Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2593-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2593-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Trends in heat and cold wave risks for the Italian Trentino-Alto Adige region from 1980 to 2018
Martin Morlot
Department of Civil, Environmental, and
Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
Simone Russo
Joint Research Centre, European Commission, Via Enrico Fermi 2749,
21027 Ispra, Italy
Luc Feyen
Joint Research Centre, European Commission, Via Enrico Fermi 2749,
21027 Ispra, Italy
Giuseppe Formetta
CORRESPONDING AUTHOR
Department of Civil, Environmental, and
Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
Related authors
No articles found.
Mohammad Hadi Bahmanpour, Alois Tilloy, Michalis Vousdoukas, Ivan Federico, Giovanni Coppini, Luc Feyen, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-843, https://doi.org/10.5194/egusphere-2025-843, 2025
Short summary
Short summary
As natural hazards evolve, understanding how extreme events interact over time is crucial. While single extremes have been widely studied, joint extremes remain challenging to analyze. We present a framework that combines advanced statistical modeling with copula theory to capture changing dependencies. Applying it to historical data reveals dynamic patterns in extreme events. To support broader use, we provide an open-source tool for improved hazard assessment.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, Cinzia Mazzetti, and Luc Feyen
Earth Syst. Sci. Data, 17, 293–316, https://doi.org/10.5194/essd-17-293-2025, https://doi.org/10.5194/essd-17-293-2025, 2025
Short summary
Short summary
This article presents a reanalysis of Europe's river streamflow for the period 1951–2020. Streamflow is estimated through a state-of-the-art hydrological simulation framework benefitting from detailed information about the landscape, climate, and human activities. The resulting Hydrological European ReAnalysis (HERA) can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources and flood and drought risks.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 27, 4485–4503, https://doi.org/10.5194/hess-27-4485-2023, https://doi.org/10.5194/hess-27-4485-2023, 2023
Short summary
Short summary
We analyzed the water budget of nested karst catchments using simple methods and modeling. By utilizing the available data on precipitation and discharge, we were able to determine the response lag-time by adopting new techniques. Additionally, we modeled snow cover dynamics and evapotranspiration with the use of Earth observations, providing a concise overview of the water budget for the basin and its subbasins. We have made the data, models, and workflows accessible for further study.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Kees C. H. van Ginkel, Francesco Dottori, Lorenzo Alfieri, Luc Feyen, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 21, 1011–1027, https://doi.org/10.5194/nhess-21-1011-2021, https://doi.org/10.5194/nhess-21-1011-2021, 2021
Short summary
Short summary
This study presents a state-of-the-art approach to assess flood damage for each unique road segment in Europe. We find a mean total flood risk of EUR 230 million per year for all individual road segments combined. We identify flood hotspots in the Alps, along the Sava River, and on the Scandinavian Peninsula. To achieve this, we propose a new set of damage curves for roads and challenge the community to validate and improve these. Analysis of network effects can be easily added to our analysis.
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Cited articles
Acquaotta, F., Fratianni, S., and Garzena, D.: Temperature
changes in the North-Western Italian Alps from 1961 to 2010, Theor. Appl.
Climatol., 122, 619–634, https://doi.org/10.1007/s00704-014-1316-7, 2015.
Alma, Ö. G.: Comparison of Robust Regression Methods in Linear
Regression, Int. J. Contemp. Math. Sciences, 6, 409–421, 2011.
Alsaad, H., Hartmann, M., Hilbel, R., and Voelker, C.: The potential of
facade greening in mitigating the effects of heatwaves in Central European
cities, Build. Environ., 216, 109021,
https://doi.org/10.1016/j.buildenv.2022.109021, 2022.
Bacco, M. D. and Scorzini, A. R.: Recent changes in temperature extremes
across the north-eastern region of Italy and their relationship with
large-scale circulation, Clim. Res., 81, 167–185,
https://doi.org/10.3354/cr01614, 2020.
Bonat, W. H. and Kokonendji, C. C.: Flexible Tweedie regression models for
continuous data, J. Stat. Comput. Simul., 87, 2138–2152,
https://doi.org/10.1080/00949655.2017.1318876, 2017.
