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Abstract. Coastal river deltas are susceptible to flooding
from pluvial, fluvial, and coastal flood drivers. Compound
floods, which result from the co-occurrence of two or more
of these drivers, typically exacerbate impacts compared to
floods from a single driver. While several global flood mod-
els have been developed, these do not account for compound
flooding. Local-scale compound flood models provide state-
of-the-art analyses but are hard to scale to other regions as
these typically are based on local datasets. Hence, there is a
need for globally applicable compound flood hazard model-
ing. We develop, validate, and apply a framework for com-
pound flood hazard modeling that accounts for interactions
between all drivers. It consists of the high-resolution 2D
hydrodynamic Super-Fast INundation of CoastS (SFINCS)
model, which is automatically set up from global datasets
and coupled with a global hydrodynamic river routing model
and a global surge and tide model. To test the framework,
we simulate two historical compound flood events, Tropi-
cal Cyclone Idai and Tropical Cyclone Eloise in the Sofala
province of Mozambique, and compare the simulated flood
extents to satellite-derived extents on multiple days for both
events. Compared to the global CaMa-Flood model, the glob-
ally applicable model generally performs better in terms of
the critical success index (− 0.01–0.09) and hit rate (0.11–
0.22) but worse in terms of the false-alarm ratio (0.04–0.14).
Furthermore, the simulated flood depth maps are more real-
istic due to better floodplain connectivity and provide a more
comprehensive picture as direct coastal flooding and pluvial
flooding are simulated. Using the new framework, we de-

termine the dominant flood drivers and transition zones be-
tween flood drivers. These vary significantly between both
events because of differences in the magnitude of and time
lag between the flood drivers. We argue that a wide range
of plausible events should be investigated to obtain a robust
understanding of compound flood interactions, which is im-
portant to understand for flood adaptation, preparedness, and
response. As the model setup and coupling is automated, re-
producible, and globally applicable, the presented framework
is a promising step forward towards large-scale compound
flood hazard modeling.

1 Introduction

Coastal river deltas are susceptible to flooding due to their
physical setting in low-elevation regions and the presence of
many densely populated cities. A recent study showed that
deltas contained 4.5 % of the global population in 2017 while
only covering 0.57 % of the earth’s land surface area (Ed-
monds et al., 2020). Floods in coastal delta regions can oc-
cur as the result of different physical drivers, including ex-
treme rainfall, river discharge, or extreme coastal water lev-
els. Floods can also occur because of (or be exacerbated by)
the co-occurrence of combinations of these drivers, so-called
compound flood events, which may amplify the total flood
hazard (Leonard et al., 2014; Zscheischler et al., 2018). Trop-
ical Cyclone Idai, which made landfall near Beira, Mozam-
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bique, in March 2019, caused more than 600 casualties
and affected an estimated 1.85 million people (UN OCHA,
2019). This is an example of the devastating impacts that
compound floods can cause (Emerton et al., 2020). A com-
prehensive understanding of flood risk in deltas is therefore
crucial for effective risk reduction.

There is wide recognition that interactions between flood
drivers should be taken into account for flood risk assessment
and management in both scientific (Moftakhari et al., 2017;
Wahl et al., 2015; Ward et al., 2018) and decision-making
communities (Browder et al., 2021; UNDRR, 2019). Several
studies have used statistical models to assess the dependence
between flood drivers in order to understand the likelihood
of extreme drivers occurring together (Camus et al., 2021;
Couasnon et al., 2020; Bevacqua et al., 2019; Hendry et al.,
2019; Ward et al., 2018). Furthermore, hydrodynamic model
simulations have been used to understand the complex physi-
cal interactions between drivers and their relative importance
for the total flood hazard (Bakhtyar et al., 2020; Eilander et
al., 2020; Gori et al., 2020a; Harrison et al., 2021; Kumbier
et al., 2018; Muñoz et al., 2021; Olbert et al., 2017; Santiago-
Collazo et al., 2019; Torres et al., 2015)

However, to date most global flood risk models still an-
alyze each flood driver in isolation (Alfieri et al., 2017;
Hirabayashi et al., 2021; Tiggeloven et al., 2020; Vousdoukas
et al., 2018; Ward et al., 2020). Recently, the effect of storm
surge on fluvial flooding was analyzed at the global scale,
showing that 1-in-10-year fluvial flood levels are exacer-
bated by surge for 64 % of the locations analyzed, causing
increased flood risk for 9.3 % of the population exposed to
riverine flooding (Eilander et al., 2020; Ikeuchi et al., 2017).
Bates et al. (2021) were the first to make a combined risk as-
sessment of fluvial, pluvial, and coastal flood hazard for the
continental USA but did not account for physical interactions
of pluvial with other flood drivers.

While the performance and resolution of large-scale flood
models are approaching those of local-scale flood models in
data-rich areas (Wing et al., 2021), there are still large dif-
ferences between global flood models in many areas globally
(Aerts et al., 2020; Bernhofen et al., 2018; Trigg et al., 2016).
The setup of these models remains a challenging task due to
the lack of open and accurate high-resolution global topog-
raphy data (Hawker et al., 2018b) as well as missing data on
river and estuarine bathymetry (Neal et al., 2021) and flood
defenses (Ward et al., 2015; Wing et al., 2019). Therefore,
building hydrodynamic flood models from global datasets re-
quires several data preprocessing steps that may have a large
effect on the model skill (Sampson et al., 2015). Furthermore,
the code for setting up most global flood models is closed
source, while an open-source framework would increase the
comparability and reproducibility by providing a transpar-
ent workflow (Hall et al., 2022; Hoch and Trigg, 2019).
Sosa et al. (2020) presented an automatic model builder for
LISFLOOD-FP models, and Uhe et al. (2021) extended this
framework to a model cascade to compute fluvial flood haz-

ard from meteorological drivers. Van Ormondt et al. (2020)
developed Delft Dashboard, which is a graphical user inter-
face with various modular toolboxes to semi-automatically
set up hydrodynamic model schematizations in the ocean and
coastal domains but lacks tools to couple riverine models.
This leaves a gap for a fully automated model builder that
can be applied to the complex coastal delta environment to
simulate compound flood events.

In this study we present an automated framework to model
compound flooding anywhere on the globe in a reproducible
and transparent manner. The framework consists of a 2D hy-
drodynamic model, which is automatically built from global
datasets and coupled with a global hydrological and river
routing model for upstream boundary conditions and a global
surge and tide model for downstream boundary conditions.
The goal of this study is to present the framework, to test
its ability to simulate compound floods in data-sparse coastal
deltas, and to demonstrate how it can be used for compound
flood analysis. In particular, we compare flood hazard maps
from the local hydrodynamic model against satellite-derived
flood extents for two historical events. To evaluate the added
value of using the globally applicable model, we also com-
pare against a global model. Furthermore, we identify the
main flood drivers and transition zones between drivers fol-
lowing Bilskie and Hagen (2018).

2 Case study

To evaluate the flood hazard framework, we apply it to two
historical events in the Sofala province of Mozambique,
namely Tropical Cyclone Idai in March 2019 and Tropical
Cyclone Eloise in January 2021. Both events are examples
of compound flood events in a coastal delta. The largest city
in the Sofala province is Beira, with more than 500 000 in-
habitants and a large port connecting the hinterland with the
Indian Ocean. While the city itself is mainly threatened by
coastal and pluvial flooding, the deltas of the Pungwe and
Buzi rivers are also susceptible to fluvial flooding (Emerton
et al., 2020; van Berchum et al., 2020).

