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Abstract. The article explores the potential use of climate
models to reproduce wine grape productivity at a local
scale in Italy. To this end, both single and multiple re-
gression approaches are used to link productivity data pro-
vided by two Italian wine consortia with bioclimatic indices.
Temperature- and precipitation-based bioclimatic indices are
computed using the observational dataset E-OBS, the high-
resolution climate reanalysis product SPHERA, the regional
climate model CNRM-ALADIN, and the kilometer-scale
convection-permitting climate model CNRM-AROME. The
multiple regression method outperforms the single regression
systematically, enhancing the ability of bioclimatic indices
to explain productivity variability. The results show that pro-
ductivity is strongly tied to temperature-based bioclimatic in-
dices in the area of the Consorzio per la tutela del Francia-
corta in northern Italy, while for the Consorzio del Vino No-
bile di Montepulciano area in central Italy both temperature-
and precipitation-based indices are relevant. Climate models,
providing similar results as E-OBS and SPHERA, appear to
be a useful tool to explain productivity variance. In particu-
lar, the added value of convection-permitting resolution is ev-
ident when precipitation-based indices are considered. This
assessment shows windows of opportunity for using climate
models, especially at a convection-permitting scale, to inves-
tigate future climate change impact on wine production.

1 Introduction

Viticulture is tied to climate, which influences the suitabil-
ity of an area, as well as yield and quality of wine grapes.

The wine industry has a significant socioeconomic influence
and is a key agricultural sector in Italy. In 2022, Italy was the
world’s leading wine producer (49.8 million hectoliters) and
the second-largest wine exporter, with a value of EUR 7.8 bil-
lion (OIV, 2023). Over the coming decades, the wine sector is
expected to be affected by climate change, especially in Italy,
which is part of the Mediterranean climatic hotspot (Giorgi,
2006; Tuel and Eltahir, 2020), where the impact of climate
change is expected to be more severe than the global aver-
age. In this context, many studies have investigated the im-
pact of rising temperatures and changing rainfall patterns on
grape growth (Bagagiolo et al., 2021; Bernetti et al., 2012;
Gentilucci, 2020; Roehrdanz and Hannah, 2016; Sacchelli et
al., 2017; Santillán et al., 2020). Since temperature is the pri-
mary driver for the phenological phases (Fraga et al., 2016),
a warmer climate may lead to a shorter growing cycle and
an earlier onset of phenological phases, which would in-
crease frost-related risk (Lamichhane, 2021; Trought et al.,
1999). In fact, budburst is the most vulnerable phase to frost
in the vine growing cycle, and an earlier budburst in spring
would increase the exposure of the vine to late frost events.
Furthermore, climate conditions typical of traditional wine-
producing regions, such as Douro in Portugal, La Rioja in
Spain, Bordeaux in France, and Tuscany in Italy, are ex-
pected to shift northwards or to higher altitude, and this mod-
ification in viticulture suitability may consequently cause a
decline in production (Adão et al., 2023; Rafique et al., 2023;
Sgubin et al., 2023; Tóth and Végvári, 2016).

A common tool to investigate the impact of climate vari-
ability and change on the wine sector is the use of bioclimatic
indices, defined from climate variables for specific plants
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and crops (Badr et al., 2018; Chou et al., 2023; Gaitán and
Pino-Otín, 2023). A set of bioclimatic indices, based on tem-
perature and heat accumulation (OIV, 2015), was proposed
by the International Organisation of Vine and Wine (OIV),
while precipitation-based indices were computed by Badr
et al. (2018) considering the research of Blanco-Ward et
al. (2007). Bioclimatic indices are commonly used to assess a
region’s suitability for viticulture or zoning purposes, as well
as in relation to phenology, harvest date, and alcohol concen-
tration (Dalla Marta et al., 2010; Koufos et al., 2014; Sánchez
et al., 2019; Teslić, 2018). A novel application linking biocli-
matic indices directly to wine grape productivity data in Italy
was proposed by Massano et al. (2023) at the regional level.

In Italy the vineyards are planted in extremely different
areas, from the coasts to the hills, in some cases also at
considerable altitude (Tarolli et al., 2023). The wine pro-
duction system is complex and fragmented, including both
small farms and large companies. To valorize the designa-
tion of origin and guarantee a defined level of quality (Gori
and Alampi Sottini, 2014; Ugaglia et al., 2019), producers
are organized in wine consortia (Consorzi di Tutela) accord-
ing to the EU and national regulations, i.e., regulation (EU)
no. 1308/2013. To address this fragmentation and account for
the typicity of the wine business (Agnoli et al., 2023; Spiel-
mann and Charters, 2013), yield data from wine consortia
and high-resolution climate data are of prominent importance
for local-scale impact studies and thus for effective adapta-
tion strategies.

In the context of impact studies at a local scale, requir-
ing high-resolution climatic data, the use of kilometer-scale
convection-permitting models (CPMs) is increasing (Bamba
et al., 2023; Le Roy et al., 2021; Tradowsky et al., 2023). Due
to their high spatial resolution (less than 4 km), CPMs can
represent convection explicitly, without using the parameter-
ization of deep convection, and thus reduce the model uncer-
tainty (Fosser et al., 2024). Compared to coarser-resolution
regional climate models (RCMs), CPMs more realistically
represent hourly rainfall intensity, the diurnal cycle of pre-
cipitation, and extremes and are thus considered more reli-
able in terms of climate projections of precipitation (Ban et
al., 2021; Brisson et al., 2016; Coppola et al., 2020; Fosser
et al., 2020; Kendon et al., 2017; Pichelli et al., 2021). The
advantages of CPMs versus RCMs have been also explored
in the assessment of the impact of climate change on agri-
culture and crop production (Agyeman et al., 2023; Berthou
et al., 2019; Chapman et al., 2020, 2023). Nevertheless, no
prior studies have employed CPMs to examine the influence
of climate variability and change on viticulture.

The present study presents a novel approach to estimate
wine grape productivity at the local scale by using a CPM,
showing windows of opportunity for the use of CPMs in
the context of ongoing and future climate change. The im-
pacts of climate variability on wine grape productivity are
investigated by relating temperature- and precipitation-based
bioclimatic indices to wine productivity data provided by

two wine consortia in northern and central Italy. The CPM
performance is validated against climate observations and a
kilometer-scale reanalysis product. Furthermore, the added
value of the higher resolution is assessed by comparing the
CPM to an RCM simulation. Single and multiple regression
approaches are used to determine to what extent bioclimatic
indices can explain changes in wine grape productivity at a
local scale. The multiple regression approach accounts for
the potential interplay between the bioclimatic indices, po-
tentially increasing the portion of total productivity variabil-
ity explained by the individual indices, as found by Massano
et al. (2023).

