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Abstract. Heat waves (HWs) and cold waves (CWs) can
have considerable impact on people. Mapping risks of ex-
treme temperature at local scale, accounting for the interac-
tions between hazard, exposure, and vulnerability, remains a
challenging task. In this study, we quantify risks from HWs
and CWs for the Trentino-Alto Adige region of Italy from
1980 to 2018 at high spatial resolution. We use the Heat
Wave Magnitude Index daily (HWMId) and the Cold Wave
Magnitude Index daily (CWMId) as the hazard indicators.
To obtain HWs and CW risk maps we combined the follow-
ing: (i) occurrence probability maps of the hazard obtained
using the zero-inflated Tweedie distribution (accounting di-
rectly for the absence of events for certain years), (ii) normal-
ized population density maps, and (iii) normalized vulner-
ability maps based on eight socioeconomic indicators. The
methodology allowed us to disentangle the contributions of
each component of the risk relative to total change in risk.
We find a statistically significant increase in HW hazard and
exposure, while CW hazard remained stagnant in the ana-
lyzed area over the study period. A decrease in vulnerability
to extreme temperature spells is observed through the region
except in the larger cities where vulnerability increased. HW
risk increased in 40 % of the region, with the increase be-
ing greatest in highly populated areas. Stagnant CW hazard
and declining vulnerability result in reduced CW risk lev-
els overall, except for the four main cities where increased
vulnerability and exposure increased risk levels. These find-
ings can help to steer investments in local risk mitigation, and
this method can potentially be applied to other regions where
there are sufficient detailed data.

1 Introduction

Heat waves (HWs) and cold waves (CWs) are hazards that
affect public health and the environment (Gasparrini et al.,
2015; Habeeb et al., 2015). With global warming, HW in-
tensities and durations are expected to increase, while those
of CWs are expected to decrease (Perkins-Kirkpatrick and
Gibson, 2017; Russo et al., 2015; Smid et al., 2019), chang-
ing the risks they pose to society. A recent report showed
that in the year 2018 worldwide, 157 million more people
were exposed to HWs compared to the year 2000 (Watts et
al., 2018). In Europe, recent high-intensity HW events (2003
and 2018) – where HWs are defined as 3 d over 90th temper-
ature percentile of the 1980–2010 – have impacted as much
as 55 % of its area (García-León et al., 2021). In Italy, HWs
had a strong impact on mortality. For example, in 2003, a
27 % mortality increase was reported over August compared
to August 2002; there was also a 23 % increase in July 2015
compared to the same month for the 5 previous years (Mich-
elozzi et al., 2005, 2016). In Trentino-Alto Adige (our study
region), Conti et al. (2005) showed that the large HW of
2003, compared to the previous year, increased mortality
by 32 % in Trento and 28 % in Bolzano (the region’s two
main cities). In the city of Bolzano, it was found that higher
hospital admissions occurred during HW events, particularly
among elderly women (Papathoma-Köhle et al., 2014). With
regards to CWs in Europe, recent winters have claimed lives
with 790 deaths in 2006 and 549 deaths in 2012 (Kron et
al., 2019). In Italy, de’Donato et al. (2013) report an increase
in mortality (47 %) for the time frame of the 2012 CW in
the city of Bolzano compared to the four previous winters
(2008–2011).
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HW and CW events clearly drive risk, but how do we de-
fine this risk? The United Nations Office for Disaster Risk
Reduction (UNDRR, 2021) and the Intergovernmental Panel
on Climate Change (IPCC, 2014) define risk as a function of
hazard, exposure, and vulnerability. Hazard is defined as a
process, phenomenon, or human activity that may cause loss
of life, injury, or other health impacts; property damage, so-
cial and economic disruption; or environmental degradation
and hazards characterized by location, intensity or magni-
tude, frequency, and probability. Exposure is defined as peo-
ple, infrastructure, housing, production, and other tangible
human assets present in hazard-prone areas. Vulnerability is
defined as the conditions that define the susceptibility of an
individual, infrastructure, or a community to be impacted by
the hazard. To successfully quantify risk, one must measure
all three components: hazard, exposure, and vulnerability.

With regard to temperature-related hazard and exposure,
several studies have been conducted at global (e.g., Cham-
bers, 2020; Dosio et al., 2018), continental (e.g., King et al.,
2018), and at city scale (e.g., Smid et al., 2019). Most studies
focus on human exposure (e.g., Chambers, 2020; Tuholske
et al., 2021) and on the exposure of different land areas (e.g.,
Ceccherini et al., 2017; van Oldenborgh et al., 2019; Russo
et al., 2016). These studies find increasing trends in HW
(Chambers, 2020; Dosio et al., 2018) and decreasing trends
in CWs in their period of analysis (van Oldenborgh et al.,
2019; Smid et al., 2019).