Brossart, D. F., Parker, R. I., and Castillo, L. G.: Robust regression for
single-case data analysis: How can it help?, Behav. Res. Methods, 43,
710–719, https://doi.org/10.3758/s13428-011-0079-7, 2011.
Buscail, C., Upegui, E., and Viel, J.-F.: Mapping heatwave health risk at
the community level for public health action, Int. J. Health Geogr., 11, 38,
https://doi.org/10.1186/1476-072X-11-38, 2012.
Buzási, A.: Comparative assessment of heatwave vulnerability factors for
the districts of Budapest, Hungary, Urban Clim., 42, 101127,
https://doi.org/10.1016/j.uclim.2022.101127, 2022.
Ceccherini, G., Russo, S., Ameztoy, I., Marchese, A. F., and Carmona-Moreno, C.: Heat waves in Africa 1981–2015, observations and reanalysis, Nat. Hazards Earth Syst. Sci., 17, 115–125, https://doi.org/10.5194/nhess-17-115-2017, 2017.
Chambers, J.: Global and cross-country analysis of exposure of vulnerable
populations to heatwaves from 1980 to 2018, Clim. Change, 163, 539–558,
https://doi.org/10.1007/s10584-020-02884-2, 2020.
Cheng, W., Li, D., Liu, Z., and Brown, R. D.: Approaches for identifying
heat-vulnerable populations and locations: A systematic review, Sci. Total
Environ., 799, 149417, https://doi.org/10.1016/j.scitotenv.2021.149417,
2021.
Conti, S., Meli, P., Minelli, G., Solimini, R., Toccaceli, V., Vichi, M.,
Beltrano, C., and Perini, L.: Epidemiologic study of mortality during the
Summer 2003 heat wave in Italy, Environ. Res., 98, 390–399,
https://doi.org/10.1016/j.envres.2004.10.009, 2005.
Crespi, A., Matiu, M., Bertoldi, G., Petitta, M., and Zebisch, M.: A high-resolution gridded dataset of daily temperature and precipitation records (1980–2018) for Trentino-South Tyrol (north-eastern Italian Alps), Earth Syst. Sci. Data, 13, 2801–2818, https://doi.org/10.5194/essd-13-2801-2021, 2021.
Crespi, A., Matiu, M., Bertoldi, G., Petitta, M., and Zebisch, M.: High-resolution daily series (1980–2018) and monthly climatologies (1981–2010) of mean temperature and precipitation for Trentino – South Tyrol (north-eastern Italian Alps) [dataset], PANGAEA, https://doi.org/10.1594/PANGAEA.924502 (last access: 5 July 2023), 2020.
de'Donato, F. K., Leone, M., Noce, D., Davoli, M., and Michelozzi, P.: The Impact of the February 2012 Cold Spell on Health in Italy Using Surveillance Data, PLOS ONE, 8, e61720, https://doi.org/10.1371/journal.pone.0061720, 2013.
Dong, J., Peng, J., He, X., Corcoran, J., Qiu, S., and Wang, X.:
Heatwave-induced human health risk assessment in megacities based on heat
stress-social vulnerability-human exposure framework, Landsc. Urban Plan.,
203, 103907, https://doi.org/10.1016/j.landurbplan.2020.103907, 2020.
Dosio, A., Mentaschi, L., Fischer, E. M., and Wyser, K.: Extreme heat waves
under 1.5 ∘C and 2 ∘C global warming, Environ. Res. Lett., 13, 054006,
https://doi.org/10.1088/1748-9326/aab827, 2018.
Dunn, P. K.: Occurrence and quantity of precipitation can be modelled
simultaneously, Int. J. Climatol., 24, 1231–1239,
https://doi.org/10.1002/joc.1063, 2004.
Dunn, P. K.: Tweedie: Evaluation of Tweedie exponential family models, R package version 2.3 [code], https://cran.r-project.org/web/packages/tweedie/index.html (last access: 5 July 2023), 2021.
Dunn, P. K. and Smyth, G. K.: Series evaluation of Tweedie exponential
dispersion model densities, Stat. Comput., 15, 267–280,
https://doi.org/10.1007/s11222-005-4070-y, 2005.