2 Data and methods

2.1 Wine grape productivity data

Wine grape yield data, as well as the hectares of vines, are
collected from two wine consortia in Italy: the Consorzio per
la tutela del Franciacorta (FRA) and the Consorzio Del Vino
Nobile di Montepulciano (MON). The first one lies in Fran-
ciacorta, a small (200 km2) wine-growing region in Lombar-
dia (LOM), northern Italy, mostly known for sparkling wine
(Fig. 1). The area is characterized by a humid subtropical
climate according to the Koppen classification (Costantini et
al., 2013). The Iseo lake, located at the northern border of this
region, is the sixth-largest lake in Italy and tempers the typi-
cal heat of the plain in summer, while in winter it protects the
vineyards from the freezing air arriving from the north (Leoni
et al., 2019). The consortium was born in 1990 as a result of
the endeavor of local producers that felt the need to preserve
the original production method of Franciacorta wine. Today
the consortium is composed of 200 winemakers and pre-
serves three designations: Sebino IGT (Typical Geographi-
cal Indication), Franciacorta DOCG (Denomination of Con-
trolled and Guaranteed Origin), and Curtefranca DOC (De-
nomination of Controlled Origin), known as Terre di Fran-
ciacorta before 2011 (https://franciacorta.wine/en/, last ac-
cess: 2 March 2024). This analysis focuses on the designa-
tions of Franciacorta DOCG and Curtefranca DOC available
from 1997 to 2019 (23 years), discarding Sebino IGT, for
which data are only available for a limited period.

The Consorzio del Vino Nobile di Montepul-
ciano (MON) (https://www.consorziovinonobile.it/, last
access: 2 March 2024) is located within the Montepulciano
territory in Toscana (TOS) region in the center of Italy
(Fig. 1). The area is characterized by a Mediterranean
climate with a hot and dry summer and mild and rainy
winters (Costantini et al., 2013). The consortium preserves
three designations, namely Vino Nobile di Montepulciano
DOCG, Rosso di Montepulciano DOC, and Vin Santo di
Montepulciano DOC. The study focuses on the first two
designations that have the longest time series covering 31
years between 1989 and 2019.
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Figure 1. Map of Italy highlighting in green the area of the Franciacorta consortium (FRA) in the Lombardia (LOM) region and in red the area
of the Consorzio del Vino Nobile di Montepulciano (MON) in the Toscana (TOS) region (base layer: © OpenStreetMap contributors 2019.
Distributed under the Open Data Commons Open Database License (ODbL) v1.0.).

For each wine designation, the FRA consortium directly
reports the quantity of grapes harvested in quintals (q), while
MON indicates the hectoliters of wine produced (hL) and the
maximum percentage of grape yield convertible into wine
(70 %). For the analysis, the hectoliters are converted into
quintals using the maximum percentage allowed, and then
the productivity (q ha−1) is calculated by dividing the quin-
tals of grapes by the vineyard area.

To assess the consistency of productivity data between lo-
cal and regional scales, the productivity at the local scales
(FRA and MON) is compared with productivity at a regional
scale provided by the Italian National Institute of Statis-
tics (ISTAT). ISTAT provides data of harvested wine grape
(in quintals) and vintage area (in hectares) from 1980 on-
wards. However, the data are not homogenous over time in
terms of spatial aggregation. Wine grape productivity data
are available at the provincial level between 1980 and 1993
and from 2006 to 2019, at the regional level between 1994
and 2000, and at the national scale from 2000 to 2005. Fol-
lowing Massano et al. (2023), the data were aggregated at a
regional level for the Lombardia (LOM) and Toscana (TOS)
regions, where the FRA and MON consortia are respectively
located, for the period 1980–2019, with a 6-year gap be-
tween 2000 and 2005. Considering the overlapping periods
between ISTAT and consortia time series, it is found that the
regional and local productivity data are significantly corre-
lated (p ≤= 0.05) for both FRA and MON (Table A1). In
addition, the application of a Welch’s t test, designed to as-
sess whether two samples are extracted from the same popu-

lation, proves that the productivity distributions of both con-
sortia are consistent with the respective regional productivity
distributions (Table A1 and Fig. A1).

2.2 Climate observations and reanalysis data

The observational dataset used is E-OBS, a gridded daily
dataset covering Europe from January 1950 to the present
day. E-OBS is constructed using data from the meteorologi-
cal stations provided by the European National Meteorolog-
ical and Hydrological Services or other data-holding institu-
tions (Photiadou et al., 2017; Van Der Schrier et al., 2013).
The analysis is based on the latest available version (v28) at
0.1° (∼ 11 km). Although the E-OBS database is frequently
used to validate climate models (Christensen et al., 2008;
Jaeger and Seneviratne, 2011; Lorenz and Jacob, 2010; Re-
talis et al., 2016), some studies have pointed out some limi-
tations in the E-OBS representation of precipitation and tem-
perature, mainly due to the inhomogeneity of the station net-
work used for interpolation (Kyselý and Plavcová, 2010; Li-
akopoulou and Mavromatis, 2023; Van Der Schrier et al.,
2013).

In addition to observations, the analysis uses a high-
resolution convection-permitting reanalysis product, called
SPHERA (High rEsolution ReAnalysis over Italy; Cerenzia
et al., 2022; Giordani et al., 2023), produced by ARPAE-
SIMC (Agency for Environmental Protection of the Emilia
Romagna Region, Italy). Based on the non-hydrostatic
limited-area model COSMO (Baldauf et al., 2011; Schättler
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et al., 2018), SPHERA dynamically downscales the global
reanalysis ERA5 (Hersbach et al., 2020) boundary condi-
tion, updated every hour, in a sequence of 24 h long inte-
grations. Being a reanalysis product, SPHERA assimilates in
situ observations using a continuous nudging approach based
on the Newtonian relaxation principle (Stauffer and Sea-
man, 1990). The quality-checked observational data nudged
in SPHERA are wind speed components, pressure, air hu-
midity, and temperature (excluding 2 m temperature) derived
from the ECMWF catalogue, i.e., SYNOP, SHIP, TEMP, PI-
LOT, and AIREP. More details on the SPHERA configura-
tion can be found in Cerenzia et al. (2022). This new re-
analysis product covers Italy at a horizontal resolution of
2.2 km with a temporal coverage of 26 years (1995–2020).
When validated against independent rain gauge observations,
SPHERA showed an improved representation of the precip-
itation field at both daily and hourly scales compared to its
driver, i.e., ERA5 (Giordani et al., 2023). The performance
of SPHERA demonstrates that it can be a valuable resource
for improving climate monitoring by providing insights into
regional climate change impacts (Giordani et al., 2023). The
SPHERA data, provided at hourly time steps, have been ag-
gregated at the daily timescale for the purpose of this study.

In this study, the E-OBS dataset and SPHERA reanalysis
are both employed as a reference. This strategy enhances the
validation process and evaluates the potential of a reanaly-
sis product to serve as an alternative to observations for the
validation of climate models as well as for viticulture studies.

2.3 Climate model data

The French Centre National de Recherches
Météorologiques (CNRM) provides two climate simu-
lations spanning the period 2000–2018. The first simulation,
covering the Med-CORDEX domain (Ruti et al., 2016) at
12.5 km resolution, is performed with the RCM CNRM-
ALADIN (Nabat et al., 2020), the limited-area version of
ARPEGE-Climate global model, driven every 6 h by the
ERA-Interim (80 km) reanalysis (Dee et al., 2011). The
second one is performed with the CPM CNRM-AROME,
driven by the CNRM-ALADIN simulation every hour, and
covers the pan-Alpine domain defined within the CORDEX
FPS on convection program with a resolution of 2.5 km
(Coppola et al., 2020; Lucas-Picher et al., 2024). In contrast
to any reanalysis dataset (e.g., SPHERA), climate models
do not assimilate observations. This has the disadvantage of
usually leading to larger biases than reanalysis (at least for
variables which are assimilated in the reanalysis), but the
advantage is that they can be used for climate projections.
The main difference between CNRM-ALADIN and CNRM-
AROME resides in the parameterization of deep convection,
which may be a source of errors and uncertainty (e.g., Prein
et al., 2015), active in the former and switched off in the
latter. In addition, CNRM-AROME, being a kilometer-scale
model, allows a more accurate representation of surface

and orographic features. Both models have been extensively
evaluated (e.g., Ban et al., 2021; Coppola et al., 2020;
Daniel et al., 2019; Fumière et al., 2020; Nabat et al., 2020;
Pichelli et al., 2021). In particular, Caillaud et al. (2021)
found that CNRM-AROME, besides an underestimation
of the highest intensities, realistically represents autumn
extreme precipitation at both daily and hourly timescale
in terms of location, intensity, frequency, and interannual
variability, while CNRM-ALADIN fails to do so. Both
CNRM-ALADIN and CNRM-AROME (hereafter simply
called RCM and CPM, respectively ) provide hourly outputs,
which are aggregated at the daily timescale for the purpose
of this study.

