Articles | Volume 24, issue 11
https://doi.org/10.5194/nhess-24-3869-2024
https://doi.org/10.5194/nhess-24-3869-2024
Research article
 | 
12 Nov 2024
Research article |  | 12 Nov 2024

Reconstructing hail days in Switzerland with statistical models (1959–2022)

Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius

Related authors

Saharan dust linked to European hail events
Killian P. Brennan and Lena Wilhelm
EGUsphere, https://doi.org/10.5194/egusphere-2024-3924,https://doi.org/10.5194/egusphere-2024-3924, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Weather Type Reconstruction using Machine Learning Approaches
Lucas Pfister, Lena Wilhelm, Yuri Brugnara, Noemi Imfeld, and Stefan Brönnimann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1346,https://doi.org/10.5194/egusphere-2024-1346, 2024
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Probabilistic hazard analysis of the gas emission of Mefite d'Ansanto, southern Italy
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025,https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Are heavy-rainfall events a major trigger of associated natural hazards along the German rail network?
Sonja Szymczak, Frederick Bott, Vigile Marie Fabella, and Katharina Fricke
Nat. Hazards Earth Syst. Sci., 25, 683–707, https://doi.org/10.5194/nhess-25-683-2025,https://doi.org/10.5194/nhess-25-683-2025, 2025
Short summary
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025,https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
The record-breaking precipitation event of December 2022 in Portugal
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci., 25, 609–623, https://doi.org/10.5194/nhess-25-609-2025,https://doi.org/10.5194/nhess-25-609-2025, 2025
Short summary
Compound events in Germany in 2018: drivers and case studies
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025,https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE Trans. Automat. Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Allen, J., Karoly, D., and Mills, G.: A severe thunderstorm climatology for Australia and associated thunderstorm environments, Aust. Meteorol. Oceanogr. J., 61, 143–158, https://doi.org/10.22499/2.6103.001, 2011. a
Allen, J. T., Tippett, M. K., and Sobel, A. H.: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment, J. Adv. Model. Earth Syst., 7, 226–243, https://doi.org/10.1002/2014MS000397, 2015. a, b, c
Allen, J. T., Giammanco, I. M., Kumjian, M. R., Jurgen Punge, H., Zhang, Q., Groenemeijer, P., Kunz, M., and Ortega, K.: Understanding Hail in the Earth System, Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665, 2020. a, b
Andersson, T., Andersson, M., Jacobsson, C., and Nilsson, S.: Thermodynamic indices for forecasting thunderstorms in southern Sweden, Meteorol. Mag., 118, 141–146, 1989. a
Download
Short summary
In our study we used statistical models to reconstruct past hail days in Switzerland from 1959–2022. This new time series reveals a significant increase in hail day occurrences over the last 7 decades. We link this trend to increases in moisture and instability variables in the models. This time series can now be used to unravel the complexities of Swiss hail occurrence and to understand what drives its year-to-year variability.
Share
Altmetrics
Final-revised paper
Preprint