Ellena, M., Ballester, J., Mercogliano, P., Ferracin, E., Barbato, G.,
Costa, G., and Ingole, V.: Social inequalities in heat-attributable
mortality in the city of Turin, northwest of Italy: a time series analysis
from 1982 to 2018, Environ. Health, 19, 116,
https://doi.org/10.1186/s12940-020-00667-x, 2020.
El-Zein, A. and Tonmoy, F. N.: Assessment of vulnerability to climate change
using a multi-criteria outranking approach with application to heat stress
in Sydney, Ecol. Indic., 48, 207–217,
https://doi.org/10.1016/j.ecolind.2014.08.012, 2015.
Estoque, R. C., Ooba, M., Seposo, X. T., Togawa, T., Hijioka, Y., Takahashi,
K., and Nakamura, S.: Heat health risk assessment in Philippine cities using
remotely sensed data and social-ecological indicators, Nat. Commun., 11,
1581, https://doi.org/10.1038/s41467-020-15218-8, 2020.
European Comission: Joint Research Centre Data Catalogue: Global Human Settlement Layer, European Commission [data set], https://data.jrc.ec.europa.eu/collection/ghsl (last access: 5 July 2023), 2018.
Filzmoser, P. and Nordhausen, K.: Robust linear regression for
high-dimensional data: An overview, WIREs Comput. Stat., 13, e1524,
https://doi.org/10.1002/wics.1524, 2021.
Formetta, G. and Feyen, L.: Empirical evidence of declining global
vulnerability to climate-related hazards, Glob. Environ. Change, 57, 101920,
https://doi.org/10.1016/j.gloenvcha.2019.05.004, 2019.
Fratianni, S. and Acquaotta, F.: The Climate of Italy, in: Landscapes and
Landforms of Italy, edited by: Soldati, M. and Marchetti, M., Springer
International Publishing, Cham, 29–38,
https://doi.org/10.1007/978-3-319-26194-2_4, 2017.
Frigerio, I. and De Amicis, M.: Mapping social vulnerability to natural
hazards in Italy: A suitable tool for risk mitigation strategies, Environ.
Sci. Policy, 63, 187–196, https://doi.org/10.1016/j.envsci.2016.06.001,
2016.
García-León, D., Casanueva, A., Standardi, G., Burgstall, A.,
Flouris, A. D., and Nybo, L.: Current and projected regional economic
impacts of heatwaves in Europe, Nat. Commun., 12, 5807,
https://doi.org/10.1038/s41467-021-26050-z, 2021.
Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A.,
Schwartz, J., Tobias, A., Tong, S., Rocklöv, J., Forsberg, B., Leone,
M., Sario, M. D., Bell, M. L., Guo, Y.-L. L., Wu, C., Kan, H., Yi, S.-M.,
Coelho, M. de S. Z. S., Saldiva, P. H. N., Honda, Y., Kim, H., and
Armstrong, B.: Mortality risk attributable to high and low ambient
temperature: a multicountry observational study, The Lancet, 386, 369–375,
https://doi.org/10.1016/S0140-6736(14)62114-0, 2015.
Gilleland, E.: extRemes: Extreme Value Analysis, 2022. R package version 2.1 [code], https://cran.r-project.org/web/packages/extRemes/index.html (last access: 5 July 2023), 2021.
Gilleland, E. and Katz, R. W.: extRemes 2.0: An Extreme Value Analysis Package in R [code], J. Stat. Softw., 72, 1–39, https://doi.org/10.18637/jss.v072.i08, 2016.
Goffard, P.-O., Jammalamadaka, S. R., and Meintanis, S.: Goodness-of-fit
tests for compound distributions with applications in insurance, 2019.
Habeeb, D., Vargo, J., and Stone, B.: Rising heat wave trends in large US
cities, Nat. Hazards, 76, 1651–1665,
https://doi.org/10.1007/s11069-014-1563-z, 2015.
Hasan, M. M. and Dunn, P. K.: Two Tweedie distributions that are
near-optimal for modelling monthly rainfall in Australia, Int. J. Climatol.,
31, 1389–1397, https://doi.org/10.1002/joc.2162, 2011.
