Articles | Volume 24, issue 7
https://doi.org/10.5194/nhess-24-2461-2024
https://doi.org/10.5194/nhess-24-2461-2024
Research article
 | 
19 Jul 2024
Research article |  | 19 Jul 2024

Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems

Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2134', Anonymous Referee #1, 17 Jan 2024
  • RC2: 'Comment on egusphere-2023-2134', Anonymous Referee #2, 07 Mar 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (further review by editor and referees) (08 Apr 2024) by Mauricio Gonzalez
AR by Mithun Deb on behalf of the Authors (08 Apr 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (09 Apr 2024) by Mauricio Gonzalez
RR by Anonymous Referee #2 (10 Apr 2024)
RR by Anonymous Referee #1 (23 May 2024)
ED: Publish as is (03 Jun 2024) by Mauricio Gonzalez
AR by Mithun Deb on behalf of the Authors (04 Jun 2024)
Download
Short summary
We coupled earth system, hydrology, and hydrodynamic models to generate plausible and physically consistent ensembles of hurricane events and their associated water levels from the open coast to tidal rivers of Delaware Bay and River. Our results show that the hurricane landfall locations and the estuarine wind can significantly amplify the extreme surge in a shallow and converging system, especially when the wind direction aligns with the surge propagation direction.
Altmetrics
Final-revised paper
Preprint