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Abstract. Based on the projected increase in hurricane land-
fall frequency on the middle to lower US east coast, we ex-
amined the crucial role of the estuarine wind field in exacer-
bating coastal flooding. A regionally refined atmospheric and
two high-resolution hydrology and ocean models are inte-
grated to provide plausible and physically consistent ensem-
bles of hurricane events and the associated flooding inside the
Delaware Bay and River, a US mid-Atlantic estuary. Model
results show that the hurricane propagation direction, estu-
arine geometry, remote surge from the open ocean, and di-
rect nearshore upwind stress could magnify the flood magni-
tude. More specifically, inland-bound tracks that make land-
fall before reaching the mid-Atlantic coast produce a more
significant surge within Delaware Bay than the shore-parallel
tracks, where the estuarine wind direction plays the primary
role in surge amplification. Ultimately, this study emphasized
the need for integrated models to capture the nonlinear dy-
namics and interactions in flood hazard modeling.

1 Introduction

Due to their low-lying topography and high population den-
sities, coastal cities and estuaries are particularly susceptible
to storm surges, which result in significant economic and so-
cial impacts like damage to infrastructure, loss of property
and livelihoods, and loss of life (Dietrich et al., 2010; Bil-
skie et al., 2016; Valle-Levinson et al., 2020). Recent climate
studies have indicated that, under different greenhouse gas

emission rates and global warming scenarios, there is a po-
tential for more frequent hurricane landfalls on the US At-
lantic coast at the end of the 21st century (Knutson et al.,
2022; Balaguru et al., 2023). Some other works have shown a
potential increase in hurricane maximum intensity (Emanuel,
2005, 2021), an increase in the 10 m wind speed (Roberts
et al., 2020), and a decrease in translation speed (Emanuel,
2021; Garner et al., 2021) in the future. These projected
trends in hurricane characteristics can amplify the risk faced
by coastal cities and estuaries to storm surges and coastal
flooding in the future climate. More recently, using Coupled
Model Intercomparison Project version 5 (CMIP5) global
climate model datasets, Weaver and Garner (2023) exam-
ined the hurricane landfall patterns on the US east coast for
a warmer climate. They showed a positive trend in hurricane
genesis points moving northward and making more landfalls
along the mid-Atlantic region as they traveled through the
US northeast (similar to Hurricane Irene 2011). This is a
matter of concern for the US mid-Atlantic region that cov-
ers two of the largest estuaries in the US: the Delaware and
Chesapeake bays. These estuarine regions house ~ 27 mil-
lion inhabitants, a large density of metropolitan areas, natu-
ral ecosystems (e.g., salt marshes and freshwater wetlands),
transportation networks, and industrial ports (Callahan and
Leathers, 2021). The hurricane landfall trend in this area cer-
tainly raises interest in the associated storm surge hazard that
might help develop flood risk assessment tools for federal,
state, and local agencies.
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To estimate the hurricane-induced flood risk, significant
effort has been invested in storm surge prediction using high-
resolution numerical models that resolve fundamental under-
lying physics (Weisberg and Zheng, 2006; Wang et al., 2008;
Hu et al., 2009; Dietrich et al., 2011). However, a signifi-
cant impediment to accurate storm surge predictions contin-
ues to be the uncertainty in predicting hurricane properties
that drive storm surge (Cyriac et al., 2018; Cangialosi et al.,
2020). More specifically, an inaccurate representation of any
of these hurricane characteristics — intensity, size, translation
speed, and the angle of landfall with the coast — can intro-
duce large biases in predicting the surge and coastal flood-
ing (Suh and Lee, 2018). In a recent study, Hsu et al. (2023)
examined the role of these variables for three different hurri-
canes that propagated through the South Atlantic Bight (Hur-
ricane Matthew in 2016, Hurricane Dorian in 2019, Hurri-
cane Isaias in 2020) and showed how they affect the peak
storm surge and wave runup on the South Atlantic coastline.
For the same region, Parker et al. (2023) demonstrated that
various combinations of tide, non-tidal residual, and wave
setup and their spatially varying interaction can control the
total water level at different US Southeast Atlantic coastline
regions. In addition, storm surge also strongly depends on the
local geometry of the basin and bathymetric features (e.g.,
the angle of a coastline) such that an adequate representation
of the system’s geometry is essential for properly estimat-
ing the hydrodynamic response (Weisberg and Zheng, 2006;
Resio and Westerink, 2008; Suh and Lee, 2018). Geometry
is especially important in estuarine regions, where the storm
surge and storm tide (sum of surge and the astronomical tide)
propagation and flood generation can vary spatially based on
the size and bathymetry of the bay, cross-sectional area, the
shape of the system (e.g., funnel-shaped estuary, rectangular
shaped tidal lagoons), and river discharge from the hurricane-
induced precipitation (Mori et al., 2014; Familkhalili and
Talke, 2016). In general, in hyper-tidal estuaries (exhibiting
large tidal range) or convergent estuaries (channel area con-
vergence dominates bottom friction), the variability in tide—
surge interaction can amplify the extreme water level (Ly-
ddon et al., 2018). In addition, the magnitude and duration
of the estuarine winds during hurricane landfall can exacer-
bate the spatial extent and amplitude of surge-driven flooding
(Shen et al., 2006a; Weisberg and Zheng, 2008).