2.4 Validation of climate simulations

In this work, temperature and precipitation data from the
observational dataset E-OBS, the climate reanalysis prod-
uct SPHERA, and the climate model simulations, at re-
gional (RCM) and convection-permitting scale (CPM), are
used for the calculation of a set of bioclimatic indices de-
scribed in the next section. The analysis focuses on the 19
years from 2000 to 2018, which is the longest period avail-
able for RCM and CPM simulations that is shared with E-
OBS, SPHERA climate data, and FRA and MON productiv-
ity data. To compare datasets with different horizontal resolu-
tions on equal terms (Berg et al., 2013), observations, reanal-
ysis, and model simulations are conservatively remapped on
a common grid, i.e., the E-OBS regular grid at ∼ 11 km, the
coarsest among all. Tests performed to assess the impact of
upscaling SPHERA and CPM at a coarser resolution showed
no significant changes in the results (not shown).

Then, the climatic variables (i.e., P : precipitation;
TM: mean temperature, TX: max temperature; TN: min tem-
perature) are retained on all available grid cells within the
areas of interest (LOM and TOS). Subsequently, the consor-
tium territory is cropped using the respective shape files of
FRA and MON. Finally, the spatial average is calculated by
weighting the contribution of each grid cell according to the
percentage of the cell falling within the consortium territory.
The shape file of the FRA consortium’s territory is provided
directly by the consortium’s technical office, while the shape
file for MON is created by selecting the municipality listed
in the appellation regulation for the relevant denominations
(i.e., Montepulciano municipality).

The precipitation and temperature time series of the cli-
mate simulations are analyzed against the observational
datasets (i.e., E-OBS and SPHERA) to evaluate the bi-
ases in the climatic conditions in the region of interest
prior to examining the bioclimatic indices. In particular,
the CPM performance is evaluated for the period 2000–
2018 against both SPHERA and E-OBS and compared to
the RCM. In this study, the new SPHERA reanalysis prod-
uct is used as a reference dataset together with the E-OBS
dataset, which is already widely used for model validation
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(Kyselý and Plavcová, 2010). The comparison between cli-
mate model simulations and the reference datasets is carried
out by computing the Spearman correlation, the root mean
square error (RMSE), and normalized root mean square er-
ror (NRMSE) with respect to the range of values, i.e., the
maximum value of the variable considered (ymax) minus the
minimum value (ymin), for the reference datasets (SPHERA
and E-OBS). In particular, the Spearman correlation coeffi-
cient is used to assess the ability of the climate models to
reproduce the climate variability of the reference datasets,
while RMSE and NRMSE provide a measure of the climate
models biases. Moreover, the statistical significance of the
model biases is assessed by applying a Welch’s two-tailed t
test (Welch, 1938) with a 95 % level of confidence.

2.5 Bioclimatic indices

This study considers 10 bioclimatic indices (summarized in
Table 1), computed following the same methodology pre-
viously described for the climate variable. Eight of them,
recommended by the International Organisation of Vine and
Wine (OIV), are based on temperature and heat accumula-
tion, while the remaining two are based on rainfall accumu-
lation.

The temperature-based indicators are the following.

1. The daily mean temperature during the vegetative pe-
riod (TmVeg) is calculated between 1 April and 31 Oc-
tober (Jones et al., 2005). Temperature in spring plays
a key role in determining the timing of phenological
events, as underlined by Malheiro et al. (2013). In gen-
eral, higher TmVeg leads to an anticipation of the phe-
nological phases, while TmVeg values above 24 °C or
below 12 °C are considered unfavorable to wine grow-
ing (Eccel et al., 2016).

2. The heliothermic Huglin index (HI) is calculated by
summing, when positive, the average between the mean
and the maximum temperature in relation to the baseline
temperature of 10 °C, i.e., the physiological threshold
for the start of the vine growth cycle (Huglin, 1978; Tes-
lić, 2018), over the period from 1 April to 30 September
corrected by a coefficient of day duration. The HI index
is tied to vine growing and grape sugar concentration,
with higher HI leading to an increased vine vigor and
higher sugar content in the grapes. According to Toni-
etto and Carbonneau (2004), a climate with a heat in-
dex (HI) of more than 3000 degree days (GDD) is clas-
sified as “very warm”, while fewer than 1200 degree
days is classified as “too cold”. Both of these situations
are associated with plant stress and thus lead to a pro-
duction reduction.

3. Winkler degree days (WI) provide a measure of heat ac-
cumulation during the growing season and are the sum
of daily mean temperatures above 10 °C from 1 April to

31 October (Amerine and Winkler, 1944; Piña-Rey et
al., 2020). Similarly to HI, the WI index is linked to the
rate of growth of the vines and the development of the
fruits, with values between 850 and 2700 degree days
being optimal for wine production (Eccel et al., 2016).

4. Biologically effective degree days (BEDDs) represent
the sum of daily mean temperatures in the range be-
tween 10 and 19 °C from 1 April to 31 October.
The BEDD index uses the same baseline tempera-
ture (10 °C) as WI and HI indices but also takes into
consideration that vine growth is unlikely to occur
above the upper temperature threshold of 19 °C (Ander-
son et al., 2012; Gladstones, 1992). Like the previous
temperature-based indices, values of BEDD that are too
high (above 2000° per day) or too low (below 1000° per
day) can potentially reduce productivity.

5. The cool night index (CNI) is defined as the average of
minimum air temperatures during the month of Septem-
ber. Low minimum temperatures in September increase
the polyphenolics in the grapes and are beneficial for the
overall quality of the harvest (Tonietto and Carbonneau,
2004). Although CNI is more related to grape quality
than quantity, Massano et al. (2023) found that this in-
dex can help explain changes in productivity, especially
when used in combination with other bioclimatic in-
dices.

6. The minimum temperature during the vegetative period
(TnVeg) is the minimum temperature recorded during
the vegetative period (1 April to 31 October). This in-
dex is important to assess whether the vines are exposed
to low temperature or even to spring frosts that pose a
significant risk to viticultural practices and production.
The damage threshold is fixed at −2 °C (Sgubin et al.,
2018).

7. The maximum temperature during the vegetative pe-
riod (TxVeg) is the maximum temperature recorded dur-
ing the vegetative period. This index is useful for as-
sessing the occurrence and the severity of summer hot-
spells that can damage to vineyard, thus reducing the
wine productivity (Cabré and Nuñez, 2020). The heat
stress threshold is set at 35 °C, above which physiolog-
ical damage to the vines is expected (Hunter and Bon-
nardot, 2011).

