2019.
Le Roy, B., Lemonsu, A., and Schoetter, R.: A statistical–dynamical downscaling methodology for the urban heat island applied to the EURO-CORDEX ensemble, Clim. Dynam., 56, 2487–2508, https://doi.org/10.1007/s00382-020-05600-z, 2021.
Liakopoulou, K. S. and Mavromatis, T.: Evaluation of Gridded Meteorological Data for Crop Sensitivity Assessment to Temperature Changes: An Application with CERES-Wheat in the Mediterranean Basin, Climate, 11, 180, https://doi.org/10.3390/cli11090180, 2023.
Lisek, J.: Winter frost injury of buds on one-year-old grapevine shoots of Vitis vinifera cultivars and interspecific hybrids in Poland, Folia Horticult., 24, 97–103, https://doi.org/10.2478/V10245-012-0010-4, 2012.
Lorenz, P. and Jacob, D.: Validation of temperature trends in the ENSEMBLES regional climate model runs driven by ERA40, Clim. Res., 44, 167–177, https://doi.org/10.3354/CR00973, 2010.
Lucas-Picher, P., Brisson, E., Caillaud, C., Alias, A., Nabat, P., Lemonsu, A., Poncet, N., Cortés Hernandez, V. E., Michau, Y., Doury, A., Monteiro, D., and Somot, S.: Evaluation of the convection-permitting regional climate model CNRM-AROME41t1 over Northwestern Europe, Clim. Dynam., 62, 4587–4615, https://doi.org/10.1007/s00382-022-06637-y, 2024.
Malheiro, A. C., Campos, R., Fraga, H., Eiras-Dias, J., Silvestre, J., and Santos, J. A.: Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal, Journal International des Sciences de la Vigne et du Vin, 47, 287–299, https://doi.org/10.20870/oeno-one.2013.47.4.1558, 2013.
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 13, 245, https://doi.org/10.2307/1907187, 1945.
Marcos-Matamoros, R., González-Reviriego, N., Graça, A., Del Aquilla, A., Ilaria Vigo, S. S., Varotsos, K. V., and Sanderson, M.: Deliverable 3.2: Report on the methodology followed to implement the wine pilot services, Zenodo, https://doi.org/10.5281/zenodo.4543336, 2020.
Massano, L., Fosser, G., Gaetani, M., and Bois, B.: Assessment of climate impact on grape productivity: A new application for bioclimatic indices in Italy, Sci. Total Environ., 905, 167134, https://doi.org/10.1016/j.scitotenv.2023.167134, 2023.
Nabat, P., Somot, S., Cassou, C., Mallet, M., Michou, M., Bouniol, D., Decharme, B., Drugé, T., Roehrig, R., and Saint-Martin, D.: Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region, Atmos. Chem. Phys., 20, 8315–8349, https://doi.org/10.5194/acp-20-8315-2020, 2020.
OIV: OIV Guidelines for studying climate variability on vitiviniculture in the context of climate change and its evelution, Resolution OIV-VITI 517-2015, 1–7, https://www.oiv.int/node/3224 (last access: 25 November 2024), 2015.
OIV: State of the world vitivinicultural sector in 2022, https://www.oiv.int/sites/default/files/documents/OIV_State_of_the_world_Vine_and_Wine_sector_in_2022_2.pdf (last access: 25 November 2024), 2023.
Photiadou, C., Fontes, N., Rocha Graça, A., and van der Schrier, G.: ECA&D and E-OBS: High-resolution datasets for monitoring climate change and effects on viticulture in Europe, BIO Web. Conf., 9, 01002, https://doi.org/10.1051/bioconf/20170901002, 2017.
Pichelli, E., Coppola, E., Sobolowski, S., Ban, N., Giorgi, F., Stocchi, P., Alias, A., Belušić, D., Berthou, S., Caillaud, C., Cardoso, R. M., Chan, S., Christensen, O. B., Dobler, A., de Vries, H., Goergen, K., Kendon, E. J., Keuler, K., Lenderink, G., Lorenz, T., Mishra, A. N., Panitz, H. J., Schär, C., Soares, P. M. M., Truhetz, H., and Vergara-Temprado, J.: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation, Clim. Dynam., 56, 3581–3602, https://doi.org/10.1007/S00382-021-05657-4, 2021.