In shallow estuaries, the local wind field can create a sur-
face slope between the bay mouth and the upstream end
(Weisberg and Zheng, 2006, 2008). This evolution becomes
much more complex for a convergent system where the non-
linear interaction between the tide, surge, and local geome-
try influences the flow acceleration, ultimately amplifying or
damping the surge-induced flooding (Wong and Moses-Hall,
1998). When the remote surge generated by the wind field in
the open ocean reaches the coastal environment, it interacts
with the estuarine wind and generates a complex setup or
setdown within the estuary (Shen et al., 2006b; Defne et al.,
2019). There have been many studies on the storm surge

Nat. Hazards Earth Syst. Sci., 24, 2461-2479, 2024

hindcast and long-term flood hazard projections for different
coastal or estuarine regions (e.g., Villarini et al., 2014; Wahl
et al., 2015; Marsooli et al., 2019; Lin et al., 2019; Bates
et al., 2021; Gori et al., 2022); however, the effect of estuar-
ine winds on surge amplification during hurricane landfall is
not often separately analyzed. For several US coastal regions,
Lin et al. (2010) and Marsooli and Lin (2018) used higher-
resolution hydrodynamic models to assess the sensitivity of
coastal flooding to different storm characteristics, but they
also focused primarily on the overall surge evolution during
the entire hurricane period and not on the local amplification
by the nearshore wind field during landfall.

Similarly, several other studies used the simplified storm
surge model — Sea, Lake, and Overland Surges from Hurri-
canes (SLOSH; Jelesnianski, 1992) — to assess basin-scale
flooding from individual extreme events (Powell and Hous-
ton, 1996; Houston et al., 1999) or the ensemble of prob-
abilistic hurricane tracks (Taylor and Glahn, 2008). While
these studies extensively discussed the role of landfall loca-
tion, wind direction, and coastal geometry, the role of es-
tuarine wind in the local amplification of storm surge re-
mained unexplored. Also, it should be noted that in a sys-
tem with an irregular bottom and rapidly converging width,
it is challenging to assess the role of estuarine wind using
simplified models like SLOSH due to the absence of advec-
tive terms in the momentum equations, exclusion of the river
flow, and the parametric representation of the hurricane wind
field (Glahn et al., 2009). To properly examine the role of
estuarine wind and the nonlinear interaction in surge ampli-
fication in a complex system, an integrated modeling frame-
work with higher-order physics is required that resolves the
atmospheric, hydrologic, and hydrodynamic processes dur-
ing hurricane landfall.

This study aimed to answer, depending on the estuarine
wind field (i.e., landfall location and wind direction), how
different the hydrodynamic responses during flooding are
when compared between an inland hurricane (making land-
fall before reaching Delaware Bay) and a shore-parallel track
(making landfall after passing Delaware Bay). This is an im-
portant question because of the potential changes in landfall
trends in a warmer climate in the US mid-Atlantic region. We
focused on two tasks: (1) integrating an earth system model
(Energy Exascale Earth System Model (E3SM); Golaz et al.,
2022) with high-resolution models that couple the hydrology
(Distributed Hydrology Soil Vegetation Model (DHSVM);
Wigmosta et al., 1994) and hydrodynamic (Finite Volume
Community Ocean Model (FVCOM); Chen et al., 2003)
models to provide a high-fidelity flood estimate and (2) eval-
uating the role of the estuarine wind field in amplifying storm
surge during hurricane landfall. We chose Delaware Bay and
River (DBR), a shallow and convergent estuary in the US
mid-Atlantic, historically highly vulnerable to storm-induced
flooding. We also selected Hurricane Irene (2011) as a fo-
cal event for the study, which caused one of the most se-
vere estuary-wide flood hazards in DBR. Using E3SM, we
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first perturbed Hurricane Irene (2011) to get an ensemble
of Irene-like tracks with different characteristics. Then using
the coupled DHSVM-FVCOM, we predicted the total water
level from different tracks and the flood distribution along
the entire DBR. Incorporating these three models provided a
high-fidelity representation of coupled atmospheric, fluvial,
and coastal processes, which allows for improved flood esti-
mates for Irene-like events. Finally, we separately looked at
the role of the estuarine wind field in amplifying the surge as
the tide propagates upstream.

2  Model setup and integration

The US DOE Energy Exascale Earth System Model ver-
sion 2 (hereafter, “E3SM”; Golaz et al., 2022) is used to
simulate an ensemble of Irene-like tracks. E3SM integrations
are conducted using prognostic atmosphere, land, and river
model components, while oceanic sea surface temperatures
(SSTs) and sea ice cover are prescribed based on observa-
tions (Huang et al., 2021). The atmosphere model version
used in this study has 71 levels and uses a regionally re-
fined horizontal grid mesh of ~25km over the North At-
lantic basin and eastern North America with a coarser hori-
zontal resolution (~ 100 km) outside this region (Fig. 1a and
as described in and used by Zarzycki et al., 2017). The at-
mosphere model is initialized globally based on ECMWF
Reanalysis version 5 (ERAS; Hersbach et al., 2020), and all
simulations span 30d to cover the atmospheric spin-up and
evolution of Hurricane Irene as well as the meteorological
conditions in the wake of the event. Additional details of the
E3SM setup and validation metrics are found in Appendix A.

We conduct an E3SM ensemble to acknowledge (a) our in-
complete understanding of the model physics and (b) the in-
herent uncertainty of model initial conditions. To address (a),
we perturb model physics parameters to which tropical cy-
clones are most sensitive (He and Posselt (2015); see Ap-
pendix A for the list of perturbed parameters and additional
information on the model ensemble setup and analyses).
This is accomplished by first defining acceptable numeri-
cal ranges for each parameter of interest (based on He and
Posselt, 2015) and then randomly drawing 50 values within
those ranges to use within the model integration. In this
way, 50 unique parameter “sets” are created. To address (b),
E3SM is initialized at two times separated by 12h (26 Au-
gust 2011 00Z (hereafter “E1”) and 25 August 2011 127
(hereafter “E2”)). Both the ERA5-based meteorological pat-
terns and the diagnosed storm center at these two initial-
ization times are slightly different from each other and ul-
timately result in a more diverse spread of simulated Irene
tracks. E1 was identified as the optimal initialization time
that produced reasonable Irene tracks at the earliest forecast
lead time, while E2 was also retained to understand the sen-
sitivities of the predicted tracks to large-scale meteorological
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patterns at initialization time. In total, two 50-member en-
sembles (E1 and E2) are generated (Fig. 2a).