8. The minimum temperature during the rest pe-
riod (TnRest) is defined as the minimum temper-
ature during the rest period, i.e., 1 November to
31 March. This index is used to determine winter sever-
ity. Grapevines can tolerate temperatures as low as
−25 °C (Düring, 1997; Lisek, 2012), although damage
can already occur at −15 °C (Eccel et al., 2016)

The indices based on precipitation are the following.
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Table 1. Acronyms and formulas of the bioclimatic indices used.

Definition Formula Suitable class range

Temperature-based

Mean temperature during TmVeg= Tmean (1) 13–24 °C
vegetative period (TmVeg) between 1 April and 31 October (Eccel et al., 2016)

Heliothermic Huglin index (HI) HI=K
30 Sep∑
1 Apr

max
[(
(Tmean−10)+(Tmax−10)

2

)
;0
]
(2) 1200–3000 GDD

K = 1.04 length of days coefficient (Tonietto and
(Carbonneau, 2004)

Winkler degree days (WI) WI=
31 Oct∑
1 Apr

max
[(
Tmin+Tmax

2 − 10
)
;0
]
(3) 850–2700 GDD

(Eccel et al., 2016)

Biologically effective degree BEDD=
31 Oct∑
1 Apr

min
{

max
[(
Tmin+Tmax

2 − 10
)
;0
]
;9
}
(4) 1000–2000 GDD

days (BEDD) (Gladstones, 1992)

Cool night index (CNI) CNI= 1
30

30 Sep∑
1 Sep

Tmin (5) 12–18 °C (Tonietto

and Carbonneau,
2004)

Minimum temperature during TnVeg= Tmin between 1 April and 31 Oct (6) Damage threshold
vegetative period (TnVeg) −2 °C (Sgubin et al.,

2018)

Maximum temperature during TxVeg= Tmax between 1 April and 31 October (7) Upper threshold
vegetative period (TxVeg) 35 °C (Hunter and

Bonnardot, 2011)

Minimum temperature during rest TnRest= Tmin between 1 November and 31 March (8) Above −25 °C
period (TnRest) (Düring, 1997;

Lisek, 2012)

Precipitation-based

Growing season precipitation GSP=
30 Sep∑
1 Apr

Prec (9) 200–600 mm

index (GSP) Prec: total precipitation (Badr et al., 2018)

Spring rain index (SprR) SprR=
21 Jun∑
21 Apr

Prec (10) (Dell’Aquila et al., 2023)

1. The growing season precipitation index (GSP) is de-
fined as rainfall accumulated from 1 April to 30 Septem-
ber and is used to assess the water stress for non-
irrigated grapevines (Blanco-Ward et al., 2007; Piña-
Rey et al., 2020), as in Italy where irrigation is only
allowed in extreme cases (e.g., long drought periods).

2. The spring rain index (SprR) measures the amount
of rain accumulated between 21 April and 21 June
(Marcos-Matamoros et al., 2020). This indicator of
spring wetness can be related to production. In fact,
while dry springs can delay vegetation growth, wet ones

can increase plant vigor but also lead to a higher risk of
fungal diseases (Dell’Aquila et al., 2023).

The bioclimatic indices computed using climate simula-
tions (RCM and CPM) are analyzed against the observational
datasets (E-OBS and SPHERA) following the same method-
ology described for the climatic variables (i.e., P : precipita-
tion; TM: mean temperature, TX: max temperature; TN: min
temperature).
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2.6 Trend analysis

A trend analysis for both the climatic variables and the biocli-
matic indices is performed to assess the evolution of the cli-
matic condition in FRA and MON in the period 2000–2018;
the same analysis is also carried out for productivity data.
The presence and the magnitude of trends are respectively
determined using the nonparametric Mann–Kendall test and
the Sen’s slope method, with a significance level of 95 %
(Hanif et al., 2022; Mann, 1945). The Sen’s slope estimator
calculates the rate of change over time of a variable by tak-
ing the median of the slopes of all linear regressions between
points pairs (Aswad et al., 2020). The assessment of possible
trends aims to investigate whether the long-term component
of variability may be dominant over the interannual compo-
nent.

2.7 Single and multiple regression approach

The Spearman correlation coefficient between each biocli-
matic index and the wine grape productivity is calculated for
both consortia areas, and the threshold for statistical signifi-
cance is set to 95 %. This analysis aims at assessing the frac-
tion of wine grape productivity variability explained by the
bioclimatic indices and the ability of climate models to repre-
sent this relationship compared to the observational datasets.

Furthermore, a multiple regression (MR) approach is ap-
plied to determine whether a linear combination of in-
dices can enhance the total productivity variability explained
by the bioclimatic indices (Massano et al., 2023). The
best-subset selection approach, implemented by James et
al. (2013), is used to optimize the prediction of produc-
tivity, as in Massano et al. (2023). This approach seeks
the subset of predictors, i.e., the bioclimatic indices in this
case, that most accurately predicts the predictand, i.e., the
productivity, by examining all feasible predictor combina-
tions and thus selecting the one minimizing the error in the
prediction. This is achieved by utilizing the k-fold cross-
validation method. The k-fold cross-validation method is em-
ployed to identify the optimal model (Kassambara, 2018).
This method performs cross-validation by randomly divid-
ing the data into k subsets of approximately equal size,
with k typically set to 5 or 10 (here k = 5 is used). One of
the folds serves as a test set and the remaining as a train-
ing set. This process is repeated k times, whereby varying
groups of data are utilized as training or testing sets. Sub-
sequently, the mean squared error is computed. The aver-
age of the mean squared errors of all iterations is the model
prediction error (CV – cross-validation error) (James et al.,
2021; Kuhn and Johnson, 2013; Wassennan, 2004). The
performance of the multiple regression model is assessed
by the adjusted R2 coefficient of determination (Adj R2),
while the p value is used to determine statistical signifi-
cance at the 95 % level. The so-optimized MR model (pro-
ductivity= a1 · index1+ a2 · index2+ a3 · index3+ . . . , with

indexn indicating the selected bioclimatic index) is then used
to predict the productivity, and the Pearson correlation be-
tween predicted and observed productivity is calculated. Fol-
lowing Massano et al. (2023), the comparison between the
SR and MR methods is performed in terms of the productiv-
ity variance explained by the prediction, estimated by com-
puting the coefficient of determination, i.e., the square of the
correlation coefficient.

3 Results

3.1 Validation of the climate simulations

Prior to the computation of the bioclimatic indices, the pre-
cipitation and temperature fields in both consortia (FRA and
MON) are analyzed to assess the potential biases, which
could impact the temperature- and precipitation-based bio-
climatic indices. Figure 2 for FRA and Fig. 3 for MON
show the precipitation (P ) and temperature (TM: mean tem-
perature, TX: max temperature, and TN: min temperature)
time series of E-OBS, SPHERA, RCM, and CPM for the
period 2000–2018. In general, both RCM and CPM repro-
duce SPHERA temporal variability well, as also confirmed
by the high and significant correlations for all the climate
variables in both consortia (Table A2). Nevertheless, both
climate models tend to overestimate mean and maximum
temperature while underestimating minimum temperature, as
reflected by the statistical differences in mean values (Ta-
ble A3). Both climate models, especially the RCM, under-
estimate precipitation in FRA, while the CPM tends to over-
estimate it in MON. Precipitation in MON is also slightly
overestimated by the RCM. In FRA, RCM is closer to E-
OBS mean values than CPM (Table A3). However, in MON,
E-OBS minimum temperature time series shows a strong de-
crease of almost 2 °C between 2015 and 2018 (Fig. 3), which
is not observed in any models or SPHERA. Further inves-
tigations revealed that this temperature decline is observed
throughout the entire TOS and is inconsistent with other ob-
servational records (not shown). This E-OBS misrepresenta-
tion of the temperature field has a subsequent effect on the
mean and minimum temperature time series (Fig. 3), as well
as the temporal correlations (Table A2), and is likely to be
reflected in the temperature-based bioclimatic indices in the
TOS region and at the local scale in MON.