Tropical Cyclone Idai originated in the Mozambique
Channel as a tropical depression, which had already caused
extensive flooding after its first landfall in early March. Af-
ter it moved back over the Mozambique Channel, it gained
intensity and became a tropical cyclone with 10 min sus-
tained wind speeds of 165 km h−1, a maximum calculated
surge of ∼ 4.4 m, and torrential rainfall during the second
landfall near Beira on 15 March (ERCC, 2019). After the
second landfall, large areas flooded, first around the coast
and followed a few days later by the Buzi and Pungwe
floodplains. The tropical cyclone destroyed more than 60 000
houses, and an estimated 286 000 people received shelter
(UN OCHA, 2019).

Tropical Cyclone Eloise made landfall on 23 January 2021
around 20 km south of Beira, with winds of 140 km h−1 and
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Figure 1. Framework for globally applicable compound flood haz-
ard modeling.

widespread and extreme rainfall. The region experienced
widespread post-cyclone flooding, and it had already been
hit by heavy rainfall on 15 January and subsequent high river
water levels and was still recovering from the 2019 flood af-
ter Tropical Cyclone Idai. The Sofala province was the most
affected, especially communities along the Pungwe and Buzi
rivers. In total, more than 8800 houses were damaged and
176 000 people were affected (UN OCHA, 2021).

These events were selected because they provide a unique
case study of two different compound flood events in the
same study area, allowing for a comparison of the compound
flood dynamics between both events. Furthermore, the lack
of compound flooding in global models has been identified
as a key limitation to support decision-making in this area
(Emerton et al., 2020).

3 Methods

The globally applicable compound flood hazard framework
is shown in Fig. 1. In Sect. 3.1 we describe the global mod-
els used to set the boundary conditions of the hydrodynamic
model. In Sect. 3.2 we discuss the hydrodynamic Super-
Fast INundation of CoastS (SFINCS) model as well as its
automated setup. In Sect. 3.3 we discuss the analysis of
the model results and the compound flood drivers. Both the
model setup and analysis (postprocessing) are facilitated by
HydroMT v0.4.5 (Eilander and Boisgontier, 2022), an open-
source Python package to automate the building and analy-
sis of geoscientific models, and its model-specific SFINCS
plugin HydroMT-SFINCS v0.2.1 (Eilander et al., 2022). All
required model pre- and postprocessing steps have been au-
tomated and can thus easily be repeated for different loca-
tions. The approach is modular as datasets can easily be in-
terchanged, also for higher-resolution local datasets if avail-
able, and many workflows to process raw data into model
input data can be reused for different models.

3.1 Global models

To make the framework globally applicable, we make use
of global models to force the local flood model. The fol-
lowing sections describe the global ocean models used for
the coastal boundary conditions and global hydrological and
routing models used for the fluvial boundary conditions.
To ensure coherence between the flood drivers, the atmo-
spheric forcing of all models is based on the ERA5 reanalysis
dataset, which has a 0.25◦ spatial resolution (∼ 30 km) and a
1 h temporal resolution (Hersbach et al., 2020).

3.1.1 Global ocean models

Total nearshore water levels consist of several components,
namely astronomical tide, storm surge, and wave setup.
The latter two are episodic fluctuations due to atmospheric
drivers. Storm surge is generated by a storm’s winds pushing
water onshore and the inverted barometer effects of the pres-
sure (Resio and Westerink, 2008). Wave setup is an episodic
wave-driven increase in nearshore water levels resulting from
wave shoaling and breaking processes (Bowen et al., 1968).

The tide and surge components are simulated with the
Global Tide and Surge Model (GTSM) version 3.0 (Muis
et al., 2020), which is based on the Delft3D Flexible Mesh
hydrodynamic model software (Kernkamp et al., 2011). The
model resolution varies from 25 km in the deep ocean to
2.5 km (1.25 km in Europe) near the coast, and results are
stored at a 10 min temporal resolution. Details about GTSM
schematization and parameterization are discussed in Muis
et al. (2020) and Wang et al. (2021). In this study, GTSM is
forced with mean sea level pressure and 10 m meridional (v;
northward) and zonal (u; eastward) wind components from
ERA5 merged with wind and pressure fields from the Hol-
land parametric wind model (Holland, 1980) based on the
International Best Track Archive for Climate Stewardship
(IBTrACS; Knapp et al., 2010). The data from the Holland
model are described with a polar grid with 36 radials and
a radius of 750 km following Dullaart et al. (2021), where
the data in the outermost 33 % are linearly interpolated with
the background ERA5 data to avoid a wind speed and pres-
sure drop towards the outer rim (Deltares, 2022). The sim-
ulated tides are based on tide-generating forces at 60 fre-
quencies without assimilation of satellite altimetry (Irazoqui
Apecechea et al., 2017). GTSM has been validated for var-
ious historical hurricane events (Dullaart et al., 2020) and
for derived return levels (Muis et al., 2020), showing good
agreement with observations. Hourly time series of signifi-
cant height of wind waves (Hs) are extracted at GTSM out-
put locations from the 30 arcmin ERA5 dataset and based on
the ECMWF Ocean Wave Model (Bidlot, 2012; Hersbach
et al., 2020). We estimate the wave setup component based
on 0.2 Hs, which is an often-used approximation for (large-
scale) studies (Camus et al., 2021; Vousdoukas et al., 2016;
US Army Corps of Engineers, 2002). Finally, time series of
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total water level (Htwl) are derived by combining the GTSM
tide and storm surge components (Hst) with the ERA5 wave
setup component (Hs): Htwl=Hst+ 0.2 Hs at a 10 min tem-
poral resolution.

Due to a lack of observations from coastal water level
gauges, a quantitative validation of the simulated water levels
is not possible, but some general observations about the sim-
ulated data can be made. The maximum simulated water lev-
els in GTSM during both events (5.0 m+m.s.l. during Idai;
3.8 m+m.s.l. during Eloise) occurred close to neap tide and
are caused by surge (3.2 m during Idai; 2.6 m during Eloise)
and wind setup (1.2 m during Idai; 0.7 m during Eloise). The
maximum surge and its timing during Idai (4.0 m) are in line
with the operational forecast of 4.4 m based on the HyFlux2
model forced with NOAA Hurricane Weather Research and
Forecasting atmospheric data (ERCC, 2019; Probst and An-
nunziato, 2019). As tide and wave effects are not simulated
by this model, total water levels are not available for com-
parison. In comparison with the tidal constituents of Interna-
tional Hydrographic Organization (IHO) station at the Port of
Beira as retrieved using the Delft Dashboard (van Ormondt
et al., 2020), the highest astronomical tide is expected to be
around 3.8 m, while our simulations result in 4.5 m, indicat-
ing an overestimation. This has however little effect on the
maximum water levels, which occurred close to neap tide.