Subsequently, we employ the Distributed Hydrology Soil
Vegetation Model (DHSVM) to estimate the fluvial flood-
ing in the Delaware River Basin. DHSVM used meteorolog-
ical variables from the E3SM model as climate forcing, in-
cluding precipitation, air temperature, downward shortwave
and longwave radiation, wind speed, and relative humidity.
DHSVM is a process-based, spatially distributed hydrolog-
ical model that operates at the grid cell level. It simulates
key overland and subsurface hydrological processes by solv-
ing the full energy and water balance equations. The model
physics and formulations have been extensively described in
the existing literature (e.g., Wigmosta et al., 1994; Sun et al.,
2015, 2024; Perkins et al., 2019). For this study, we used a
90 m resolution for DHSVM in the Delaware River Basin and
ran the model at a 3-hourly time step.

Finally, to predict the extreme water surface elevation
(WSE) with the atmospheric and riverine forcings, we use the
unstructured grid Finite Volume Community Ocean Model
(FVCOM) (Chen et al., 2003), which has been extensively
used for storm surge modeling in many estuaries world-
wide (e.g., Weisberg and Zheng, 2006; Rego and Li, 2009).
We chose the 3D barotropic and hydrostatic version, which
resolves simplified Reynolds-averaged Navier—Stokes equa-
tions (with Boussinesq approximations). The model do-
main extends 700 km offshore from the mid-Atlantic coast
to adequately capture the air—sea interaction and 215km
from the Delaware Bay mouth to the river flow boundary
(Fig. 1b and c). The horizontal grid resolution is assigned to
25km along the open-ocean boundary to 20m in the river
to seamlessly simulate the interaction between large- and
small-scale flood processes. Subsequently, we enforced the
lateral and sea surface boundary conditions: (1) tidal forcing
at the open-ocean boundary (WSE from the TPX08.0 global
ocean tide model; Egbert and Erofeeva, 2002), (2) river flow
from DHSVM, and (3) 10 m wind speed and mean sea-level
pressure from E3SM. More details about the topography
and bathymetry datasets used for grid development, activated
model physics, and assigned numerical variables/coefficients
are given in Deb et al. (2023).

3 Hurricane-induced estuarine flooding

At the onset, DHSVM-simulated daily flows (averaged from
the 3-hourly flows) were validated against USGS daily flow
observations at six gauge locations on the main stem of the
Delaware River for Hurricane Irene (2011) (Appendix B).
After observing a satisfactory model performance (Nash—
Sutcliffe efficiency and the Kling—Gupta efficiency), we sim-
ulated the E3SM ensembles that produced a different range
of peak river discharge at the Delaware River boundary,
shown in Fig. 2b. The range and the ensemble mean of the
river discharge from the two sets show a clear distinction,
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Figure 1. (a) E3SM grid resolution: 100 km globally uniform resolution and a 25 km resolution over the North Atlantic. (b) Regional-scale
model domains, where blue triangles show the FVCOM grid cells and green polygons represent the DHSVM model coverage. (¢) Focus area
of the study, Delaware Bay and River (DBR). Red circles show tide gauge locations used for FVCOM model validation with their distance
from the bay mouth (in kilometers). (d) Schematic showing the coupling strategy between the different models used in this study.

where the inland-oriented tracks (E2) produced a smaller
magnitude and an earlier peak (~12h) compared to the
shore-parallel tracks (E1). In this work, as we focused on the
response of estuarine flooding to different hurricane charac-
teristics, we directly used the DHSVM data as river forcing
for FVCOM without discussing the underlying physical pro-
cesses responsible for the variation in magnitude and phase
of the fluvial discharge.
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Before running FVCOM with meteorological conditions
from E3SM and river forcing from DHSVM, we also vali-
dated the hydrodynamic model by comparing predicted WSE
with the observed data for two hurricanes, Hurricane Irene
(2011) and Hurricane Sandy (2012), that both had a devastat-
ing impact on DBR. For both cases, we found that the model
successfully predicts the amplitude and phase of the storm
surge and shows an excellent agreement between the model
and observed data at various tide gauge locations throughout
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https://doi.org/10.5194/nhess-24-2461-2024 Nat. Hazards Earth Syst. Sci., 24, 2461-2479, 2024



2466

the system (Appendix C). Thus, the model was deemed fit for
purpose for our subsequent studies using ensemble forcing.

The ensemble simulations, forced with two 50-member
ensembles of Irene-like cases (E1 and E2), show signifi-
cant variability (O(1 m) standard deviation in WSE) in the
range of along-channel peak WSE over the ensemble forc-
ing (Fig. 2c). E2, with more inland tracks, generates a much
higher range of surge than E1 for a significant portion of
DBR; E2 also has a significantly higher ensemble mean
WSE, especially in the mid-bay approximately 150 km from
the mouth, where the E2-forced ensemble mean WSE is
over 2m higher (~ 100 % increase) than the E1-forced case.
E1, which produced reasonable Irene tracks (Fig. Al), also
shows a fair range of WSE and an ensemble mean compara-
ble to the observed along-channel peak WSE for Hurricane
Irene (2011). Here, observed peak WSE means the FVCOM
model WSE generated using reanalysis forcing and vali-
dated using field datasets. At the upstream end, near New-
bold (NB), the peak WSE range deviates from the observed
range due to the influence of river discharge and the biases
that propagated from the E3SM precipitation field (details
provided in Appendix A).