The time series of the bioclimatic indices considered
are shown in Figs. 4 and 5. All the bioclimatic indices
show very high and significant temporal correlation between
SPHERA and both RCM and CPM in both consortia, as
shown by Figs. 6a and 7a. The correlations are particularly
high (i.e., above 0.8) for all temperature-based bioclimatic
indices except for TnVeg and TxVeg, which appear more sen-
sitive to the biases in minimum and maximum temperature
(Figs. 2 and 3). The correlations with precipitation-based in-
dices are still high (between 0.64 and 0.91) for SprR but drop
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Figure 2. Time series of mean (TM), maximum temperature (TX), minimum (TN) temperature, and precipitation (P ) over the FRA area for
E-OBS (dashed gray), SPHERA (dashed red), RCM (solid blue), and CPM (solid green) for the period 2000–2018. All the time series are
based on data remapped on the E-OBS grid (∼ 11 km).

for GSP in MON for both CPM and RCM. Similar conclu-
sion can be drawn for the comparison of the climate mod-
els with E-OBS in FRA, while in MON four temperature-
based indices (i.e., BEDD, WI, TnVeg, CNI) are not signifi-
cantly correlated, likely due to the low correlations in mean
and minimum temperature (Table A2). The correlations, es-
pecially with SPHERA, tend to be slightly higher for the
CPM than for the RCM for most indices, despite the higher
NRMSE in the CPM (Figs. 6b and 7b). The strong correlation
between SPHERA and climate simulations (Figs. 6a and 7a)
indicates that RCM and CPM reproduce the same temporal
variability in the bioclimatic indices as SPHERA, despite the
statistical differences in mean values (Table A4). The same
conclusion is also valid for the comparison of RCM and CPM
to E-OBS, at least for FRA. This analysis suggests that both
CPM and RCM could be a valid alternative to the reanalysis
product to investigate the impact of climate on viticulture,
despite the biases affecting the climate simulations. In addi-
tion, the reanalysis allows a more realistic representation of
bioclimatic indices, overcoming the pitfalls of the observa-
tional dataset E-OBS in TOS.

3.2 Bioclimatic index control on wine grape
productivity

3.2.1 Single regression analysis

A Spearman correlation analysis is performed to investi-
gate the relation between the different bioclimatic indices
and wine grape productivity and to consequently determine
the amount of total productivity variability (interannual and
long-term) explained by these indices.

In FRA, the correlation coefficients are similar between
climate simulations, observations, and reanalysis for some of
the temperature-based indices, while they diverge and are not
significant for the precipitation-based ones (Fig. 8). Statisti-
cally significant cases are CNI with climate model simula-
tions, SPHERA, and E-OBS and the BEDD index only when
RCM and E-OBS are used. Nevertheless, some of these bio-
climatic indices (i.e., BEDD for E-OBS and CNI for CPM)
as well as the FRA productivity show significant trends (Ta-
bles A5 and A7); thus, these significant correlations may de-
pend on the long-term variability (i.e., the trend) rather than
on the interannual variability. The RCM also presents a sta-
tistically significant and positive correlation between produc-
tivity and TnRest, which does not show a trend over the pe-
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Figure 3. Time series of mean (TM), maximum temperature (TX), minimum (TN) temperature, and precipitation (P ) over the MON area
for E-OBS (dashed gray), SPHERA (dashed red), RCM (solid blue), and CPM (solid green) for the period 2000–2018. All the time series
are based on data remapped on the E-OBS grid (∼ 11 km).

riod 2000–2018, suggesting that TnRest variability has a role
in controlling productivity at the interannual timescale. The
statistically significant coefficients are all positive, indicating
a positive effect on productivity of BEDD, CNI, and TnRest.

In MON, the correlations between productivity and biocli-
matic indices are similar across all the datasets for BEDD,
HI, WI, and TmVeg but show greater variation for all other
temperature-based and precipitation-based indices (Fig. 9).
Significant results are found for TnVeg, only using CPM,
and for TxVeg in all datasets. It is notable that TxVeg dis-
plays a negative correlation, indicating that extreme temper-
atures during the growing period have a detrimental effect on
production. This aligns with winemaker expectations and is
partially supported by the results from FRA (Fig. 8), despite
not being statistically significant. Both TnVeg and TxVeg in-
dices show a significant positive trend for most datasets (Ta-
ble A6), which suggests that productivity is more sensitive to
the long-term variability. Productivity data do not show any
trend in MON (Table A7).

Only the CPM simulation shows significant correlation
for the precipitation-based index GSP. This could be linked
to the more realistic representation of the precipitation field
(Prein et al., 2015), although positive correlations with GSP
are not expected, as an excessively wet season is usually

detrimental to production. Thus, it is possible that other fac-
tors influence this correlation, such as specific viticultural
practices or vintage management (Priori et al., 2019). For ex-
ample, harvesting immediately after rainfall may result in the
collection of larger grapes, thus increasing the productivity.
Additionally, specific trimming techniques can improve the
ventilation between the branches, reducing the risk of mold
and fungus and thus limiting the negative impact of precipi-
tation on the harvest (Evers et al., 2010).

3.2.2 Multiple regression analysis

A multiple regression (MR) analysis is carried out and com-
pared with the single regression (SR) approach to see if con-
sidering a linear combination of bioclimatic indices increases
the proportion of productivity variability explained by the in-
dices.

Table 2 shows the results of the MR model, highlighting
the selected bioclimatic indices and the variance explained in
comparison with the SR method, for each case in both FRA
and MON. The authors highlight that, even when the MR
selects just one index, this can differ from the single regres-
sion due to the correlation method chosen. The MR confirms
that the temperature-based bioclimatic indices are more rele-
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Figure 4. Time series of the bioclimatic indices considered: biologically effective degree days (BEDD), heliothermic Huglin index (HI), Win-
kler index (WI), daily mean temperature during the vegetative period (TmVeg), minimum temperature during the vegetative period (TnVeg),
maximum temperature during the vegetative period (TxVeg), cool night index (CNI), minimum temperature during the rest period (TnRest),
growing season precipitation index (GSP), and spring rain index (SprR) over the FRA area for E-OBS (dashed gray), SPHERA (dashed red),
RCM (solid blue), and CPM (solid green) for the period 2000–2018. All the time series are based on data remapped on the E-OBS grid
(∼ 11 km).

vant than precipitation-based ones in explaining productivity
variability, especially in FRA, where only for the RCM is
the GSP selected as a predictor. The selection of GSP for the
RCM is unexpected. Indeed, although GSP from the RCM
shows high and significant correlations with both the CPM
(not shown) and SPHERA (Fig. 6), it is not selected by the
MR model for the CPM and SPHERA. The comparison be-
tween the standardized beta coefficients (Dodge, 2008) of the

MR model for RCM in FRA shows that GSP has the least im-
pact on the explained variance of the observed productivity,
suggesting that the selection of GSP for the RCM only might
be an artifact of the statistical model. In MON, precipitation-
based indices are selected as predictors in the MR model
when using the CPM simulation and SPHERA reanalysis,
confirming the relatively higher importance of precipitation
for productivity in this area compared to FRA. Thus, for
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Figure 5. Time series of the bioclimatic indices considered: biologically effective degree days (BEDD), heliothermic Huglin index (HI), Win-
kler index (WI), daily mean temperature during the vegetative period (TmVeg), minimum temperature during the vegetative period (TnVeg),
maximum temperature during the vegetative period (TxVeg), cool night index (CNI), minimum temperature during the rest period (TnRest),
growing season precipitation index (GSP), and spring rain index (SprR) over the MON area for E-OBS (dashed gray), SPHERA (dashed
red), RCM (solid blue), and CPM (solid green) for the period 2000–2018. All the time series are based on data remapped on the E-OBS grid
(∼ 11 km).