3.1.2 Global hydrological and routing models

Riverine discharge is simulated with the global river routing
modeling CaMa-Flood version 4.0.1 (Yamazaki et al., 2013;
Hirabayashi et al., 2021). CaMa-Flood is selected as to our
knowledge it is the only global river routing model with an
explicit representation of floodplains (Zhao et al., 2017) that
also accounts for downstream sea level boundary conditions
(Ikeuchi et al., 2017). CaMa-Flood uses the local inertial ap-
proximation (Bates et al., 2010) to solve the mass and mo-
mentum equations for river and floodplain flows in one di-
mension (Yamazaki et al., 2013). A model grid cell repre-
sents a unit catchment containing a river segment with a rect-
angular cross section and a floodplain profile based on sub-
grid topography. In CaMa-Flood version v4.0 and later, the
subgrid parameters are based on the global high-resolution
topography data MERIT DEM (Yamazaki et al., 2017) and
hydrography data MERIT Hydro (Yamazaki et al., 2019).
Each river segment is connected to one downstream neigh-
bor, but floodplains of neighboring unit catchments can ex-
change flows through so-called bifurcation channels, making
it a quasi-2D model. The bifurcation channels are based on
a set number of elevation thresholds for which a represen-
tative stream width at the interface between the floodplains
of two neighboring unit catchments is derived based on the
subgrid topography. Bifurcation channels are activated if the
surface water elevation exceeds an elevation threshold. These
bifurcation channels are shown to be important in flat coastal
areas to correctly simulate floodplain connectivity (Ikeuchi

et al., 2015; Mateo et al., 2017; Yamazaki et al., 2014). The
unit-catchment areas are used to interpolate the input runoff
to the model grid, where the runoff within the unit catchment
directly enters the river segment at its upstream end.

We use a regional cutout between 32 ◦W, −21.5 ◦S,
35.5 ◦E, and−17 ◦N of the 3 arcmin spatial-resolution global
CaMa-Flood schematization; see Fig. 2a. Default model set-
tings are used except for the bifurcation scheme, which is
defined at 10 instead of 5 elevation thresholds to maximize
floodplain connectivity. Furthermore, to make the model
comparable with the globally applicable model, river width
and depth maps are created using the same procedure as ex-
plained in Sect. 3.2.1 but with the CaMa-Flood river seg-
ments. CaMa-Flood is forced with ERA5 runoff, which is
simulated with the Hydrological Tiled ECMWF Scheme for
Surface Exchanges over Land (HTESSEL) (Balsamo et al.,
2009), and total seawater levels from the nearest GTSM out-
put location at all river outlet locations; see Sect. 3.1.1. Grids
of instantaneous discharge and flood depth with a daily tem-
poral resolution are saved to be used as input for the local
flood model. The flood depth maps at the model resolution
are downscaled to a 3 arcsec (∼ 100 m at the Equator) reso-
lution based on high-resolution topography.

During Idai, national hydrological bulletins reported wa-
ter levels for the Pungwe River at Mafambisse and for the
Buzi River at Goonda (approximate locations are shown in
Fig. 2a). The bulletins report water levels during the onset
and recession of the flood peak but miss the peak itself. Fur-
thermore, neither exact locations nor the used vertical refer-
ence level could be retrieved, making a quantitative compari-
son impossible. We therefore only make a qualitative com-
parison between the observed and CaMa-Flood-simulated
water levels. Compared to the observations, the simulated
flood peak at the Pungwe River is slightly delayed but seems
to correctly capture the recession, while the flood peak at
the Buzi River seems to be overestimated and the recession
too fast (Fig. A1). The overestimation could be the result of
missing schematization of reservoirs in the model, such as
the Chicamba reservoir in the Revué River, a tributary to the
Buzi River.

3.2 Hydrodynamic model

The SFINCS model (Leijnse et al., 2021) is used to simulate
water levels and overland flood depths within coastal deltas.
SFINCS is selected as it is designed to efficiently simulate
overland flow from compound flooding at limited computa-
tion costs and with good accuracy (Leijnse et al., 2021; Se-
bastian et al., 2021). The governing equations of the SFINCS
model are based on the local inertial equations in two dimen-
sions (Bates et al., 2010). First, the flow rate is solved based
on two 1D momentum equations in x and y directions with
spatially varying roughness. Then, the water levels are com-
puted based on the mass balance. On-grid precipitation and
discharge boundary conditions are added as a local source
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Figure 2. Maps of a regional cutout of the global CaMa-Flood model (a) and the local SFINCS model with boundary conditions and model
output point locations for the case study in Sofala province, Mozambique (b). Note that both maps are in different projections based on the
projection used for the model schematization.

term in the mass equation. At open boundaries, the model
is forced with dynamic water levels, which are interpolated
from the two nearest user-defined point locations with water
levels. For a full description of the model, we refer the reader
to Leijnse et al. (2021). Here we use the SFINCS code revi-
sion 295.

In the remainder of this section we describe the steps taken
to automatically set up the SFINCS model schematization
and forcing from global datasets using HydroMT-SFINCS
v0.2.1 (Eilander et al., 2022). The complete model setup pro-
cess is described in a single configuration .ini file, and all
datasets (see Table 1) are described in a single data catalog
.yaml file; see Appendix B. This improves the transparency
and reproducibility of the model setup.

3.2.1 Setup of model schematization

Step 1: model grid definition

The SFINCS model grid is set up based on a bounding box
of the area of interest; a resolution; and a projected coor-
dinate reference system, here between 34.33◦W, −20.12◦ S,
34.95◦ E, and−19.30◦ N (WGS84) at 100 m resolution in the
UTM zone 36S projection. Cells that are not connected to the
Buzi or Pungwe floodplains and drain into adjacent basins
are excluded from the model domain.

Table 1. Overview of global datasets used to set up the hydrody-
namic flood model.

Dataset Variable (units)

ERA5 (Hersbach et al., 2020) Total runoff (ro) (m h−1)

MERIT Hydro (Yamazaki et al., 2019) Elevation (m+EGM96)
Upstream area (m2)
D8 flow directions (–)

GRWL (Allen and Pavelsky, 2018) Permanent water mask (–)

River width datasets (Lin et al., 2020) River width (m)
Bankfull discharge (m3 s−1)

CNES-CLS18 (Mulet et al., 2021) Mean dynamic topography (m)

OSM ocean shapefile (FOSSGIS, 2020) Ocean shapefile (–)

Step 2: topography and hydrography data

Topography data are reprojected onto the model grid using
bilinear interpolation. As hydrography data (D8 flow direc-
tions and upstream area) cannot be reprojected directly, we
instead reproject a pseudo-topography grid based on the up-
stream area and subsequently derive flow directions. The up-
stream area is then recalculated based on the new flow di-
rections, taking into account the upstream area of inflow-
ing rivers and streams at the model domain boundary. The
hydrography maps are not used by SFINCS but used at
later stages of the automatic model setup to define river
bathymetry and river in- and outflow locations. Here we used
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topography and hydrography data from MERIT Hydro v1.0
(Yamazaki et al., 2019).

Step 3: river and estuarine bathymetry

As global digital elevation models (DEMs) do not repre-
sent the bed level of river channels, the river bathymetry is
burned into the data using a similar procedure to in Sampson
et al. (2015). Rivers are defined based on an upstream area
threshold and discretized into river segments. For each seg-
ment, we determine first the river width from a binary river
mask, then the river bankfull elevation from the cells adja-
cent to the river mask, and finally the river depth relative to
the bankfull elevation. The detailed procedure is explained
here.

Rivers are based on D8 flow directions and a minimal up-
stream area threshold. River segments are defined between
river confluences or a river headwater cell or outlet cell and
a confluence. Long segments are split into equal parts to ap-
proximate a user-defined length. Here, we used a minimal
upstream area threshold of 100 km2 and an approximate seg-
ment length of 5 km.