Interestingly, close to the bay mouth and near the upstream
river boundary, the distributions of E1- and E2-forced WSE
are similar despite strong differences in the mid-bay. The
similarity at the bay mouth indicates that the offshore hur-
ricane wind field (outside the bay) generated a narrow range
of the remote surge, which propagated upstream from the bay
entrance. Then, there is a local generation of storm surge in-
side the bay (between Brandywine Shoal Light (BSL) and
Burlington (BU)), significantly higher for E2 likely due to a
combination of the hurricane’s estuarine wind field and con-
vergence of the estuarine width. The river discharge plays
a secondary role; we can see that for E1, which produces
a much higher flux magnitude, the impact is only signifi-
cant for the region between BU and NB (the narrowest por-
tion near the DHSVM flow boundary). In general, for all
the tracks from E1 and E2, the peak river discharge at the
Delaware River boundary lagged behind the storm surge at
the bay entrance by 2 d, making the impact of river discharge
negligible during the landfall period on 28 August 2011 12Z.
The higher surface slope near the river boundary for El,
shown in Fig. 2c, was generated primarily from the peak
river discharge that occurred around 30 August 2011 12Z
(Fig. 2b). While a similar along-channel gradient can also
be generated for E2 around 30 August 2011 12Z, the signifi-
cantly higher surge during the landfall (28 August 2011 127)
elevated the peak WSE much more than the following river-
discharge-driven condition. A more detailed explanation of
this WSE variation is given in the following section.
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4 The role of local estuarine wind in surge
amplification

In this section, we examined the impact of estuarine wind
directions in amplifying storm surges along the converging
DBR system. We selected two tracks from the ensembles —
Cases A from El and B from E2 (Fig. 2a) — that produced a
nearly similar surge at the Delaware Bay mouth (the “remote
surge” hereafter), shown in Fig. 2e. Cases A and B also have
comparable 10m elevation wind magnitudes inside the bay
(Fig. 2d), though the strongest winds are in opposite direc-
tions: Case A with a primarily northerly wind and Case B a
southerly wind. We provided a more thorough description of
different process comparisons that led to these event selec-
tions in the Supplement titled “Hurricane case selection”.

Figure 3a and b show a 2D representation of hurricane
wind field for the two events when the estuarine wind speed
peaked (~20ms~!) inside DBR. To isolate the role of estu-
arine wind, we defined a region (the black polygon in Fig. 3a
and b) that covers the hydrodynamic model domain from the
bay mouth to the upstream model boundary. We used this
bounding polygon to select the E3SM grid cells that fully
cover the FVCOM model domain. FVCOM uses a bilinear
interpolation method to assign wind velocity at the unstruc-
tured grid cells from the meteorological dataset. To repre-
sent a scenario with nominal estuarine wind during hurri-
cane landfall, we multiplied the E3SM wind velocity vectors
(inms~") within the polygon by 0.1 to uniformly dampen the
wind magnitude in the selected cells, regardless of the instan-
taneous location of the hurricane. For the two cases, A and B,
this artificial dampening reduced the peak wind speed magni-
tude to ~ 2.0 ms~!, making the impact of the hurricane wind
field negligible. In addition, the polygon and E3SM grid cells
extensively covered the FVCOM model domain, going be-
yond the FVCOM boundary, to better interpolate the wind
forcing. Figure 3c and d show the instantaneous WSE along
the main channel for the two tracks based on simulations with
and without the effect of estuarine wind fields within the de-
fined region.

It is evident that the local estuarine wind stress plays a sig-
nificant role in both cases in altering WSE as the storm surge
propagates upstream. However, the estuarine wind plays a
more prominent role in Case B, where the southerly wind is
directed up-channel, and pushes more water northward into
the converging portion of the bay, resulting in a rapid increase
in the water level from BSL to NB (Fig. 2c). In contrast,
Case A shows a markedly different response within the sys-
tem, as the northerly wind causes a setdown at the upstream
portion of DBR and a setup in the mid-bay resulting from
the interaction of the local and remote surge, which produced
higher flooding (~ 1.0 m) between Ship John Shoal (SJS) and
Philadelphia (PHL) (Fig. 3c).

Previous studies have demonstrated how the local estuar-
ine wind field created surface slope during hurricane land-
falls at Tampa Bay, FL (Weisberg and Zheng, 2006), and
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Chesapeake Bay, VA (Shen et al., 2006b). They have shown
that, in shallow estuaries, the cross-shore component of wind
stress creates a large downwind surface slope and surge. To
explain this process mechanistically, Wong and Trowbridge
(1990) and Shen et al. (2006a) provided linear solutions for
WSE along a hypothetical rectangular estuary by dividing
the total water level into two parts: remote surge and se-
tup/setdown from local wind forcing. While the linear and
simplified momentum equations (using a constant bottom
and width of the estuary) can provide a fundamental under-
standing of the spatially varying surge amplitude, the evo-
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lution of flooding becomes much more complex for a con-
vergent system. In such cases, the nonlinear interaction be-
tween the tide, surge, and local geometry may increase or
decrease along-channel WSE (Weisberg and Zheng, 2008;
Xiao et al., 2021). In a complex system with irregular bottom
and rapidly converging estuary width like DBR, the simpli-
fied equations cannot reasonably predict the surface variation
shown in Fig. 3c and d, and a high-resolution 3D numerical
modeling framework is necessary to address the nonlinear
interactions and the associated surge generation.
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(a) Case A (northerly estuarine wind)
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(b) Case B (southerly estuarine wind)
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Figure 4. (a,b) Changes to along-channel peak water surface elevation for different force combinations for Cases A and B. (c,d) The
difference in peak water surface with and without estuarine wind for the same cases.