MON, the improved representation of the precipitation field
at a convection-permitting scale could be a relevant factor,
since in other datasets at coarser resolution (i.e., E-OBS and
RCM) precipitation-based indices are excluded by the MR.
To improve the understanding of this aspect and clarify the
relative importance of the precipitation-based indices for the
two study areas, the same methodology employed here could

be applied to other climatic datasets derived from different
convection-permitting models.

An overview of the performance of the single regression
method (SR) and the multiple regression method (MR) is
presented in Fig. 10, showing that using a linear combination
of bioclimatic indices increases the proportion of explained
total productivity variability, especially for FRA.
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Table 2. Donut chart indicating, for E-OBS, SPHERA, CPM, and RCM, the best-performing index for the single regression (SR) and the
indices included in the multiple regression model (MR), as well as the percentage of variance explained by each statistical model (center of the
donut), in FRA and MON. The percentage of variance is calculated as the squared coefficient of determination of the Spearman correlation
between the observed yield and best-performing bioclimatic index for SR and of the Pearson correlation between the observed yield and
the yield predicted using the MR model. Orange (blue) indicates temperature-based (precipitation-based) indices. The MR adjusted R2 is
expressed in the“ MR Adj R2” column.
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Figure 6. For the FRA area, the figure shows (a) the Spearman correlation coefficient of the indices’ time series and (b) the normalized root
mean square error (NRMSE) with respect to the range of values (ymax–ymin) of the reference (SPHERA and E-OBS). Colors represent the
different comparisons performed and full-colored dots in panel (a) indicate a statistically significant result (p ≥ 0.05).

Overall, the bioclimatic indices explain a higher propor-
tion of productivity variance in FRA compared to MON
(Fig. 10a and Table A8), in line with previous findings at
the regional level for LOM and TOS (Massano et al., 2023).
The highest proportion of explained variance in productiv-
ity is obtained in FRA with the MR approach and RCM data
(64 %), followed by SPHERA (56 %) and CPM (48 %). The
variance explained in MON is lower, with a maximum of
45 % obtained for CPM and the MR approach, very close to
SPHERA with MR (42 %) and to E-OBS with SR (44 %).

The maximum variance in productivity explained by the
SR is compared with the MR variance (Fig. 10b). The com-
parison demonstrates that the MR better represents produc-
tivity variability in FRA in all cases except E-OBS, which
shows a slight decrease in performance (−7 %). Meanwhile,
SPHERA gains 20 %, the CPM 14 %, and the RCM 29 %
when MR is compared to SR. In MON, MR provides a bet-
ter explanation for productivity variance in the SPHERA re-
analysis and CPM simulation, accounting for an increase of
11 % and 21 %, respectively. However, for the E-OBS dataset

and RCM simulation, MR performance decreases slightly
(−12 % and −3 %, respectively). Note that the decrease in
performance from the SR to MR method only occurs when
only one bioclimatic index is selected in the MR. This could
be linked to a coefficient included in the MR (i.e., productiv-
ity= a1 · index1) or to the different type of correlation used
in SR (Spearman) and MR (Pearson).

4 Discussion and conclusion

This study represents, to the best of the authors’ knowl-
edge, the first application of a CPM to investigate the impact
of climate variability and change on wine grape productiv-
ity through the use of bioclimatic indices. The CPM simu-
lation is compared with an RCM simulation, SPHERA re-
analysis, and E-OBS observations for the period 2000–2018.
The study presented here focuses on the local scale using
wine grape productivity data from two Italian wine consor-
tia, namely Consorzio per la tutela del Franciacorta (FRA)
and Consorzio Del Vino Nobile di Montepulciano (MON).
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Figure 7. For the MON area, the figure shows (a) the Spearman correlation coefficient of the indices’ time series and (b) the normalized root
mean square error (NRMSE) with respect to the range of values (ymax–ymin) of the reference (SPHERA and E-OBS). Colors represent the
different comparisons performed and full-colored dots in panel (a) indicate a statistically significant result (p ≥ 0.05).

Figure 8. Spearman correlation coefficients between bioclimatic indices and wine grape productivity in FRA. Full-colored circles indicate
significant correlations (p ≤= 0.05).
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Figure 9. Spearman correlations between bioclimatic indices and wine grape productivity in MON. Full-colored circles indicate significant
correlations (p ≤= 0.05).

Figure 10. (a) The maximum fraction of the wine grape productivity variance (%) explained by SR and MR in each consortium; colors indi-
cate the type of climatic data used, and a square (triangular) shape indicates a multiple regression (single regression) approach. (b) Variance
differences in percentage between MR and SR for FRA and MON.

A multiple regression approach is used, in addition to a sin-
gle regression method, to account for the possible interplay
of bioclimatic indices in explaining wine grape productivity
variability.

Overall, the single regression exhibits high correlation co-
efficients, but statistically significant results are only found
for a small number of indices at the 95 % confidence level.
When more than one bioclimatic index is relevant, the multi-
ple regression method outperforms the single regression sys-
tematically, enhancing the explanatory power of bioclimatic
indices regarding productivity variability. Furthermore, the
method has the potential to select the predictors that are fit
for purpose.

In FRA, the correlation coefficients are exclusively pos-
itive and statistically significant only for temperature-based
indices such as BEDD, CNI, and TnRest. Correlations with
precipitation-based indices in FRA are not significant and
tend to show negative relationships with productivity. These

findings suggest that temperature is the main factor affect-
ing production, while precipitation has a negative impact on
productivity, potentially resulting in losses due to fungal dis-
eases in the region.

The MON results indicate that only the convection-
permitting resolution of the CPM and SPHERA provides
statistically significant results for a precipitation-based in-
dex (GSP), highlighting the importance of kilometer-scale
resolution when precipitation is a dominant factor for pro-
ductivity. Also, RCM and E-OBS in this region show positive
correlations between precipitation-based indices and produc-
tivity, even if they are not significant. This differs from the
findings for FRA, where the correlations are negative, even
if not significant. However, it is worth noting that there are
many differences in the geographical features and types of
wine produced in FRA and MON. FRA is in the humid sub-
tropical climatic zone, while MON is situated in the hot sum-
mer Mediterranean zone. Other factors, such as vintage man-
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agement techniques and cultivar selection, can also influence
the productivity variability in addition to climate, but the in-
vestigation of these factors is beyond the scope of this paper.
Meanwhile, the productivity for both FRA and MON exhibits
a negative correlation with TxVeg with all the climatic data
considered, but it is only significant for MON. This suggests
that extreme maximum temperatures during the vegetative
season (1 April–30 October) may have harmful effects.