Ho, H. C., Knudby, A., Chi, G., Aminipouri, M., and Lai, D. Y.-F.:
Spatiotemporal analysis of regional socio-economic vulnerability change
associated with heat risks in Canada, Appl. Geogr., 95, 61–70,
https://doi.org/10.1016/j.apgeog.2018.04.015, 2018.
Huber, P. J.: Robust Statistics, in: International Encyclopedia of
Statistical Science, edited by: Lovric, M., Springer, Berlin, Heidelberg,
1248–1251, https://doi.org/10.1007/978-3-642-04898-2_594,
2011.
IPCC: Climate Change 2014 – Impacts, Adaptation and Vulnerability: Part A:
Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth
Assessment Report: Volume 1: Global and Sectoral Aspects, Cambridge
University Press, Cambridge, https://doi.org/10.1017/CBO9781107415379, 2014.
Istat.it – 15∘ Censimento della popolazione e delle abitazioni
2011:
https://www.istat.it/it/censimenti-permanenti/censimenti-precedenti/popolazione-e-abitazioni/popolazione-2011,
last access: 16 November 2021.
ISTAT: Webpage of the Italian National Institute of Statistics, Istat [data set], https://www.istat.it/en/ (last access: 5 July 2023), 2023.
Jarzyna, K. and Krzyżewska, A.: Cold spell variability in Europe in
relation to the degree of climate continentalism in 1981–2018 period,
Weather, 76, 122–128, https://doi.org/10.1002/wea.3937, 2021.
Johnson, W. D., Burton, J. H., Beyl, R. A., and Romer, J. E.: A Simple
Chi-Square Statistic for Testing Homogeneity of Zero-Inflated Distributions,
Open J. Stat., 5, 483, https://doi.org/10.4236/ojs.2015.56050, 2015.
Jorgensen, B.: Exponential Dispersion Models, J. R. Stat. Soc. Ser. B
Methodol., 49, 127–162, 1987.
Karanja, J. and Kiage, L.: Perspectives on spatial representation of urban
heat vulnerability, Sci. Total Environ., 774, 145634,
https://doi.org/10.1016/j.scitotenv.2021.145634, 2021.
Khan, D. M., Yaqoob, A., Zubair, S., Khan, M. A., Ahmad, Z., and Alamri, O.
A.: Applications of Robust Regression Techniques: An Econometric Approach,
Math. Probl. Eng., 2021, e6525079, https://doi.org/10.1155/2021/6525079,
2021.
Kim, D.-W., Deo, R. C., Lee, J.-S., and Yeom, J.-M.: Mapping heatwave
vulnerability in Korea, Nat. Hazards, 89, 35–55,
https://doi.org/10.1007/s11069-017-2951-y, 2017.
King, A. D. and Harrington, L. J.: The Inequality of Climate Change From 1.5
to 2 ∘C of Global Warming, Geophys. Res. Lett., 45, 5030–5033,
https://doi.org/10.1029/2018GL078430, 2018.
King, A. D., Donat, M. G., Lewis, S. C., Henley, B. J., Mitchell, D. M.,
Stott, P. A., Fischer, E. M., and Karoly, D. J.: Reduced heat exposure by
limiting global warming to 1.5 ∘C, Nat. Clim. Change, 8,
549–551, https://doi.org/10.1038/s41558-018-0191-0, 2018.
Kishore, P., Basha, G., Venkat Ratnam, M., AghaKouchak, A., Sun, Q.,
Velicogna, I., and Ouarda, T. B. J. M.: Anthropogenic influence on the
changing risk of heat waves over India, Sci. Rep., 12, 3337,
https://doi.org/10.1038/s41598-022-07373-3, 2022.
Kron, W., Löw, P., and Kundzewicz, Z. W.: Changes in risk of extreme
weather events in Europe, Environ. Sci. Policy, 100, 74–83,
https://doi.org/10.1016/j.envsci.2019.06.007, 2019.
Leung, S., Thompson, L., McPhaden, M. J., and Mislan, K. A. S.: ENSO drives
near-surface oxygen and vertical habitat variability in the tropical
Pacific, Environ. Res. Lett., 14, 064020,
https://doi.org/10.1088/1748-9326/ab1c13, 2019.