The evolution of peak WSE for the entire period of the
hurricanes was examined by designing a few scenarios to
identify the primary drivers of estuarine storm surge inten-
sity. In the hydrodynamic model run, surface wind stresses
(estuarine, remote, and both) were included along with the
tidal forcing in a sequence to explain the incremental flood
amplification, shown in Fig. 4a and b. As described earlier,
we multiplied the E3SM wind velocity vectors (in ms™!) by
0.1 outside and within the polygon (shown in Fig. 3a and b)
to make estuarine and remote wind-stress-only cases, respec-
tively. For Case A (with a northerly wind from E1), the es-
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tuarine wind aligned against the incident tidal wave (without
remote surge) and produced a steep slope between Marcus
Hook (MH) and SJS due to the complex tide-wind inter-
action and channel convergence. The downwind water sur-
face pressure gradient in the estuary caused additional re-
sistance to the propagating flood tide. Combined with the
convergence effect, this nonlinear interaction amplified the
bay water level (Fig. 4a). When the full wind field is in-
cluded, we can see a similar along-channel peak WSE gra-
dient where the difference in peak water level, varying from
0.73 to 1.05m, came from the remote surge propagation

https://doi.org/10.5194/nhess-24-2461-2024



M. Deb et al.: Estuarine hurricane wind and surge-dominated extreme water level

through Delaware Bay. Figure 4a also shows that the remote
surge, as it travels through the system, follows a similar trend
of the peak tidal WSE where some amplitude damping oc-
curs close to Reedy Point (RP) due to higher flooding of the
surrounding low-lying wetlands. The combined effect of the
remote surge and local setup from the estuarine wind field is
attributed to a locally amplified flooding on the bay-river in-
teraction zone (between SJS and MH), where the peak water
surface increased by more than 1.0 m (~ 60 %) at certain lo-
cations. A spatial map of the peak WSE difference between
surge from the full wind field and the remote field only (An
in meters) is given in Fig. 4c to demonstrate the extent of
the flooding in the same zone. Finally, when the river dis-
charge from the hurricane precipitation field is added to the
full wind simulation, it seems to generate a steep WSE gra-
dient and compound flooding on the upstream part of the
Delaware River (Fig. 4a), where the river width is signifi-
cantly narrower than the estuary and bay mouth.

Case B, with a southerly wind, shows much higher flood-
ing (almost doubled near the head) for the full simulation
than Case A (Fig. 4b). As the estuarine wind and remote
surge propagated in the same direction, the direct upwind
push of the water from the large bay surface raised the peak
WSE from BSL to the upstream model boundary. While we
can see a change in the water surface slope near SJS from
the higher overland flooding, the combined WSE from wind-
generated local surge and remote surge demonstrates a lin-
ear increase along the channel. Between BSL and SJS, the
estuarine wind and remote surge interacted similarly to the
previous observations of Wong and Trowbridge (1990) and
Shen et al. (2006a). However, from SJS to the remaining nar-
row reach, the channel cross-section area convergence ampli-
fied the peak WSE as the wave propagated upstream. Com-
pared to the remote-surge-only case, the combined estuarine
wind and remote surge case produced a 2 m higher water sur-
face elevation (~ 100 % increase). The inclusion of river dis-
charge did not make any notable difference in the upstream
regions (as seen in Case A) due to the larger surge-driven
channel water volume and surface area. Figure 4d shows the
peak WSE difference (An) for Case B, where we see a dra-
matic increase in along-channel flooding from the estuarine
wind field. This case illustrates that the local estuarine wind
stress can significantly amplify WSE from the bay entrance
to upstream regions in converging estuaries (nearly 2.5 m or
150 % for Case B), even when the offshore surge near the
entrance is not catastrophic.

5 Discussion and conclusions

This study examined the role of different hurricane landfall
locations and the associated estuarine wind field on the local
amplification of storm surges in a converging coastal system.
A key finding was that small differences in hurricane tracks
could cause drastic differences in the bay surface wind stress
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(timescale is on the order of hours) and the along-channel
storm surge response due to local geometry. Previous works
related to the sensitivity of storm surge and coastal flooding
to hurricane landfall locations, wind field (speed and direc-
tion), and geometry (e.g., Powell and Houston, 1996; Hous-
ton et al., 1999; Shen et al., 2006b; Weisberg and Zheng,
2008; Marsooli and Lin, 2018) have not separately examined
the role of this shorter period (translation period through the
estuary) and estuarine-scale landfalling wind using physics-
based integrated modeling frameworks.

Thus, there is a clear need to better understand the com-
plex, nonlinear response of storm surge to storm track, as
simple metrics such as distance to storm track could be mis-
leading and fail to capture the intricacies of the response. Fur-
ther work is also needed to examine the role of hurricane in-
tensity; the radius of maximum wind; translation speed; and
the interaction between tide, non-tidal residual, and waves
separately, all of which could similarly influence the coastal
flood level (Suh and Lee, 2018; Parker et al., 2023; Hsu et al.,
2023). These essential hurricane characteristics and oceanic
processes can affect both the remote and local surge genera-
tion, requiring a future study focusing on their overall impact
on the same area. Also, this work emphasized the utility of
a model hierarchy, which is crucial for accurately represent-
ing important localized factors such as the estuarine wind
field. This approach is essential for improving future coastal
hazard projections on the US Atlantic coast for a warmer cli-
mate.