Studies on HWs and CWs typically have used sub-
jective numerical thresholds, on the indicator to define
severity and exposure to the hazards (e.g., 0<HWMId<3,
3<HWMId<6, 6<HWMId<9, where HWMId is Heat Wave
Magnitude Index daily). However, extreme events are usually
defined by their return periods. In the case of HWs and CWs,
fitting extreme value distributions to define the return periods
is difficult due to the possible absence of events in the ana-
lyzed time frame (i.e., zero values, in the case where there
are no HWs or CWs in a given year). Generalized extreme
value distribution (GEV) and non-stationary techniques (Do-
sio et al., 2018; Kishore et al., 2022; Russo et al., 2019) have
enabled estimation of HW and CW return periods, but nei-
ther approach explicitly accounts for a zero presence in an
analyzed time series.

In this study, for the first time, we use a distribution allow-
ing for the direct fitting of zero values for extremes (years
with no event): the zero-inflated distribution of Tweedie fam-
ilies (Jorgensen, 1987; Tweedie, 1984). This distribution is
also used to estimate HW and CW frequency of occurrence.
The Tweedie distribution has been used mostly for the pur-
pose of the analysis of insurance claims. It has seldom been
applied in the field of natural hazards, such as HW mortal-
ity (Kim et al., 2017), drought (Tijdeman et al., 2020), or
rainfall analysis (Dunn, 2004; Hasan and Dunn, 2011). The
main advantage of the Tweedie distribution is the possibility
of considering a range of distributions to describe continuous
and semi-continuous domains; these include normal, gamma,

Poisson, compound gamma–Poisson, and inverse Gaussian
(Bonat and Kokonendji, 2017; Rahma and Kokonendji, 2022;
Shono, 2008; Temple, 2018). Moreover, for some of these
distributions (i.e., Poisson mixtures of gamma distributions),
the Tweedie distribution approach explicitly enables the fit-
ting of zero-inflated data. The distribution’s main limitation
is the complex distribution’s fitting methodology and the dif-
ficulties in obtaining relevant information criteria, such as
Akaike’s information criterion (Shono, 2008). The implica-
tion of these limitations is that the “fitting” of the Tweedie
distribution is computationally intensive and that it is diffi-
cult to compare its goodness of fit to other distributions via
the information criterion.

To perform any risk analysis, vulnerability to the haz-
ard must be quantified. HW and CW vulnerabilities can be
approximated though the combinations of several socioeco-
nomic indicators. Cheng et al. (2021) provide an overview of
the different types of indicators used in the literature to quan-
tify vulnerability. The indicators can be diverse, ranging from
population structure (e.g., age and health characteristics), so-
cial status, economic conditions, community (cultural) group
characteristics, and household physical characteristics. At the
community level in the United States, indicators such as so-
cial isolation, presence of air conditioning, proportion of el-
derly, and proportion of diabetics in the population have been
found to be key for human vulnerability to temperature ex-
tremes (Reid et al., 2009). At the national level in South Ko-
rea, Kim et al. (2017) found that elderly living alone, agricul-
tural workers, and the unemployed are the main indicators of
vulnerability to heat wave days and tropical nights. Vulnera-
bility indicators, in combination with temperature–mortality
relationships, have also been appraised at city scale for HWs
(Ellena et al., 2020) and at regional scale (López-Bueno et
al., 2021) for CWs (Karanja and Kiage 2021). A study on
social vulnerability to natural hazards in Italy (Frigerio and
De Amicis, 2016) used seven indicators (i.e., family struc-
ture, education, socioeconomic status, employment, age, race
and ethnicity, and population growth) derived from the freely
available census records.

HW and CW risks overall are often assessed using differ-
ent methodologies depending on the objectives of the study.
On a global scale, Russo et al. (2019) establish a risk index
using the probabilities of HWs as hazard, where the exposure
is the population density normalized in [0;1] based on its
maximum and minimum values, while vulnerability is based
on a socioeconomic indicator (human development index).
For Italy, Morabito et al. (2015) conducted a risk analysis of
heat on elderly in the major cities, using the elderly popu-
lation as the only vulnerability factor and summer average
temperatures for the period 2000–2013 to quantify hazards.

In this study, we assess risk associated with extreme tem-
peratures in the Italian Trentino-Alto Adige region. This is
a relevant social and scientific objective given (i) the in-
crease in the percentage of elderly people (i.e., vulnerabil-
ity change) (Papathoma-Köhle et al., 2014) and (ii) changing
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temperature extremes in view of climate change (i.e., chang-
ing hazard). Few studies have attempted to quantify HW and
CW impacts for the cities of Trento and Bolzano (main cities
of the region), including Conti et al. (2005) as part of their
studies on Italian cities and Papathoma-Köhle et al. (2014),
who studied impacts in Bolzano. The former compared mor-
tality data of the year 2003, when there was a very intense
HW, to the year 2002, finding an increase of mortality in
both Trento and Bolzano. The latter compared hospital ad-
missions due to HWs in summer months of 3 years (2003,
2006, and 2009) and found heat health-related issues driving
admissions among elderly women.