Liu, X., Yue, W., Yang, X., Hu, K., Zhang, W., and Huang, M.: Mapping Urban
Heat Vulnerability of Extreme Heat in Hangzhou via Comparing Two Approaches,
Complexity, 2020, e9717658, https://doi.org/10.1155/2020/9717658, 2020.
López-Bueno, J. A., Navas-Martín, M. Á., Díaz, J.,
Mirón, I. J., Luna, M. Y., Sánchez-Martínez, G., Culqui, D.,
and Linares, C.: The effect of cold waves on mortality in urban and rural
areas of Madrid, Environ. Sci. Eur., 33, 72,
https://doi.org/10.1186/s12302-021-00512-z, 2021.
Michelozzi, P., de 'Donato, F., Bisanti, L., Russo, A., Cadum, E., DeMaria,
M., D'Ovidio, M., Costa, G., and Perucci, C. A.: Heat Waves in Italy: Cause
Specific Mortality and the Role of Educational Level and Socio-Economic
Conditions, in: Extreme Weather Events and Public Health Responses, edited
by: Kirch, W., Bertollini, R., and Menne, B., Springer, Berlin, Heidelberg,
121–127, https://doi.org/10.1007/3-540-28862-7_12, 2005.
Michelozzi, P., De' Donato, F., Scortichini, M., De Sario, M., Asta, F.,
Agabiti, N., Guerra, R., de Martino, A., and Davoli, M.: [On the increase in
mortality in Italy in 2015: analysis of seasonal mortality in the 32
municipalities included in the Surveillance system of daily mortality],
Epidemiol. Prev., 40, 22–28, https://doi.org/10.19191/EP16.1.P022.010,
2016.
Morabito, M., Crisci, A., Gioli, B., Gualtieri, G., Toscano, P., Stefano, V.
D., Orlandini, S., and Gensini, G. F.: Urban-Hazard Risk Analysis: Mapping
of Heat-Related Risks in the Elderly in Major Italian Cities, PLOS ONE, 10,
e0127277, https://doi.org/10.1371/journal.pone.0127277, 2015.
Morabito, M., Crisci, A., Guerri, G., Messeri, A., Congedo, L., and
Munafò, M.: Surface urban heat islands in Italian metropolitan cities:
Tree cover and impervious surface influences, Sci. Total Environ., 751,
142334, https://doi.org/10.1016/j.scitotenv.2020.142334, 2021.
Neumayer, E. and Barthel, F.: Normalizing economic loss from natural
disasters: A global analysis, Glob. Environ. Change, 21, 13–24,
https://doi.org/10.1016/j.gloenvcha.2010.10.004, 2011.
Orlando, S., Mosconi, C., De Santo, C., Emberti Gialloreti, L., Inzerilli,
M. C., Madaro, O., Mancinelli, S., Ciccacci, F., Marazzi, M. C., Palombi,
L., and Liotta, G.: The Effectiveness of Intervening on Social Isolation to
Reduce Mortality during Heat Waves in Aged Population: A Retrospective
Ecological Study, Int. J. Environ. Res. Public. Health, 18, 11587,
https://doi.org/10.3390/ijerph182111587, 2021.
Papathoma-Köhle, M., Ulbrich, T., Keiler, M., Pedoth, L., Totschnig, R.,
Glade, T., Schneiderbauer, S., and Eidswig, U.: Chapter 8 - Vulnerability to
Heat Waves, Floods, and Landslides in Mountainous Terrain: Test Cases in
South Tyrol, in: Assessment of Vulnerability to Natural Hazards, edited by:
Birkmann, J., Kienberger, S., and Alexander, D. E., Elsevier, 179–201,
https://doi.org/10.1016/B978-0-12-410528-7.00008-4, 2014.
Peng, J., Liu, Y., Li, T., and Wu, J.: Regional ecosystem health response to
rural land use change: A case study in Lijiang City, China, Ecol. Indic.,
72, 399–410, https://doi.org/10.1016/j.ecolind.2016.08.024, 2017.
Perkins-Kirkpatrick, S. E. and Gibson, P. B.: Changes in regional heatwave
characteristics as a function of increasing global temperature, Sci. Rep.,
7, 12256, https://doi.org/10.1038/s41598-017-12520-2, 2017.