The integrated modeling framework combining an earth
system model (E3SM), hydrology model (DHSVM), and hy-
drodynamic model (FVCOM) helped generate two plausible
and physically consistent ensembles of Irene-like events, as-
sociated river discharge, and the coastal flood water level, re-
spectively. Peak water surface elevation inside Delaware Bay
and River, a shallow and convergent system, showed a pivotal
relationship with the estuarine wind directions. Even though
tracks in E2 (inland hurricanes) made landfall much earlier
before reaching the bay compared to E1 (shore-parallel hur-
ricanes), and both had a similar storm surge magnitude at
the bay mouth (propagated from the open ocean), the inland-
oriented tracks produced greater flooding inside the bay and
river despite much smaller river discharge. Upon examining
the flood generation mechanisms step-by-step, we observed
that the estuarine hurricane wind could significantly amplify
flooding in shallow and converging estuaries when it follows
the surge propagation direction. Case B, which has shown
this effect, produced a nearly 2.5m or 150 % increase in
the peak WSE from the bay entrance to the upstream river
portion compared to the case with remote surge only. The
water surface gradient demonstrated a spatially varying ef-
fect of the nonlinear interaction between tide, surge, wind
stress, and the estuary geometry, where the channel conver-
gence rapidly raised the peak WSE as the flood wave prop-
agated upstream. When the surge and estuarine wind direc-
tion opposed each other (as seen for E1), the complex inter-

Nat. Hazards Earth Syst. Sci., 24, 2461-2479, 2024



2470

action produced a setdown in the river, a setup in the bay,
and a higher surge in the middle of the estuary. As shown
for Case A, while the flooding is limited to the mid-portion
of the estuary, the peak WSE increased again by more than
60 % compared to the case without bay surface wind stress.
Ultimately, the analysis showed that even if a hurricane
makes landfall before reaching the mid-Atlantic region and
does not bring a record extreme water level near the bay
mouth from offshore, the direct upwind forcing over the es-
tuarine surface area itself can produce a record level of flood-
ing if it aligns with the surge direction. In converging estu-
arine systems worldwide (e.g., the Delaware Bay and River
(USA), Humber Estuary (UK), Hooghly Estuary (India), the
Meghna River Estuary (Bangladesh), and the Pearl River
Estuary (China)) that are highly vulnerable to hurricane-
induced flooding, physically consistent and integrated mod-
eling frameworks are critical to correctly resolve these non-
linear tide, wind, and surge dynamics and improve the coastal
hazard projections for a future climate. In other coastal sys-
tems, such as sheltered tidal lagoons or river deltas, properly
resolving the estuarine local wind using an integrated frame-
work is essential as well; however, the interacting effect of
geometry and tide, wind, and surge dynamics in flood ampli-
fication will be less significant than the converging ones.

Appendix A: E3SM setup and validation

The US DOE Energy Exascale Earth System Model version 2
(hereafter, “E3SM”; Golaz et al., 2022) land model shares the
same horizontal grid as the atmosphere model (described in
the main text). The E3SM river runoff model uses a horizon-
tal grid mesh of ~ 12km, though output from this compo-
nent is not addressed in this study. The atmosphere model
is initialized globally using ECMWF Reanalysis version 5
(ERAS; Hersbach et al., 2020), while initial conditions for
the land and river models are taken from the end of a 1-year
E3SM simulation forced by observed, time-evolving atmo-
spheric data.

Our E3SM ensemble setup is guided by the approach used
in Reed et al. (2020). For all E3SM simulations described
in this study, the Betacast software toolkit (Zarzycki and
Jablonowski, 2015, see “Code and data availability” section
for software access) is used to facilitate ensemble configura-
tion and management. A “test” collection of 100 simulations
is conducted using 10-member ensembles each initialized ev-
ery 12h from 27 August 00Z (approximately 12h before
Hurricane Irene’s first US landfall in North Carolina) back
to 22 August, 12Z. The test ensemble members use randomly
drawn values (within defined bounds) of parameters to which
hurricanes are most sensitive (see Table Al), according to
the hurricane parameter sensitivity study of He and Posselt
(2015) and as used in Reed et al. (2020) and Reed et al.
(2021). The same parameter sets are used across each initial-
ization time as in Reed et al. (2020). All E3SM-simulated
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tracks and storm characteristics (e.g., minimum sea-level
pressure, maximum surface winds) of Irene are computed
using the TempestExtremes software package (Ullrich et al.,
2021), and model errors in storm location and intensity com-
pared to the National Centers for Environmental Information
(NCEI) International Best Track Archive for Climate Stew-
ardship (IBTrACS; Knapp et al., 2010, 2018) are obtained
using version 10.0.0 of the Model Evaluation Tools Tropical
Cyclone (MET-TC) diagnostic package (Brown et al., 2021)
(see “Code and data availability” section for access to Tem-
pestExtremes and MET-TC). For each initialization time, test
ensemble mean hurricane track and intensity errors are com-
puted, and an optimal initialization time (in this case, 26 Au-
gust 00Z) is identified that attempts to maximize both simula-
tion fidelity and forecast lead time. To create a larger sample
size, the test ensemble initialized at the optimal time (26 Au-
gust 00Z) and the ensemble initialized 12 h earlier (25 Au-
gust 127) are expanded to 50 members each (Reed et al.,
2020, produced a 100-member ensemble at a single initial-
ization time). In total, two 50-member ensembles are gen-
erated by initializing E3SM at two times separated by 12h
(26 August 00Z (hereafter “E1”) and 25 August 127 (here-
after “E2”)). Each ensemble member within E1 uses a unique
parameter set, with the same parameter sets being imposed
on E2 members (i.e., E2 member N uses the same param-
eter values as E1 member N, despite different initialization
times).

