Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-823-2023
https://doi.org/10.5194/nhess-23-823-2023
Research article
 | 
27 Feb 2023
Research article |  | 27 Feb 2023

A globally applicable framework for compound flood hazard modeling

Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-149', Anonymous Referee #1, 13 Jul 2022
  • RC2: 'Comment on egusphere-2022-149', Anonymous Referee #2, 15 Jul 2022

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (24 Oct 2022) by Piero Lionello
AR by Dirk Eilander on behalf of the Authors (02 Nov 2022)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to minor revisions (review by editor) (04 Dec 2022) by Piero Lionello
AR by Dirk Eilander on behalf of the Authors (05 Dec 2022)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (29 Dec 2022) by Piero Lionello
ED: Publish as is (29 Dec 2022) by Piero Lionello (Executive editor)
AR by Dirk Eilander on behalf of the Authors (02 Jan 2023)
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Altmetrics
Final-revised paper
Preprint