The river width is calculated as the segment average width
derived from a binary river mask, by dividing the surface area
of each segment by its length, where the areas across multiple
parallel estuarine channels are summed. The mask is primar-
ily based on the Global River Widths from Landsat (GRWL)
Database (Allen and Pavelsky, 2018) but is extended by ras-
terizing the river width from the Lin et al. (2020) dataset.
This dataset contains river width estimates for∼ 1.6 km river
segments based on a machine learning approach that uses
16 covariates and was trained based on an average width
from GRWL and MERIT Hydro. Compared to MERIT Hy-
dro or GRWL, it has a higher spatial coverage and extends to
smaller rivers with a minimum width of 30 m.

The river bankfull elevation, relative to the segment ele-
vation, is estimated from a low percentile of height above
the nearest river values of cells neighboring the river mask.
These values are then corrected such that the absolute bank-
full elevation levels are monotonically increasing in an up-
stream direction using the algorithm developed by Yamazaki
et al. (2012). Here we use the 25th percentile, which was
found to give good results for this region but might need to
be refined for other regions.

We distinguish between a fluvial and estuarine part of the
river to determine the river depth. The riverine depth h (m)
is estimated from the bankfull discharge Q (m3 s−1) using
a power-law relationship: h= aQb, where the default values
for a (0.27) and b (0.30) are based on Andreadis et al. (2013).
The bankfull discharge is based on the 1-in-2-year return val-
ues of the discharge as simulated by Lin et al. (2019), and
it is derived from the nearest river segment from the Lin
et al. (2020) dataset. Gaps in bankfull discharge data are
filled based on the nearest valid upstream value. The estu-
arine depth is kept constant based on the depth of the most

upstream estuarine segment, which provides a first-order ap-
proximation of the depth in ungauged estuaries and is in ac-
cordance with observed depths in ideal alluvial estuaries in
low-gradient regions (Gisen and Savenije, 2015). Estuarine
segments are classified based on a width convergence rate.
Natural alluvial estuaries have a funnel planform shape that
is wide at the ocean and narrows inland (Savenije, 2015).
Here we use a convergence rate threshold of 0.01 m m−1 ap-
plied to a smoothed segment average width. This value was
found based on trial and error for the estuaries under consid-
eration and might need to be refined for other locations. A
global minimum river depth of 0.5 m is used.

The riverbed elevation zb [m+EGM96] is calculated for
each model cell of a river segment from the cell elevation z0
[m+EGM96], relative bankfull elevation difference dz (m),
and the bankfull depth h (m): zb = z0+max(0,dz−h). This
bed level is burned into the river center cells and spread to
neighboring cells within the river mask to burn a rectangular
river profile in the DEM.

Finally, we ensure that each river cell has at least one
horizontally or vertically neighboring cell with the same or
lower elevation to ensure the river has D4 connectivity in
the model.

Step 4: Manning roughness

A spatially varying Manning roughness grid is set up that
differentiates between land and river cells, based on the river
mask as defined in the previous step. Here we used a constant
of 0.03 s m−1/3 for river cells and 0.1 s m−1/3 for land cells,
which is in line with other studies (e.g., Di Baldassarre et
al., 2009) and consistent with the global CaMa-Flood model
(Yamazaki et al., 2011). HydroMT-SFINCS also contains a
routine to set up a spatially varying roughness grid based on
land-cover data, which is not used here to keep the model
consistent with CaMa-Flood.

Step 5: boundary cells

By default, the cells at the edge of the model domain have
closed boundaries, but these can be changed to Riemann-
type open water level boundaries. Here, an open water level
boundary is set for all cells at the interface with the ocean
by intersecting the model domain edge cells with the OSM
ocean shapefile (FOSSGIS, 2020). In the absence of water
level forcing of rivers leaving the model domain at the south
and east model boundaries and to avoid water building up
within the model domain, open boundary cells with a zero
water depth are set at these locations. These open boundary
cells are derived from the previously set hydrography data
based on a user-defined upstream area threshold and a river
width, here 10 km2 and 1 km respectively.
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Figure 3. SFINCS boundary conditions during Tropical Cyclone Idai (a, c, e) and Tropical Cyclone Eloise (b, d, f) for the total sea level
from GTSM and ERA5 (a, b), discharge from CaMa-Flood (c, d), and spatial average runoff from ERA5 (e, f). The solid lines show the total
water levels and discharge, as used for the validation; see Sect. 3.3.1. The dashed lines show the tidal water level component only (a, b) and
normalized discharge to match the climatological mean (c, d), as used in the compound driver analysis; see Sect. 3.3.3. Only one coastal
location (H4) and the two main rivers (Q1 – Buzi and Q6 – Pungwe) are shown to improve the readability of the plots. The labels in the
legends correspond to the boundary locations as shown in Fig. 2b.

Step 6: river inflow points

Discharge boundary conditions are set at source point lo-
cations within the model domain. These points are based
on cells where a river flows into the model domain. Rivers
are based on a user-defined upstream area and river length
thresholds and derived from the hydrography data as derived
previously. The minimum length threshold is used to filter
short river segments that flow in and out of the model do-
main. Here we use an upstream area threshold of 100 km2

and minimum length of 10 km to force the model with dis-
charge from seven rivers flowing into the model domain;
see Fig. 2b.

3.2.2 Setup of model boundary conditions

SFINCS is forced based on output from global models, which
is automatically transformed into the input data format that
SFINCS requires. This is also referred to as a loose cou-
pling between models (Santiago-Collazo et al., 2019). The
following steps, dealing with dynamic boundary conditions,
are repeated for each event and/or sensitivity scenario (see
Sect. 3.3.3). The model boundary conditions for both histor-
ical events are shown in Fig. 3.

Step 7: coastal boundary

Water level boundary conditions are defined at point loca-
tions and interpolated by SFINCS to the nearest water level
boundary cell. Water level data for the model simulation time
period are selected from (global) water level point time se-
ries datasets based on a maximum distance from the water
level boundary cells (step 5 in Sect. 3.2.1). The water level
data can optionally be corrected for the offset between the
vertical datum of the water level and topography data. Here,
we use a maximum distance of 5 km to select GTSM output
locations and correct these for the difference between m.s.l.
and the EGM96 vertical datum based on the CNES-CLS18
mean dynamic topography (Mulet et al., 2021). Note that this
offset amounts to ∼ 0.8 m on average for the selected output
locations. The total water level time series at a representative
location for both events are shown in the top panels of Fig. 3
(solid line).

Step 8: fluvial boundary

Discharge boundary conditions are defined at source point lo-
cations (step 6 in Sect. 3.2.1) within the model domain. Dis-
charge data for the simulation time period are selected from a
gridded discharge dataset. As the (global) discharge dataset
is typically based on another (coarser-resolution) river net-
work, the source point locations must be matched with a cor-
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responding river cell, which is not necessarily at the exact
same location. A matching river cell is defined as the cell
within a user-defined maximum search radius that has the
smallest difference in the upstream area with the inflow point
location, which is at least smaller than a user-defined thresh-
old for the absolute or relative difference. Here, we select
discharge from the gridded CaMa-Flood model output within
a one-cell search window around the source point location
based on a maximum relative error of 5 % and maximum ab-
solute error of 100 km2 in the upstream area. The discharge
time series at the two main rivers for both events are shown
in the center panels of Fig. 3 (solid line).