Figure Al displays the time evolution of errors in along-
and cross-track distances, minimum central sea-level pres-
sure, and maximum surface wind associated with Hurricane
Irene simulated by E3SM initialized on 26 August 2011 00Z
(ensemble E1). Similar time series for ensemble E2 (not
shown) indicate larger distance errors — consistent with a
more westward/inland track — but similar errors in minimum
central pressure and maximum surface winds by construc-
tion. Figure Al shows that Hurricane Irene simulated for
El generally follows the correct trajectory (cross-track errors
less than 20 km) but has a forward speed that is slower than
observed (along-track errors of roughly —50 to —100km).
Further, the E1 version of Irene predicts a central pressure
that is too low and surface winds that are too high, indicating
an overestimation of hurricane intensity.

We also use the Climate Prediction Center “Unified
Gauge-Based Analysis of Daily Precipitation over CONUS”
product (Chen et al., 2008), provided at daily resolution on a
0.25° x 0.25° horizontal grid, to assess space—time-averaged
precipitation accumulations. Figure A2 displays the evolu-
tion of mid-Atlantic watershed-averaged (Fig. A2a) 3-hourly
precipitation amounts and (Fig. A2b) cumulative sum of pre-
cipitation. Watershed-averaged precipitation intensity peaks
near 28 August 2011 15Z-18Z for both the ensemble mean
and selected E1 member. E3SM exhibits a slow onset of the
watershed-averaged cumulative sum of precipitation through
28 August 2011 12Z (Fig. A2, right) but later overestimates
cumulative precipitation through 29 August 2011 12Z. This
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Table Al. List of E3SM atmospheric physics parameters modified in this study, including the associated parameterization scheme, default
values and minimum and maximum ranges used, and a short description. Parameter value ranges are taken from He and Posselt (2015). For
a description of parameterization schemes, see Golaz et al. (2022). CAPE signifies convective available potential energy.

Scheme  Parameter Default Min Max  Short description
CLUBB  clubb_c_klI0 0.35 0.2 0.6  Coefficient of momentum diffusivity, Kh_zm
M zmconv_c0_ocn 0.002 0.001 0.0045 Autoconversion coefficient over ocean for deep convection
zmconv_dmpdz —0.7¢73 —0.002 0  Parcel fractional mass entrainment rate
zmeonv_tau 3600 1800 28800 Timescale for consumption rate of CAPE for deep convection
MG2 ice_sed_ai 500 50 1400  Cloud ice fall speed parameter
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Figure Al. (a) Time-evolving, along-track distance error (simulation minus observations) for E3SM ensemble members (light gray), the en-
semble mean (bold black), and the selected ensemble member analyzed in this study (bold gray) for Hurricane Irene initialized on 26 August
2011 00Z. (b—d) As in the upper left panel (a), but for the cross-track error, minimum sea-level pressure error, and maximum surface wind,
respectively. The dotted gray line marks 28 August 2011 15Z, the time corresponding to the snapshot of Hurricane Irene shown in Fig. 2.

equates to a ~ 15mm (~20 %) underestimation of cumu-
lative precipitation during the initial impact window but a
~30mm (~ 33 %) overestimation of storm total precipita-
tion. Together, Figs. A1 and A2 indicate that E3SM simulates
a version of Irene that is too slow and too strong, leading to a
delayed onset of precipitation in the mid-Atlantic watershed
but ultimately an overestimation of storm total precipitation.

https://doi.org/10.5194/nhess-24-2461-2024 Nat. Hazards Earth Syst. Sci., 24, 2461-2479, 2024



2472

Precipitation
Init: 00Z, Aug 26, 2011 Bold (color): EAMO035

M. Deb et al.: Estuarine hurricane wind and surge-dominated extreme water level

Precipitation cumulative sum
Init: 00Z, Aug 26, 2011 Bold (color): EAMO035

(b)

Precipitation [mm]

Precipitation cumulative sum [mm]

T T T T T T T

140 A

120 A

100 A

80 1

60 A

40 A

18Z 00Z 06Z 12Z 18Z 00Z 06Z 12

Aug 28 Aug 29

T T T T

18Z 00Z 06Z 12Z 18Z 00Z 06Z 12Z
Aug 28 Aug 29

Figure A2. (a) Time evolution of 3-hourly precipitation amount averaged across the mid-Atlantic Hydrologic Unit Code (HUC) 02 watershed
for E3SM ensemble members (light red), the ensemble mean (black), and the selected ensemble member analyzed in this study (bold red)
for Hurricane Irene initialized on 26 August 2011 00Z. (b) As in the left panel (a), but for the cumulative sum of watershed-averaged
precipitation from 27 August 2011 12Z through 29 August 2011 12Z, representing the time window of Irene precipitation impacts on the
watershed. In the right panel (b), Climate Prediction Center (CPC) rain gauge values are shown as blue dots and indicate cumulative sums

for the 24-hour period ending at the time plotted.

Appendix B: DHSVM validation

To evaluate the hydrological model for its robustness in cap-
turing the spatial and temporal variability in flow responses,
we chose Hurricane Irene (2011) as the focal event and used
a gridded (~ 6 km) CONUS-scale meteorological dataset de-
veloped by Livneh et al. (2013) for model forcing. The
source Livneh dataset consists of daily records of precipi-
tation, maximum and minimum air temperature, and wind
speed over the period 1950-2013, and they were disaggre-
gated from the daily records to the 3-hourly interval. Then,
we evaluated the DHSVM-simulated daily flows (averaged
from the 3-hourly flows) against the United States Geolog-
ical Survey (USGS) daily flow observations at six gauge
locations. These locations represented a range of drainage
areas from 4118-17 560 km? along the longitudinal profile
(upstream—downstream) of the main stem of the Delaware
River (Fig. Bla). The model performance was measured us-
ing Nash—Sutcliffe efficiency (NSE) and the Kling—Gupta ef-
ficiency (KGE; Gupta et al., 2009); they are commonly used
for measuring hydrological model performance and can be
estimated as

SN (00— M,)?