Piña-Rey, A., González-Fernández, E., Fernández-González, M., Lorenzo, M. N., and Rodríguez-Rajo, F. J.: Climate Change Impacts Assessment on Wine-Growing Bioclimatic Transition Areas, Agriculture, 10, 605, https://doi.org/10.3390/agriculture10120605, 2020.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., Van Lipzig, N. P. M., and Leung, R.: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Priori, S., Pellegrini, S., Perria, R., Puccioni, S., Storchi, P., Valboa, G., and Costantini, E. A. C.: Scale effect of terroir under three contrasting vintages in the Chianti Classico area (Tuscany, Italy), Geoderma, 334, 99–112, https://doi.org/10.1016/j.geoderma.2018.07.048, 2019.
Rafique, R., Ahmad, T., Kalsoom, T., Khan, M. A., and Ahmed, M.: Climatic Challenge for Global Viticulture and Adaptation Strategies, in: Global Agricultural Production: Resilience to Climate Change, Springer International Publishing, 611–634, https://doi.org/10.1007/978-3-031-14973-3_22, 2023.
Retalis, A., Katsanos, D., and Michaelides, S.: Precipitation climatology over the Mediterranean Basin – Validation over Cyprus, Atmos. Res., 169, 449–458, https://doi.org/10.1016/J.ATMOSRES.2015.01.012, 2016.
Roehrdanz, P. R. and Hannah, L.: Climate Change, California Wine, and Wildlife Habitat, J. Wine Econ., 11, 69–87, https://doi.org/10.1017/jwe.2014.31, 2016.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A., Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B., Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J., Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos, W., Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E., Djurdjevic, V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M., Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O., Jordà, G., L'Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G., Lionello, P., Maciàs, D., Nabat, P., Önol, B., Raikovic, B., Ramage, K., Sevault, F., Sannino, G., Struglia, M. V., Sanna, A., Torma, C., and Vervatis, V.: Med-CORDEX Initiative for Mediterranean Climate Studies, B. Am. Meteorol. Soc., 97, 1187–1208, https://doi.org/10.1175/BAMS-D-14-00176.1, 2016.
Sacchelli, S., Fabbrizzi, S., Bertocci, M., Marone, E., Menghini, S., and Bernetti, I.: A mix-method model for adaptation to climate change in the agricultural sector: A case study for Italian wine farms, J. Clean. Prod., 166, 891–900, https://doi.org/10.1016/j.jclepro.2017.08.095, 2017.
Sánchez, Y., Martínez-Graña, A. M., Santos-Francés, F., and Yenes, M.: Index for the calculation of future wine areas according to climate change application to the protected designation of origin “Sierra de Salamanca” (Spain), Ecol. Indic., 107, 105646, https://doi.org/10.1016/j.ecolind.2019.105646, 2019.
Santillán, D., Garrote, L., Iglesias, A., and Sotes, V.: Climate change risks and adaptation: new indicators for Mediterranean viticulture, Mitig. Adapt. Strateg. Glob. Change, 25, 881–899, https://doi.org/10.1007/s11027-019-09899-w, 2020.
Schättler, U., Doms, G., and Schraff, C.: A Description of the Nonhydrostatic Regional COSMO-Model – Part VII: User's Guide., 195 pp., https://www.cosmo-model.org/content/model/cosmo/coreDocumentation/cosmo_userguide_6.00.pdf (last access: 25 November 2024), 2018.
Sgubin, G., Swingedouw, D., Dayon, G., García de Cortázar-Atauri, I., Ollat, N., Pagé, C., and van Leeuwen, C.: The risk of tardive frost damage in French vineyards in a changing climate, Agr. Forest Meteorol., 250–251, 226–242, https://doi.org/10.1016/j.agrformet.2017.12.253, 2018.
Sgubin, G., Swingedouw, D., Mignot, J., Gambetta, G. A., Bois, B., Loukos, H., Noël, T., Pieri, P., García de Cortázar-Atauri, I., Ollat, N., and van Leeuwen, C.: Non-linear loss of suitable wine regions over Europe in response to increasing global warming, Global Change Biol., 29, 808–826, https://doi.org/10.1111/gcb.16493, 2023.
Spielmann, N. and Charters, S.: The dimensions of authenticity in terroir products, Int. J. Wine Business Res., 25, 310–324, https://doi.org/10.1108/IJWBR-01-2013-0004, 2013.