Piticar, A., Croitoru, A.-E., Ciupertea, F.-A., and Harpa, G.-V.: Recent
changes in heat waves and cold waves detected based on excess heat factor
and excess cold factor in Romania, Int. J. Climatol., 38, 1777–1793,
https://doi.org/10.1002/joc.5295, 2018.
Poumadère, M., Mays, C., Le Mer, S., and Blong, R.: The 2003 Heat Wave
in France: Dangerous Climate Change Here and Now, Risk Anal., 25,
1483–1494, https://doi.org/10.1111/j.1539-6924.2005.00694.x, 2005.
Quader, M. A., Khan, A. U., and Kervyn, M.: Assessing Risks from Cyclones
for Human Lives and Livelihoods in the Coastal Region of Bangladesh, Int. J.
Environ. Res. Public. Health, 14, E831,
https://doi.org/10.3390/ijerph14080831, 2017.
Rahma, A. and Kokonendji, C. C.: Discriminating between and within
(semi)continuous classes of both Tweedie and geometric Tweedie models, J.
Stat. Comput. Simul., 92, 794–812, https://doi.org/10.1080/00949655.2021.1975281, 2022.
Reid, C. E., O'Neill, M. S., Gronlund, C. J., Brines, S. J., Brown,
D. G., Diez-Roux, A. V., and Schwartz, J.: Mapping Community
Determinants of Heat Vulnerability, Environ. Health Perspect., 117,
1730–1736, https://doi.org/10.1289/ehp.0900683, 2009.
Reynaud, C. and Miccoli, S.: Depopulation and the Aging Population: The
Relationship in Italian Municipalities, Sustainability, 10, 1004,
https://doi.org/10.3390/su10041004, 2018.
Russo, S., Sillmann, J., and Fischer, E. M.: Top ten European heatwaves
since 1950 and their occurrence in the coming decades, Environ. Res. Lett.,
10, 124003, https://doi.org/10.1088/1748-9326/10/12/124003, 2015.
Russo, S., Marchese, A. F., Sillmann, J., and Immé, G.: When will
unusual heat waves become normal in a warming Africa?, Environ. Res. Lett.,
11, 054016, https://doi.org/10.1088/1748-9326/11/5/054016, 2016.
Russo, S., Sillmann, J., Sippel, S., Barcikowska, M. J., Ghisetti, C., Smid,
M., and O'Neill, B.: Half a degree and rapid socioeconomic development
matter for heatwave risk, Nat. Commun., 10, 136,
https://doi.org/10.1038/s41467-018-08070-4, 2019.
Schiavina, M., Freire, S., and MacManus, K.: GHS-POP R2019A – GHS population
grid multitemporal (1975-1990-2000-2015),
https://doi.org/10.2905/0C6B9751-A71F-4062-830B-43C9F432370F, 2019.
Shono, H.: Application of the Tweedie distribution to zero-catch data in
CPUE analysis, Fish. Res., 93, 154–162,
https://doi.org/10.1016/j.fishres.2008.03.006, 2008.
Smid, M., Russo, S., Costa, A. C., Granell, C., and Pebesma, E.: Ranking
European capitals by exposure to heat waves and cold waves, Urban Clim., 27,
388–402, https://doi.org/10.1016/j.uclim.2018.12.010, 2019.
Spinoni, J., Lakatos, M., Szentimrey, T., Bihari, Z., Szalai, S., Vogt, J.,
and Antofie, T.: Heat and cold waves trends in the Carpathian Region from
1961 to 2010, Int. J. Climatol., 35, 4197–4209,
https://doi.org/10.1002/joc.4279, 2015.
Taleghani, M., Marshall, A., Fitton, R., and Swan, W.: Renaturing a
microclimate: The impact of greening a neighbourhood on indoor thermal
comfort during a heatwave in Manchester, UK, Sol. Energy, 182, 245–255,
https://doi.org/10.1016/j.solener.2019.02.062, 2019.
Temple, S. D.: The Tweedie Index Parameter and Its Estimator An Introduction with Applications to Actuarial Ratemaking, BSc. Thesis, Department of Mathemeatics, University of Oregon, USA, 87 pp., 2018.