NSE = | — == —,
2n=1(0n = 0)

(BI)
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where M, and O, are simulated and observed daily flow, re-
spectively; N is the total number of days used in metric cal-
culations; and O is observed daily mean flow over N days.

KGE:1—\/(r—1)2+(a—1)2+(,3—1)2, (B2)
where r is the linear correlation, « is the viability error, and
B is the bias between observed and simulated daily flows.
Both NSE and KGE range from —oo to 1, and a value of 1
indicates perfect agreement between simulation and observa-
tions.

The comparison between simulations and observations of
daily streamflow is shown in Fig. B1b. We observed a good
agreement for Hurricane Irene (2011), where NSE daily
range is from 0.71-0.91, and KGE range is from 0.59-0.91.
Even though the model captured the timing of peak river dis-
charge for all evaluated gauges, a higher peak flow bias is
observed at USGS-01428500 and USGS-01463500. Among
various factors that might have contributed to this bias, some
key sources are uncertainties in climate input and topogra-
phy and the uncertainty in stage—discharge rating curves and
streamflow records.
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Figure B1. (a) USGS stream gauge locations in the Delaware River Basin. (b) Comparison between observed and simulated river discharge

at the USGS stream gauge locations.

Appendix C: FVCOM validation

To validate the FVCOM model results, we used a different
set of model forcing than the one mentioned in the main
text (Sect. 2). The sea surface wind stress and atmospheric
pressure field of Hurricane Irene (2011) were collected from
ERAS, a global atmospheric reanalysis model that provided
the highest resolution from the available public data — a spa-
tial resolution of 30 km. As the hydrology model (DHSVM)
was only calibrated for Hurricane Irene (2011), for validat-
ing FVCOM for both Hurricane Irene (2011) and Hurricane
Sandy (2012), we assigned the river flow condition using
USGS stream gauges available at the Delaware River and
Schuylkill River model boundary. Also, we collected water
surface elevation (WSE) data from the NOAA Tides and Cur-
rents database (https://tidesandcurrents.noaa.gov, last access:
15 July 2024) for model validation. Finally, to quantify FV-
COM model WSE error statistics, we estimated the linear
correlation coefficient (corr), average bias index (bias), and
model skill as

corr = Yooy (Ma—M) (0, —0) |

J(E(00-0)) (S 01— W)')

SN (My— 0n)

(ChH

bias = (C2)
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skill = 1 — (C3)

where M, and O, are simulated and observed water surface
elevation, respectively; N is the total number of samples used
in metric calculations; and M and O are the mean of the
samples.

Figure C1 shows that the model WSE and phase match
very well with the in situ WSE and show a strong abil-
ity to predict the peak surge elevation for both hurricanes.
While the model peak surface amplitude agrees well, even in
Philadelphia, there is a slightly elevated amplitude error after
the landfall period of Hurricane Sandy (2012). This could be
from the missing sub-tidal elevation at the model northwest-
ern open boundary, where we have a smaller area coverage
for the ocean. The error estimates are shown in the scatter
plot (Fig. C2), where we only included gauges represent-
ing different estuary- and river-dominant zones. Overall, the
correlation coefficient varies from 0.92 to 0.96 and the skill
score from 0.92 to 0.98, and the averaged bias index indi-
cates a model underprediction due to a slightly elevated tidal
damping during the flood.
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Figure C1. Water surface elevation comparison between model results and in situ observations (in meters) at NOAA tide gauge locations in
Delaware Bay and River during (a) Hurricane Irene (2011) and (b) Hurricane Sandy (2012).
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Figure C2. Scatter comparison and statistics for (a) Hurricane Irene (2011) and (b) Hurricane Sandy (2012) water surface elevation at four
NOAA tide gauge locations that represent different bay and river zones, going from the upstream river to the estuary.

Code and data availability. ECMWF  Reanalysis  version 5
data were obtained from https://doi.org/10.24381/cds.bd0915¢c6
(Hersbach et al., 2023). NOAA OI-SST version 2 data were
obtained from https://www.psl.noaa.gov/data/gridded/data.
noaa.oisst.v2.highres.html (NOAA, 2024). The E3SM ver-
sion 2 code base is accessible via a GitHub repository at
https://doi.org/10.11578/E3SM/dc.20240301.3 (E3SM  Project,
2024). The 3D ocean model FVCOM code is available from
the MEDM Lab (https://github.com/FVCOM-GitHub/FVCOM,
MEDM Lab, 2018). The Distributed Hydrology Soil Vegetation
Model (DHSVM) code is available at https://www.pnnl.gov/
projects/distributed-hydrology-soil- vegetation-model (PNNL,
2024). Hydrodynamic model tidal boundary conditions are as-
signed using OSU TPXO Tide Models (https://www.tpxo.net’/home,
OSU TPXO, 2024), and model validations are performed
using tidal water level from NOAA tides and currents
(https://tidesandcurrents.noaa.gov/, National Ocean Service and
National Oceanic and Atmospheric Administration, 2024). E3SM
ensemble setup and management were facilitated using the Beta-
cast software package (https://doi.org/10.5281/zenodo.6047091,
Zarzycki, 2023). All E3SM-simulated tracks and storm character-
istics are computed using the TempestExtremes software package
(https://github.com/ClimateGlobalChange/tempestextremes,

https://doi.org/10.5194/nhess-24-2461-2024

Ullrich, 2024), and model errors in storm location and inten-
sity compared to the IBTrACS observation-based dataset are ob-
tained using version 10.0.0 of the Model Evaluation Tools Trop-
ical Cyclone (MET-TC) diagnostic package (available at https:/
github.com/dtcenter/MET, Developmental Testbed Center, 2024).
Model datasets used for further analysis are provided here at
https://doi.org/10.5281/zenodo.7988098 (Deb, 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-24-2461-2024-supplement.
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