Stauffer, D. R. and Seaman, N. L.: Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model. Part I: Experiments with Synoptic-Scale Data, Mon. Weather Rev., 118, 1250–1277, https://doi.org/10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2, 1990.
Tarolli, P., Wang, W., Pijl, A., Cucchiaro, S., and Straffelini, E.: Heroic viticulture: Environmental and socioeconomic challenges of unique heritage landscapes, iScience, 26, 107125, https://doi.org/10.1016/j.isci.2023.107125, 2023.
Teslić, N.: Climate change vs Wine industry in the Emilia-Romagna: Assessment of the climate change, influence on wine industry and mitigation techniques, University of Bologna, https://doi.org/10.6092/unibo/amsdottorato/8404, 2018.
Tonietto, J. and Carbonneau, A.: A multicriteria climatic classification system for grape-growing regions worldwide, Agr. Forest Meteorol., 124, 81–97, https://doi.org/10.1016/j.agrformet.2003.06.001, 2004.
Tóth, J. P. and Végvári, Z.: Future of winegrape growing regions in Europe, Aust. J. Grape Wine Res., 22, 64–72, https://doi.org/10.1111/ajgw.12168, 2016.
Tradowsky, J. S., Philip, S. Y., Kreienkamp, F., Kew, S. F., Lorenz, P., Arrighi, J., Bettmann, T., Caluwaerts, S., Chan, S. C., De Cruz, L., de Vries, H., Demuth, N., Ferrone, A., Fischer, E. M., Fowler, H. J., Goergen, K., Heinrich, D., Henrichs, Y., Kaspar, F., Lenderink, G., Nilson, E., Otto, F. E. L., Ragone, F., Seneviratne, S. I., Singh, R. K., Skålevåg, A., Termonia, P., Thalheimer, L., van Aalst, M., Van den Bergh, J., Van de Vyver, H., Vannitsem, S., van Oldenborgh, G. J., Van Schaeybroeck, B., Vautard, R., Vonk, D., and Wanders, N.: Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021, Climatic Change, 176, 90, https://doi.org/10.1007/s10584-023-03502-7, 2023.
Tramblay, Y. and Somot, S.: Future evolution of extreme precipitation in the Mediterranean, Climatic Change, 151, 289–302, https://doi.org/10.1007/s10584-018-2300-5, 2018.
Trought, M. C. T., Howell, G. S., and Cherry, N.: Practical Considerations for Reducing Frost Damage in Vineyards, Report to New Zealand Winegrowers 1999, 1–43, https://www.englishwine.com/frost_damage_in_vineyards_trought_and_co_1999.pdf (last access: 25 November 2024), 1999.
Tuel, A. and Eltahir, E. A. B.: Why Is the Mediterranean a Climate Change Hot Spot?, J. Climate, 33, 5829–5843, https://doi.org/10.1175/JCLI-D-19-0910.1, 2020.
Ugaglia, A. A., Cardebat, J.-M., and Corsi, A.: The Palgrave Handbook of Wine Industry Economics, edited by: Alonso Ugaglia, A., Cardebat, J.-M., and Corsi, A., Springer International Publishing, Cham, 47–77, https://doi.org/10.1007/978-3-319-98633-3, 2019.
Van Der Schrier, G., Van Den Besselaar, E. J. M., Klein Tank, A. M. G., and Verver, G.: Monitoring European average temperature based on the E-OBS gridded data set, J. Geophys. Res.-Atmos., 118, 5120–5135, https://doi.org/10.1002/jgrd.50444, 2013.
Wassennan, L. A.: All of Statistics A Concise Course in Statistical Inference, in: 2nd Edn., Springer, New York, 209–226, https://doi.org/10.1007/978-0-387-21736-9, 2004.
Welch, B. L.: The Significance of the Difference Between Two Means when the Population Variances are Unequal, Biometrika, 29, 350–362, https://doi.org/10.2307/2332010, 1938.
Zittis, G., Bruggeman, A., and Lelieveld, J.: Revisiting future extreme precipitation trends in the Mediterranean, Weather Clim. Extrem., 34, 100380, https://doi.org/10.1016/j.wace.2021.100380, 2021.
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based on both temperature and precipitation. These indices are correlated with grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change will affect wine production in the future.
Traditional wine-growing regions are threatened by expected climate change. Climate models and...
Altmetrics
Final-revised paper
Preprint