Tijdeman, E., Stahl, K., and Tallaksen, L. M.: Drought Characteristics Derived Based on the Standardized Streamflow Index: A Large Sample Comparison for Parametric and Nonparametric Methods, Water Resour. Res., 56, e2019WR026315, https://doi.org/10.1029/2019WR026315, 2020.
Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K.,
Peterson, P., and Evans, T.: Global urban population exposure to extreme
heat, P. Natl. Acad. Sci. USA, 118, e2024792118,
https://doi.org/10.1073/pnas.2024792118, 2021.
Twardosz, R. and Kossowska-Cezak, U.: Exceptionally cold and mild winters in
Europe (1951–2010), Theor. Appl. Climatol., 125, 399–411,
https://doi.org/10.1007/s00704-015-1524-9, 2016.
Tweedie, M. C. K.: An index which distinguishes between some important
exponential families, in: Statistics: applications and new directions
(Calcutta, 1981), Indian Statist. Inst., Calcutta, 579–604, 1984.
UNDRR, Disaster risk: https://www.undrr.org/terminology/disaster-risk, last
access: 21 November 2021.
van Oldenborgh, G. J., Mitchell-Larson, E., Vecchi, G. A., Vries, H. de,
Vautard, R., and Otto, F.: Cold waves are getting milder in the northern
midlatitudes, Environ. Res. Lett., 14, 114004,
https://doi.org/10.1088/1748-9326/ab4867, 2019.
Vu, A., Rutherford, S., and Phung, D.: Heat Health Prevention Measures and
Adaptation in Older Populations – A Systematic Review, Int. J. Environ. Res.
Public. Health, 16, 4370, https://doi.org/10.3390/ijerph16224370, 2019.
Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Belesova, K., Berry,
H., Bouley, T., Boykoff, M., Byass, P., Cai, W., Campbell-Lendrum, D.,
Chambers, J., Daly, M., Dasandi, N., Davies, M., Depoux, A.,
Dominguez-Salas, P., Drummond, P., Ebi, K. L., Ekins, P., Montoya, L. F.,
Fischer, H., Georgeson, L., Grace, D., Graham, H., Hamilton, I., Hartinger,
S., Hess, J., Kelman, I., Kiesewetter, G., Kjellstrom, T., Kniveton, D.,
Lemke, B., Liang, L., Lott, M., Lowe, R., Sewe, M. O., Martinez-Urtaza, J.,
Maslin, M., McAllister, L., Mikhaylov, S. J., Milner, J., Moradi-Lakeh, M.,
Morrissey, K., Murray, K., Nilsson, M., Neville, T., Oreszczyn, T., Owfi,
F., Pearman, O., Pencheon, D., Pye, S., Rabbaniha, M., Robinson, E.,
Rocklöv, J., Saxer, O., Schütte, S., Semenza, J. C.,
Shumake-Guillemot, J., Steinbach, R., Tabatabaei, M., Tomei, J., Trinanes,
J., Wheeler, N., Wilkinson, P., Gong, P., Montgomery, H., and Costello, A.:
The 2018 report of the Lancet Countdown on health and climate change:
shaping the health of nations for centuries to come, The Lancet, 392,
2479–2514, https://doi.org/10.1016/S0140-6736(18)32594-7, 2018.
Wilks, D. S.: “The Stippling Shows Statistically Significant Grid Points”:
How Research Results are Routinely Overstated and Overinterpreted, and What
to Do about It, B. Am. Meteorol. Soc., 97, 2263–2273,
https://doi.org/10.1175/BAMS-D-15-00267.1, 2016.
Short summary
We analyzed recent trends in heat and cold wave (HW and CW) risk in a European alpine region, defined by a time and spatially explicit framework to quantify hazard, vulnerability, exposure, and risk. We find a statistically significant increase in HW hazard and exposure. A decrease in vulnerability is observed except in the larger cities. HW risk increased in 40 % of the region, especially in highly populated areas. Stagnant CW hazard and declining vulnerability result in reduced CW risk.
We analyzed recent trends in heat and cold wave (HW and CW) risk in a European alpine region,...
Altmetrics
Final-revised paper
Preprint