These results, which are obtained at the local scale using
data from wine consortia, complement and expand the pre-
vious study conducted at the regional scale by Massano et
al. (2023) using ISTAT productivity data and E-OBS (v26,
resolution∼ 11 km) climate data. In fact, they did not find
any statistically significant correlations for the LOM or TOS
regions, where FRA and MON are respectively located, with
neither temperature-based nor precipitation-based indices.
To the contrary, in this work the MR can explain up to 64 %
in FRA with the RCM and 45 % in MON with the CPM.
This indicates that working at a local scale and including a
larger variety of bioclimatic indices is crucial to improve the
portion of productivity variance explained by the bioclimatic
indices.

The reanalysis dataset SPHERA outperforms the observa-
tional dataset E-OBS in both MON and FRA with the MR
approach, confirming it to be a valuable alternative to obser-
vations. When the MR approach is applied, climate models
appear to be a useful tool to explain the variability of pro-
ductivity, improving the results obtained using E-OBS. How-
ever, the use of the CPM does not show a clear added value
with respect to the RCM, since it performs better in MON
but not in FRA. This could be linked to the fact that temper-
ature is generally the main driver of wine grape production,
and the added value of the CPM becomes more evident when
precipitation is a dominant factor, as in MON. Nevertheless,
in a changing climate, with precipitation frequency and in-
tensity expected to change (Tramblay and Somot, 2018; Zit-
tis et al., 2021), the relevance of precipitation, along with
precipitation-based bioclimatic indices, for grape productiv-
ity might increase and in turn the use of CPMs might become
crucial. The analysis presented here paves the way to the use
of climate models to investigate the impact of climate change
on wine production in the future. In this context, CPMs can
provide new climate information, such as hail risk, which is
a convection-related phenomenon that impacts grape produc-
tivity. Moreover, this work shows an application of the biocli-
matic indices to wine grape productivity that is rarely used.

Appendix A

Table A1. Results of Welch’s t test applied to regional and con-
sortia productivity data: t statistics (t), reference value for t (tref),
and degrees of freedom (DoF) for the t test based on the number of
observations computed according to Welch’s equation for effective
degrees of freedom (Welch, 1938) are displayed. Values of t lower
than tref indicate that consortium and regional productivity samples
come from the same population at a 95 % level of confidence. In
the last column is the temporal correlation coefficient (r) computed
between consortium and regional productivity data. Asterisks (∗) in-
dicate statistically significant correlations (p ≤ 0.05).

t tref DoF r

FRA vs. LOM 1.17 2.01 47.94 0.62∗

MON vs. TOS 0.1 2 63.99 0.55∗

Figure A1. Box plots of regional (cyan) and consortia (green)
productivity. The series of LOM and TOS come from the ISTAT
database and cover the period 1980–20419, with a 6-year gap be-
tween 2000–2005; the period available for FRA is 1997–2019 (cal-
culated by aggregating the Franciacorta DOCG and Curtefranca
DOC denominations) and for MON is 1989–2019 (calculated by
aggregated the Vino Nobile and Rosso di Montepulciano denomi-
nations), with no gap in the series.
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Table A2. Spearman correlation coefficient (ρ), the root mean squared error (RMSE) between SPHERA (E-OBS) and CPM, as well as
between SPHERA (E-OBS) and RCM time series, and the normalized root mean square error (NRMSE) with respect to the range of values
(ymax–ymin) of the reference (SPHERA and E-OBS) in the FRA and MON areas. Asterisks (∗) indicate statistically significant correlations
(p ≤ 0.05).

TM TX TN P

ρ RMSE NRMSE ρ RMSE NRMSE ρ RMSE NRMSE ρ RMSE NRMSE
(°C) (°C) (°C) (mm)

FRA

SPHERA vs. CPM 0.95∗ 0.78 0.41 0.94∗ 1.54 0.74 0.96∗ 0.39 0.21 0.84∗ 233.52 0.25
SPHERA vs. RCM 0.95∗ 0.38 0.2 0.96∗ 1.73 0.83 0.91∗ 1.37 0.74 0.73∗ 415.05 0.45
E-OBS vs. CPM 0.76∗ 0.64 0.46 0.78∗ 0.6 0.22 0.55∗ 0.78 0.42 0.76∗ 435.99 0.68
E-OBS vs. RCM 0.85∗ 0.37 0.27 0.82∗ 0.43 0.16 0.58∗ 0.61 0.33 0.77∗ 266.65 0.41

MON

SPHERA vs. CPM 0.79∗ 1.06 0.55 0.94∗ 1.54 0.48 0.96∗ 0.39 0.31 0.84∗ 233.52 0.35
SPHERA vs. RCM 0.86∗ 0.91 0.48 0.96∗ 1.73 0.7 0.91∗ 1.37 0.41 0.73∗ 415.05 0.24
E-OBS vs. CPM 0.16 0.79 0.28 0.78∗ 0.6 0.28 0.55∗ 0.78 0.5 0.76∗ 435.99 0.36
E-OBS vs. RCM 0.06 0.83 0.29 0.82∗ 0.43 0.19 0.58∗ 0.61 0.34 0.77∗ 266.65 0.26

Table A3. Results of Welch’s t test applied to mean (TM), maximum (TX), and minimum (TN) temperatures and precipitation (P ) from
E-OBS, SPHERA, RCM, and CPM datasets for FRA and MON: t statistics (t), reference value for t (tref), and the degrees of freedom (DoF)
for the t test based on the number of observations computed according to Welch’s equation for effective degrees of freedom (Welch, 1938)
are displayed. Values of t higher than tref indicate that the samples from climate model simulations and the reference datasets come from
different populations at a 95 % level of confidence. Asterisks (∗) indicate the means, showing statistically significant differences.

SPHERA vs. CPM SPHERA vs. RCM E-OBS vs. CPM E-OBS vs. RCM

t tref DoF t tref DoF t tref DoF t tref DoF

FRA

TM 4.16∗ 2.03 35.2 1.8 2.03 34.77 2.98∗ 2.03 33.1 0.5 2.04 32.45
TX 6.7∗ 2.03 34.25 7.77∗ 2.03 34.83 −1.54 2.03 35.76 −0.75 2.03 35.95
TN −2.31∗ 2.03 35.96 −8.26∗ 2.03 35.59 3.84∗ 2.03 36 -2.24∗ 2.03 35.83
P −2.07∗ 2.03 35.85 −4.48∗ 2.03 35.47 4.93∗ 2.04 29.22 2.91∗ 2.04 32.58

MON

TM 6.45∗ 2.03 35.57 5.72∗ 2.03 35.03 −0.24 2.04 30.12 −0.95 2.04 29.09
TX 5.24∗ 2.03 35.97 8.15∗ 2.03 35.83 −3.29∗ 2.03 35.99 −0.81 2.03 35.76
TN 3.38∗ 2.04 32.37 −4.8∗ 2.04 32.12 4.89∗ 2.06 24.89 −0.87 2.06 24.71
P 2.33∗ 2.03 35.69 1.3 2.03 35.91 2.37∗ 2.03 35.57 1.34 2.03 35.96
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Table A4. Results of Welch’s t test applied to the bioclimatic indices from E-OBS, SPHERA, RCM, and CPM datasets for FRA and
MON: t statistics (t), reference value for t (tref), and the degrees of freedom (DoF) for the t test based on the number of observations
computed according to Welch’s equation for effective degrees of freedom (Welch, 1938) are displayed. Values of t higher than tref indicate
that the samples from climate model simulations and the reference datasets come from different populations at a 95 % level of confidence.
Asterisks (∗) indicate the means, showing statistically significant differences.