Step 9: pluvial boundary

We use spatially varying precipitation fields for direct
rainfall-on-grid forcing. The data are derived from (global)
gridded precipitation datasets for the model domain and sim-
ulation time period and reprojected onto the model projected
coordinate system in a resolution similar to the source res-
olution. Here we use ERA5 runoff rather than precipita-
tion to account for hydrological processes such as infiltration
and evaporation and to ensure comparability with the global
CaMa-Flood model. Note that infiltration can also be simu-
lated within SFINCS but was turned off for this experiment
as this process is accounted for by using runoff instead of
precipitation data. The spatially average runoff time series
for both events are shown in the bottom panels of Fig. 3.

3.3 Analysis of the model results

3.3.1 Validation against observed flood extent

As no quantitative streamflow or water level observation data
are openly available for this location, we focus on a com-
parison between satellite-derived and simulated flood extent.
Model skill is quantified based on three metrics that are
commonly used to analyze flood models (Vousdoukas et al.,
2016; Wing et al., 2021). The model skill is measured by the
critical success index (C), which is the ratio of the area that
is correctly simulated to be flooded (Fsim∩Fobs) over the
union of observed and simulated flooded areas (Fsim∪Fobs),
thereby accounting for both over- and underprediction; see
Eq. (1). The critical success index ranges from 0 (no match)
to 1 (perfect match). The hit rate (H) is the ratio area that
is correctly simulated to be flooded over the observed flood
extent (Fobs); see Eq. (2). The hit rate ranges from 0 (none
of the observed flood extent is flooded in the model) to 1 (the
complete observed flood extent is flooded in the model). The
false-alarm rate (F) is the ratio of the area which is wrongly
simulated to be flooded (Fsim / Fobs) over the observed flood
extent; see Eq. (3). The false-alarm rate ranges from 0 (no
overprediction) to infinity (1 indicates equally sized areas of

wrongly simulated and observed flooding).

C =
Fsim∩Fobs
Fsim∪Fobs

(1)

H =
Fsim∩Fobs

Fobs
(2)

F =
Fsim/Fobs

Fobs
(3)

High-resolution (10 m) flood extent data are derived from
Sentinel-1 synthetic aperture radar (SAR) images. We
use VV-polarized ground-range-detected data, provided by
Google Earth Engine (GEE), which has undergone geomet-
ric terrain correction and provides radar backscatter in deci-
bel (dB) units. These data are processed using the GEE with
an unsupervised histogram-based surface water mapping al-
gorithm that consists of three steps (Markert et al., 2020).
First, noise is reduced using the refined Lee speckle filter
(Lee, 1981). Second, a threshold to distinguish water and dry
cells is detected using the edge Otsu thresholding algorithm
(Donchyts et al., 2016). Third, cells with a relative eleva-
tion of more than 50 m above the nearest stream are excluded
from the water class to avoid false positives. We process each
image individually and combine flood extents from ascend-
ing and descending orbits during the same day. In total we
obtain flood extents for four dates based on eight images: on
19 and 20 March 2019 for Tropical Cyclone Idai, which is
around the peak of the flood event, and on 25 and 26 Jan-
uary 2021 for Tropical Cyclone Eloise, which is just before
the peak of the flood event. Finally, the flood extents are re-
projected to the SFINCS model grid.

The simulated flood extent is derived from the maximum
flood depth based on cells with a flood depth larger than a
15 cm threshold (e.g., Wing et al., 2017). The same post-
processing is applied to the CaMa-Flood flood depth maps
but after downscaling to a 3 arcsec grid (see Sect. 3.1.2) and
reprojection to the SFINCS grid using nearest-neighbor in-
terpolation. Cells with permanent water are excluded from
the comparison. We compare the individual satellite-derived
flood extents with the maximum simulated extent from the
same day and the maximum satellite-derived extent per event
with the maximum simulated extent during all days with
satellite observations.

3.3.2 Sensitivity analysis

We perform a sensitivity analysis of the model skill by vary-
ing several model parameters and model forcing for both his-
torical events. A description of each model sensitivity run is
provided in Table 2.

3.3.3 Compound flood drivers

To examine the role of each driver and interactions between
fluvial, pluvial, and coastal flood drivers on flood levels, we
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Table 2. Overview of model sensitivity runs. N/A stands for not applicable.

Parameter Description Lower value Upper value

1. River depth The river depth varied by multiplying the co-
efficient a in the power-law equation; see
Sect. 3.2.1

50 % (a = 0.135) 150 % (a = 0.405)

2. Land Manning roughness The spatially constant Manning roughness
value for land cells (floodplain Manning
roughness in CaMa-Flood)

50 % (0.05 s m−1/3) 150 % (0.15 s m−1/3)

3. Coastal (H ) forcing Total water level forcing (tide, surge, and
wave setup components) for both SFINCS
and CaMa-Flood

80 % 120 %

4. Pluvial (P ) and fluvial
(Q) forcing

The ERA5 runoff forcing of CaMa-Flood
and pluvial forcing of SFINCS; based on the
CaMa-Flood simulation, the fluvial forcing
of SFINCS is also modified.

80 % 120 %

5. Bifurcations CaMa-Flood only. The number of elevation
thresholds [0, 10] at which a representative
width for flow between floodplains of adja-
cent unit catchments is described; here, 10
by default

0 (no bifurcations) 5

6. Resolution CaMa-Flood only. The resolution at which
unit catchments are described.

N/A? 200 % (6 arcmin)

Table 3. Overview of model boundary conditions in compound- and single-driver scenarios.

Scenario Fluvial boundary Pluvial boundary Coastal boundary

Compound CaMa-Flood event discharge ERA5 event runoff GTSM event tide and surge
+ ERA5 waves

Fluvial (single) CaMa-Flood event discharge none GTSM event tide levels

Pluvial (single) CaMa-Flood event discharge scaled ERA5 event runoff GTSM event tide levels
to match long-term mean

Coastal (single) CaMa-Flood event discharge scaled none GTSM event tide and surge
to match long-term mean + ERA5 waves

perform a scenario analysis with the SFINCS model where
we vary the boundary conditions; see Table 3 for details.
During single-driver events, the forcing of both other drivers
is adjusted to non-extreme conditions; see dashed lines in
Fig. 3. For the fluvial boundary condition, we normalize the
event discharge to match the long-term mean discharge; for
the pluvial boundary, we set the rainfall to zero; and for the
coastal boundary, we use the tidal signal of the event only. We
identify transition zones as areas where water levels in the
compound scenario are at least 5 cm higher than in any of the
single-driver scenarios, in line with earlier studies on com-
pound flooding where thresholds vary between 0–20 (Bilskie
and Hagen, 2018; Gori et al., 2020b; Shen et al., 2019). In ad-
dition, we identify the main flood driver based on the single-
driver scenario that results in the largest water level.

4 Results and discussion

4.1 Model comparison

In this section we present a comparison of the skill of the
global CaMa-Flood and local SFINCS models to simulate
the flood extent of the historical flood events Idai and Eloise.
Both models are forced with the same data, and we used the
same Manning roughness and river depth estimation for com-
patibility. In general, we simulate more widespread flood-
ing during Idai compared to Eloise and with SFINCS com-
pared to CaMa-Flood (Fig. 4). The difference between both
models in the Buzi floodplains is likely due to the limited
connectivity between floodplains of neighboring cells in the
CaMa-Flood model through its so-called bifurcation scheme.
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This scheme is too limited to represent the connectivity in the
large low-gradient floodplains of the Buzi and Pungwe rivers.
This can be seen in the downscaled CaMa-Flood flood maps,
which show unrealistic sudden local drops in flood depth at
the interface of unit catchments (Fig. 4a) and larger simu-
lated water levels in the Buzi in CaMa-Flood compared to
SFINCS (Fig. 5a, b). The difference around the Pungwe es-
tuary is likely due to the response of both models to coastal
boundary conditions. The response in the Pungwe estuary
in CaMa-Flood is more attenuated and slower compared to
SFINCS (Fig. 5c, d) due to the lower resolution of the CaMa-
Flood model. In addition, some small coastal areas at the es-
tuary mouth which are flooded in SFINCS are not covered
by the CaMa-Flood model. The differences around Beira,
where no flooding is simulated by CaMa-Flood, can be at-
tributed to the fact that CaMa-Flood does not simulate direct
coastal flooding but only the effect of coastal forcing on river-
ine water levels and subsequent fluvial flooding. Finally, the
difference on the hillslopes can be attributed to the fact that
CaMa-Flood does not simulate direct pluvial flooding. While
in SFINCS the runoff forcing (i.e., net precipitation) is added
as a source term to each grid cell, in CaMa-Flood it is di-
rectly added to the river component of each unit catchment.
Furthermore, the drainage capacity in this area in SFINCS is
likely underestimated due to the absence of small (subgrid-
scale) streams in the model topography, which is limited by
the model resolution.

Here, we compare simulated flood extents with satellite-
derived flood extents for both events. Figure 6 shows the skill
calculated from comparing the maximum multi-day flood ex-
tents with Sentinel-1 observations. In addition, Table 4 and
Figs. A2 and A3 show comparisons of individual satellite-
derived extents with the maximum simulated extent during
the same day. In general, the skill of both models is higher
for the Idai compared to the Eloise flood event. This could
be related to the fact that the satellite-derived flood extents
for Eloise do not capture the maximum simulated extent.
SFINCS shows similar performance to CaMa-Flood in terms
of the critical success index for the multi-day maximum ex-
tent (C= 0.75 vs. 0.73 during Idai and 0.46 vs. 0.47 dur-
ing Eloise) but better performance for most individual days
(C= 0.75–0.77 vs. 0.68–72 during Idai and 0.47–0.47 vs.
0.45–0.47 during Eloise). There are substantial differences
in the simulated flood extents between both models. The
SFINCS simulations show larger flood extents compared to
CaMa-Flood, resulting in a higher hit ratio (H = 0.94 vs.
0.83 during Idai and 0.82 vs. 0.63 during Eloise) and a higher
false-alarm ratio (F = 0.22 vs. 0.14 during Idai and 0.48 vs.
0.35 during Eloise) for the multi-day maximum extents. For
individual daily extents, we find the same pattern but with
larger differences for the hit rate. The underestimation of
CaMa-Flood is concentrated in the floodplains of the Buzi
River and around and north of the city of Beira; see orange
colors in Fig. 6a and b. The overestimation in SFINCS is
concentrated along the banks of the Pungwe River and the

Figure 4. Simulated maximum flood depths from CaMa-Flood (a,
c) and SFINCS (b, d) for Tropical Cyclone Idai (a, b) and Tropical
Cyclone Eloise (c, d). The diamonds indicate model output point
locations for which water level time series are extracted; see Fig. 5.
The grey areas indicate permanent water, and the hatched areas are
excluded.

hillslopes northeast of it. For Eloise, the flood extent is also
overestimated in the floodplains south of the Buzi River; see
red colors in Fig. 6c and d.

To further investigate the model performance, we per-
formed a sensitivity analysis on some of the most important
model parameters and model forcing based on the multi-day
maximum flood extents. In general, we find that the skill of
both models is not very sensitive to the river depth (Table 5,
scenario 1) and the Manning roughness for land cells (Ta-
ble 5, scenario 2). This is due to the extremeness of the flu-
vial driver, especially for Idai, during which the river con-
veyance capacity was small compared to the total discharge.
Both models are also not sensitive to changes in the coastal
forcing (Table 5, scenario 3) but are sensitive to changes in
the pluvial and fluvial forcing (Table 5, scenario 4). This is
due to the relatively large fluvial flood driver compared to
the coastal flood driver during these two events and the small
fraction of the total flood area that is caused by direct coastal
flooding (Sect. 4.2). The skill is likely more sensitive to the
coastal water level forcing if assessed for a snapshot around
the surge peaks of both events instead of the multi-day maxi-
mum flood extent, but that is not available. For CaMa-Flood,
we find that the model is very sensitive to the presence of
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Figure 5. Simulated time series of water levels during Tropical Cyclone Idai (a, c) and Tropical Cyclone Eloise (b, d) with SFINCS (solid
lines) and CaMa-Flood (dashed lines) for two locations in the Buzi (a, b) and three in the Pungwe (c, d). See diamonds in Fig. 4 for the exact
model output point locations.

bifurcation channels (Table 5, scenario 5) and resolution
of the model (Table 5, scenario 6). With fewer bifurcation
layers and a coarser model resolution, the connectivity be-
tween floodplains reduces, resulting in a large decrease in
model skill. Flow connectivity in the model has been shown
to be important to correctly simulate inundation dynamics
in (coastal) floodplains (Bernhofen et al., 2018; Neal et al.,
2012; Trigg et al., 2012). Multiple downstream connectivity,
as implemented in the bifurcation scheme of CaMa-Flood, is
crucial to adequately simulate floods in deltas (Ikeuchi et al.,
2015; Mateo et al., 2017), which is underlined by the results
in our study. However, we still find that the flow connectivity
is underrepresented compared to the SFINCS mode as shown
by the more widespread (fluvial) flooding with SFINCS.

The skill of both models is in line with other flood studies
using global models. Global flood models showed C= 0.45–
0.70 in comparison with MODIS imagery of three flood
events over the African continent (Bernhofen et al., 2018)
and C= 0.43–0.65 in comparison with various reference
flood maps in Germany and the UK (Alfieri et al., 2014). A
LISFLOOD-FP model built with LFPtools was found to have
C= 0.63 for a flood event in the River Severn (Sosa et al.,
2020). For local fluvial inundation models that are calibrated
against flood extent imagery, typical values of C= 0.7–0.9
can be reached, depending on the quality of the flood ex-
tent imagery (Di Baldassarre et al., 2009; Horritt and Bates,
2002; Stephens and Bates, 2015; Wood et al., 2016). Our re-
sults also demonstrate that a commonly used metric to evalu-
ate flood models such as the critical success index can mask
large differences between model results and should be eval-
uated together with the false-alarm and hit ratios and inspec-
tion of the geographical patterns and differences. An addi-

tional comparison with flood levels, if available, would allow
for a more comprehensive validation (Stephens and Bates,
2015; Wing et al., 2021).