SPHERA vs. CPM SPHERA vs. RCM E-OBS vs. CPM E-OBS vs. RCM

Index t tref DoF t tref DoF t tref DoF t tref DoF

FRA

BEDD (GDD) −0.92 2.03 35.97 −0.17 2.03 35.97 0.67 2.03 35.36 1.47 2.03 35.35
HI (GDD) −4.50∗ 2.04 32.50 −4.71∗ 2.03 33.34 −0.88 2.04 32.14 −0.96 2.03 33.01
WI (GDD) −4.48∗ 2.04 32.68 −4.13∗ 2.04 32.65 −3.25∗ 2.04 30.29 −2.89∗ 2.04 30.26
TmVeg (°C) −4.59∗ 2.04 32.60 −4.17∗ 2.04 32.59 −3.28∗ 2.04 30.54 −2.85∗ 2.04 30.53
TnVeg (°C) 2.86∗ 2.03 32.92 5.35∗ 2.03 35.87 −0.16 2.04 30.41 2.42∗ 2.03 34.63
TxVeg (°C) −8.32∗ 2.03 32.82 −8.62∗ 2.03 35.95 −5.47∗ 2.04 30.10 −5.30∗ 2.03 34.76
CNI (°C) 0.99 2.03 33.37 2.29∗ 2.03 35.16 −1.22 2.03 33.70 −0.11 2.03 35.37
TnRest −0.23 2.03 35.51 2.69∗ 2.03 35.40 −2.53∗ 2.03 35.77 0.15 2.03 35.84
GSP (mm) 5.55∗ 2.03 35.93 8.76∗ 2.03 33.94 −4.23∗ 2.04 32.17 −1.48 2.03 35.20
SprR (mm) −0.03 2.03 36.00 1.92 2.03 35.18 −3.80∗ 2.04 31.84 −1.86 2.03 34.38

MON

BEDD (GDD) −2.25∗ 2.03 35.88 −2.13∗ 2.03 35.84 1.91 2.03 34.16 2.04∗ 2.03 34.04
HI (GDD) −3.31∗ 2.03 34.11 −3.71∗ 2.03 35.41 −1.37 2.03 33.35 −1.65 2.03 34.90
WI (GDD) −5.21∗ 2.03 34.38 −5.66∗ 2.03 35.53 −2.14∗ 2.03 36.00 −2.37∗ 2.03 35.56
TmVeg (°C) −5.38∗ 2.03 34.59 −5.79∗ 2.03 35.61 −2.06∗ 2.03 35.96 −2.24∗ 2.03 35.38
TnVeg (°C) −0.54 2.03 35.91 2.90∗ 2.03 35.78 −1.35 2.03 33.90 1.70 2.03 33.44
TxVeg (°C) −5.43∗ 2.03 35.98 −5.36∗ 2.03 35.06 −3.74∗ 2.03 35.86 −3.57∗ 2.03 34.60
CNI (°C) −1.61 2.03 33.38 0.98 2.03 34.58 −3.31∗ 2.03 34.96 −0.92 2.03 35.70
TnRest −2.27∗ 2.03 35.17 −0.82 2.03 34.45 −2.35∗ 2.03 33.56 −1.01 2.04 32.57
GSP (mm) −1.05 2.04 31.29 2.46∗ 2.03 35.02 −3.06∗ 2.05 26.93 −0.04 2.03 35.74
SprR (mm) −2.44∗ 2.05 27.64 −0.44 2.04 31.33 −2.75∗ 2.04 32.09 −0.95 2.03 35.18

Table A5. Sen’s slope estimator, a statistical measure to evaluate the magnitude of the trend, for the FRA area. An asterisk (∗) indicates a
significant trend (p ≤ 0.05).

FRA TM TX TN P BEDD HI WI TmVeg TnVeg TxVeg CNI TnRest GSP SprR
(°C yr−1) (°C yr−1) (°C yr−1) (mm yr−1) (GDD yr−1) (GDD yr−1) (GDD yr−1) (°C yr−1) (°C yr−1) (°C yr−1) (°C yr−1) (°C yr−1) (mm yr−1) (mm yr−1)

E-OBS 0.05∗ 0.05 0.06∗ −5.91 4.59∗ 14.96∗ 11.67 0.06∗ 0 0.1 0.09 0.03 −4.77 −1.33
SPHERA 0.04 0.03 0.04∗ 12.89 4.5 9.25 6.65 0.04 0.02 0.05 0.1 0.02 13.32∗ 4.57∗

CPM 0.04 0.03 0.04 6.54 3.35 13.34 12.61 0.06 0.01 0.12 0.13∗ 0.05 −1.31 0.7
RCM 0.05∗ 0.04 0.04∗ −2.14 4.19 11.51 11.94 0.06 0.05∗ 0.12∗ 0.12 0.07 −2.41 −0.15

Table A6. Sen’s slope estimator, a statistical measure to evaluate the magnitude of the trend, for the MON area. An asterisk (∗) indicates a
significant trend (p ≤ 0.05).

MON TM TX TN P BEDD HI WI TmVeg TnVeg TxVeg CNI TnRest GSP SprR
(°C yr−1) (°C yr−1) (°C yr−1) (mm yr−1) (GDD yr−1) (GDD yr−1) (GDD yr−1) (°C yr−1) (°C yr−1) (°C yr−1) (°C yr−1) (°C yr−1) (mm yr−1) (mm yr−1)

E-OBS −0.07∗ 0.04 −0.11∗ 8.64 −7.89∗ 1.23 −17.42∗ −0.08∗ −0.09 0.07 −0.07 0.03 4.38 0.07
SPHERA 0.03 0.01 0.03∗ 19.47∗ 2.94 5.05 7.22 0.03 0.1∗ −0.08∗ 0.12∗ 0 10.36∗ 0.99
CPM 0.03 0.02 0.03∗ 5.28 2.42 6.84 3.68 0.02 0.05∗ 0.05∗ 0.15 0 0.74 1
RCM 0.04 0.03 0.03∗ 6.28 1.2 10.5 9.31 0.04 0.06∗ 0.01 0.11∗ 0.06 −0.08 0.34
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Table A7. Sen’s slope of the productivity in FRA and MON. Sen’s
slope is a statistical measure used to calculate the rate of change in
a variable over time based on the Sen’s estimator. An asterisk (∗)
indicates a significant trend (p ≤ 0.05).

Consortium Productivity (q ha−1) yr−1

FRA 1.28∗

MON 0.43

Table A8. Ranking of the maximum variance (%) explained for
each dataset for each consortium, with an indication of the type of
method used (SR: single regression, MR: multiple regression).

FRA MON

Model var. type Model var. type
value value

% %

RCM 64 % MR CPM 45 % MR
SPHERA 56 % MR E-OBS 44 % SR
CPM 48 % MR SPHERA 42 % MR
E-OBS 42 % SR CPM 34 % SR
SPHERA 36 % SR RCM 32 % SR
E-OBS 35 % MR E-OBS 32 % MR
RCM 35 % SR RCM 29 % MR
CPM 34 % SR SPHERA 21 % SR
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