4.2 Potential application: compound flood drivers

To showcase a possible application of the compound flood
model framework and the added value over the global model,
we examine the role of each driver and interactions between
flood drivers for both events (Fig. 7). The difference in max-
imum water levels between the compound scenario and the
single-flood-driver scenario that results in the largest flood
depth (i.e., the dominant flood driver) is shown in the top pan-
els. The bottom panels show the dominant flood driver with
green (pluvial), purple (fluvial), or orange (coastal) colors,
which are darker for transition zones, where interactions be-
tween drivers amplify the total water level (i.e., show a pos-
itive difference in the top panels larger than 5 cm). For most
of the model domain, the dominant flood driver during both
events is fluvial, especially around the Buzi River and the up-
stream part of the Pungwe River. The coastal flood driver is
dominant in the most downstream ends of both estuaries and
in small coastal areas around Beira. Pluvial drivers are dom-
inant on the hillslopes in the northeast corner of the model
domain but mainly add to fluvial- and coastal-driven flood-
ing. When we compare both events, we find that the extent
where the coastal driver is dominant and the amplification
of water levels in the transition zones are larger for Eloise
compared to Idai. This can be explained by the difference in
fluvial flood magnitude and the timing between the peaks of
fluvial and coastal drivers. During Idai, coastal water levels
peaked around 15 March, followed by a discharge peak at the
Buzi River 3 d later and the Pungwe River 5 d later (Fig. 3,
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Table 4. Skill of simulated flood extents from CaMa-Flood (CMF) and SFINCS based on satellite-derived flood extents from individual dates
and the maximum flood extent per event, evaluated based on the critical success index (C), hit rate (H ) and false-alarm ratio (F ).

C F H

CMF SFINCS CMF SFINCS CMF SFINCS

19 March 2019 0.68 0.77 0.09 0.13 0.72 0.86
Idai 20 March 2019 0.72 0.75 0.14 0.22 0.82 0.94

Max extent 0.73 0.75 0.14 0.22 0.83 0.94

25 January 2021 0.45 0.47 0.33 0.47 0.59 0.81
Eloise 26 January 2021 0.47 0.47 0.34 0.48 0.63 0.82

Max extent 0.47 0.46 0.35 0.48 0.63 0.82

Table 5. Sensitivity analysis of model skill for CaMa-Flood (CMF) and SFINCS (SF) to river depth, Manning roughness, coastal driver (H
forcing), pluvial and fluvial drivers (P & Q forcing), bifurcations, and spatial resolution. The model skill is evaluated in terms of the critical
success index (C), hit rate (H ), and false-alarm ratio (F ) based on a comparison of the multi-day maximum simulated and satellite-derived
flood extents. For scenarios 1–6 the difference in skill relative to the base scenario is shown; the largest absolute differences per column are
highlighted in bold.

Idai Eloise

C F H C F H

CMF SF CMF SF CMF SF CMF SF CMF SF CMF SF

0 – default 0.73 0.75 0.14 0.22 0.83 0.94 0.47 0.46 0.35 0.48 0.63 0.82

1a – river depth: 50 % 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.03 0.01
1b – river depth: 150 % 0.00 0.00 −0.01 0.00 −0.01 0.00 0.00 0.00 −0.03 −0.01 −0.04 −0.01
2a – land Manning: 50 % −0.04 −0.01 0.00 −0.01 −0.06 −0.03 −0.01 0.00 −0.01 −0.02 −0.03 −0.05
2b – land Manning: 150 % 0.00 0.00 −0.01 0.00 −0.01 0.00 0.01 −0.01 0.01 0.01 0.02 0.02
3a – H forcing: 80 % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3b – H forcing: 120% 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4a – P & Q forcing: 80 % −0.03 0.01 −0.02 −0.03 −0.05 −0.02 −0.02 0.00 −0.04 −0.03 −0.07 −0.05
4b – P & Q forcing: 120 % 0.01 −0.01 0.02 0.02 0.04 0.01 0.01 −0.01 0.03 0.02 0.05 0.03
5a – bifurcations: 50 % −0.03 N/A 0.02 N/A −0.03 N/A 0.00 N/A −0.02 N/A −0.01 N/A
5b – bifurcations: 0 % (off) −0.26 N/A 0.01 N/A −0.31 N/A −0.10 N/A 0.04 N/A −0.15 N/A
6 – spatial res: 200 % −0.06 N/A 0.00 N/A −0.08 N/A −0.13 N/A 0.04 N/A −0.20 N/A

left panels), causing little interaction between the fluvial and
coastal drivers. During Eloise, a first discharge peak at the
Buzi River occurred 2 d before the coastal water level peak
on 23 January, followed by a small peak in the Pungwe River
1.5 d later and another large peak in the Buzi River 3 d later
(Fig. 3, right panels), causing a large (> 0.2 m) amplifica-
tion of the water levels in both rivers. We also investigate
the sensitivity of the transition zone for river and estuarine
bathymetry. For the simulation with deeper bathymetry (sce-
nario 1b in Table 5), the area where the coastal driver is dom-
inant as well as the transition zone in the Pungwe estuary
extends a bit further inland (Fig. A4). While these changes
are relatively small, the accuracy of the river and estuarine
bathymetry is clearly important to accurately determine the
transition zone.

Compared to earlier research that focused on interactions
between coastal and pluvial drivers (Bilskie and Hagen,
2018; Gori et al., 2020b), we derive transition zones based on

three drivers and distinguish between the fluvial and pluvial
drivers. In line with the aforementioned studies, our results
also demonstrate that a single map with discrete transition
zones for a specific region does not exist. A comprehensive
overview of flood transition zones could be derived based on
the occurrence of compounding effects across a large range
of plausible events. The relative timing between peaks of dif-
ferent flood drivers as well as their magnitude has a large
effect on the locations and area of transition zones. This is
also underlined by a recent study that found that compound
flood levels are sensitive to the timing between flood peaks,
especially for events and locations where the duration of dis-
charge peaks is relatively short (Harrison et al., 2021).

4.3 Limitations and recommendations

While the presented model framework based on global open-
source datasets comes with large benefits in terms of global
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Figure 6. Skill of simulated maximum flood extents from CaMa-
Flood (a, c) and SFINCS (b, d) based on satellite-derived flood ex-
tents for Tropical Cyclone Idai (a, b) and Tropical Cyclone Eloise
(c, d), evaluated based on the critical success index (C), hit rate (H )
and false-alarm ratio (F ) as shown in the top right of each panel.
The grey areas indicate permanent water, and the hatched areas are
excluded as these areas drain to other basins.

applicability, the accuracy of the input data is an impor-
tant consideration. River and estuarine bathymetry is a rel-
atively large source of uncertainty in the current model
setup. As bathymetry cannot be directly observed remotely,
it needs to be approximated in data-scarce areas where no
local measurements are available. This approximation can
have a large effect on the result of (compound) inundation
simulations (Harrison et al., 2021; Neal et al., 2012; Samp-
son et al., 2015). Better methods to estimate bathymetry,
such as the recently published gradually varying flow theory-
based method (Neal et al., 2021; Garambois and Monnier,
2015), and new data, such as expected from the Surface Wa-
ter and Ocean Topography (SWOT) mission (Andreadis et
al., 2020), are expected to be useful to further reduce this
uncertainty. For streams smaller than the model resolution,
a subgrid schematization could further improve the model
(Neal et al., 2012; Volp et al., 2013). A subgrid schemati-
zation has recently been implemented in SFINCS (Leijnse
et al., 2021) and has been applied by Röbke et al. (2021)
for tsunami flood modeling. Furthermore, uncertainties in
the global DEM (Hawker et al., 2018a; Hinkel et al., 2021)

Figure 7. Compound flood dynamics during Tropical Cyclone Idai
(a, c) and Tropical Cyclone Eloise (b, d) illustrated by the difference
between water levels from the compound flood scenario and the
maximum of all single-driver scenarios (a, b) and the main flood
driver based on the single-driver scenario with the maximum water
level (c, d). The main driver is indicated with light colors where the
water level results from a single flood driver and dark colors where
it results from more than one flood driver, also referred to as the
transition zone.

and the absence of information on flood defense structures in
many areas (Scussolini et al., 2016; Wing et al., 2019) may
have large implications for the accuracy of the flood simula-
tions. The framework is set up such that datasets can easily
be replaced by better (local) datasets, which also facilitates
the update of new datasets in future model versions, such as
the recently published FABDEM, which is a bias-corrected
version of the 30 m resolution Copernicus DEM where the
error from vegetation and buildings is reduced (Hawker et
al., 2022).

Forcing data are an important source of uncertainty for
flood modeling in ungauged areas (Hoch et al., 2019; Wing
et al., 2020). For the selected case study, ground observa-
tions are very scarce and comparisons with simulated dis-
charge and total sea levels are conducted qualitatively; see
Sect. 3.3.1. We recommend investigating whether remote
sensing, e.g., satellite laser or radar altimetry data, can be
used to validate extreme inland and nearshore water levels
(Andreadis et al., 2020; O’Loughlin et al., 2016; Urban et al.,
2008). Furthermore, the flood extents derived from Sentinel-
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1 satellites are known to have limitations in observing ob-
structed flooding such as in wetland or urban areas (Yang et
al., 2021). To further increase the credibility of the model, it
should be validated against a larger set of flood events, for
instance using the recently published Global Flood Database
based on MODIS data (Tellman et al., 2021) or the RAPID
Sentinel-1 database over the continental United States (Yang
et al., 2021), as well as ground observations.

Furthermore, both events are characterized by a large
significant height of wind waves (wave setup component
amounts to 24.4 % for Idai and 16.3 % for Eloise of total wa-
ter levels), indicating that wave setup could not be ignored. In
this study we used a simple approach to estimate wave setup,
justified by our aim to make the framework globally appli-
cable. The wave setup component could potentially be im-
proved using alternative methods which use additional wave
and morphological parameters (e.g., Stockdon et al., 2006),
possibly in combination with a recently published dataset on
nearshore slopes (Athanasiou et al., 2019). The large compu-
tational costs of wave models due to the high spatiotempo-
ral resolution required still prohibits their direct application
on large spatial scales (Hinkel et al., 2021). However, these
models can still be leveraged for large-scale flood risk ap-
plications by developing large synthetic databases of model
results for many different plausible cross sections under vary-
ing forcing conditions (van Zelst et al., 2021; Pearson et al.,
2017). Finally, depending on the wind direction and orien-
tation of the estuary, wind shear can have a significant (but
often local) effect on flood levels in coastal environments and
can be modeled with SFINCS (Leijnse et al., 2021; Sebastian
et al., 2021). This potential driver of compound flooding in
coastal environments should be considered in future studies.

5 Conclusions

In this study, we presented an automated framework to model
compound flooding anywhere on the globe in a reproducible
and transparent manner, and we evaluated its suitability and
use for identifying compound flood drivers. The framework
is comprised of the high-resolution 2D flood model SFINCS,
set up based on global datasets and forced by global models
at its boundaries. For two historical compound flood events
in the Sofala province of Mozambique, we compared the
skill of the globally applicable flood model with the global
quasi-2D CaMa-Flood model. The validation against flood
extents from satellites shows a good model performance. The
SFINCS model shows slightly better skill than CaMa-Flood
in terms of the critical success index, but large differences
exist in the simulated flood maps. Firstly, the globally appli-
cable model can accommodate for direct coastal and pluvial
flooding as well as interactions between coastal, pluvial, and
fluvial drivers, thereby providing a more comprehensive de-
scription of flooding in coastal deltas than the global model,
resulting in a higher hit rate. Secondly, while the multiple

downstream connectivity (or bifurcation) scheme largely im-
proves the results of the global model, the floodplain con-
nectivity is still limited, resulting in higher flood levels and
smaller flood extents. Thirdly, pluvial flooding is likely over-
estimated in the globally applicable model as small streams
are not represented in the model, thus underestimating the
drainage capacity. We hypothesize that this will improve with
the recently implemented subgrid schematization in SFINCS
in combination with higher-resolution DEMs. Finally, we
showed that the globally applicable model can be used to an-
alyze the effect of interactions between flood drivers, here
for the first time presented with joint fluvial, pluvial, and
coastal flood drivers. We found that the transition zones be-
tween flood drivers vary significantly between flood events
due to differences in the relative timing between and magni-
tude of each driver. As the identification of these zones is im-
portant to understand flood preparedness and response, their
identification should therefore be based on a large number
of plausible flood events. We also reiterate the importance of
observed water levels for a more comprehensive comparison
of flood simulations.

The automated model setup is available through the open–
source Python package HydroMT-SFINCS and allows for a
fast and reproducible setup of compound flood hazard mod-
els. With sufficient computational resources, the framework
therefore has the potential to be scaled up to large spatial
scales by setting up many high-resolution models in river
and coastal floodplains but could also rapidly be employed
for disaster response.
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Appendix A: Supporting figures

Figure A1. Comparison of observed water levels and simulated water depths during Tropical Cyclone Idai in the Buzi (a) and
Pungwe (b) rivers. Note that the comparison is based on approximate locations as the precise locations could not be retrieved. Further-
more, as the vertical datum of the observations is unknown, these are plotted on a second y axis.

Figure A2. Simulated maximum flood depths from CaMa-Flood (a, c) and SFINCS (b, d) for Tropical Cyclone Idai on 19 March (a, b) and
20 March (c, d). The grey areas indicate permanent water, and the hatched areas are excluded.
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Figure A3. Simulated maximum flood depths from CaMa-Flood (a, c) and SFINCS (b, d) for Tropical Cyclone Eloise on 25 January (a, b)
and 26 January (c, d). The grey areas indicate permanent water, and the hatched areas are excluded.

Figure A4. Sensitivity analysis of compound flood dynamics simulation based on 150 % river depth during Idai (a, c) and Eloise (b, d)
illustrated by the difference between water levels from the compound flood scenario and the maximum of all single-driver scenarios (a, b)
and the main flood driver based on the single-driver scenario with the maximum water level (c, d). The main driver is indicated with light
colors where the water level results from a single flood driver and dark colors where it results from more than one flood driver, also referred
to as the transition zone.
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Appendix B: HydroMT configuration

Figure B1. Example HydroMT-SFINCS configuration file used to set up the SFINCS model schematization (see Sect. 3.2.1). Each section
corresponds to a step in the automatic model-building process. Options ending with _fn (filename) correspond to data from the data catalog;
see Table B2.
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Figure B2. Data catalog (.yaml) file used to set up the SFINCS model schematization (see Sect. 3.2.1). Each entry corresponds to a dataset
and contains information about how to read it and which preprocessing steps (such as renaming) are required.
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Code and data availability. The scripts and data used to set up
the experiments in this study are available from Zenodo at
https://doi.org/10.5281/zenodo.7274465 (Eilander, 2022).
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