To understand the evolution of HW and CW human risk
and to plan adequate risk-mitigation measures in the region
of study, the risk and its change at high spatial and temporal
resolution need to be analyzed. The aim of this research is
to improve quantification of HW and CW hazards, human
exposure, vulnerabilities, over the period 1980–2018, for the
Trentino-Alto Adige region to better assess related risks at
high definition (i.e., city scale). The goals for this paper are
therefore as follows:

1. quantify HW and CW hazards and their return level
at a very high spatial resolution (250 m) by combining
for the first time (i) the indicators proposed (HWMId,
CWMId – Cold Wave Magnitude Index daily) by Russo
et al. (2015) and Smid et al. (2019), together with (ii) the
Tweedie distribution;

2. quantify human exposures and vulnerabilities to HWs
and CWs and their evolution over time for the Trentino-
Alto Adige region;

3. quantify HW and CW risks across the region and un-
derstand their main drivers, disentangling how their in-
dividual components drive these risks over time.

2 Study area

The Trentino-Alto Adige region (Fig. 1) is a mountainous
region in northern Italy, which borders Austria. The eleva-
tion of the region varies from 65 m for Lake Garda to 3905 m
for the Ortler. It is composed of two provinces (Province of
Trento and Province of Bolzano). Its most populous cities
(population for 2022 in parentheses) are the two provincial
capitals, Trento (118 509) and Bolzano (107 025), as well as
minor cities such as Merano (40 994) and Rovereto (39 819).
The main rivers in the region are the Adige and its tributary,
the Isarco. Due to its diverse geography, the climate is also
diverse, ranging from subcontinental to alpine according to
the Köppen classification (Fratianni and Acquaotta, 2017).

Figure 1. The Trentino-Alto Adige region and its most populated
cities (Trento, Bolzano, Rovereto, and Merano); the colors indicate
the elevations, river network, and lakes.

3 Methodology

3.1 Temperature data

In order to quantify the HW and CW hazard, we used
the freely available spatial–temporal temperature dataset by
Crespi et al. (2021). It consists of gridded daily temperatures
for the entire Trentino-Alto Adige region covering the period
of 1980–2018 at a resolution of 250 m. The dataset is based
on more than 200 station’s daily records that have been qual-
ity controlled and homogenized. The interpolation method is
based on a combination of 30-year temperature climatology
(1981–2010) and daily anomalies, and it accounts explicitly
for topographic features (i.e., elevation, slope) that are cru-
cial in orographically complex areas like the Trentino-Alto
Adige region. The leave-one-out cross-validation presented
in Crespi et al. (2021) finds a mean correlation coefficient
that is higher than 0.8 and mean absolute errors of around
1.5 ◦C (on average across months and stations used for the
interpolation).

3.2 Hazard quantification and distribution fitting

3.2.1 Hazard quantification

To quantify the hazard, we used the HWMId (Russo et al.,
2015) and the CWMId (Smid et al., 2019). These indices rep-
resent a way of measuring extreme temperature events while
considering their durations and intensities and accounting for
site-specific historical climatology (30 years).
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According to Russo et al. (2015), HWMId is defined as
the maximum magnitude of the HWs in a year. A HW occurs
when the air temperature is above a daily threshold for more
than 3 consecutive days. The threshold is set to the 90th per-
centile of the temperature data of the day and the window of
15 d before and after, throughout the reference period 1981–
2010. The magnitude of a HW is the sum of the daily heat
magnitude HMd of all the consecutive days composing the
HW (Eq. 1):

HMd (Td)=

{
Td−T30y25p

T30y75p−T30y25p
if Td > T30y25p

0 if Td ≤ T30y25p
, (1)

where HMd (Td) corresponds to the daily heat magnitude,
Td the temperature of the day in question, and T30y25p and
T30y75p correspond to the 25th and 75th percentile of the
yearly maximum temperature for the 30 years of the refer-
ence period (1981–2010). The interquartile range (IQR, i.e.,
the difference between the T30y75p and T30y25p percentiles of
the daily temperature) is used as the heat wave magnitude
unit and represents a non-parametric measure of the variabil-
ity of the temperature time series. Therefore, a value of HMd
equal to 3 means that the temperature anomaly on day d with
respect to T30y25p is 3 times the IQR. Finally, for a given year
HWMId corresponds to the highest sum of magnitude (HMd)
over the consecutive days composing a heat wave event (with
only days with HMd> 0 considered).

Analogously to the HWMId, CWMId is defined as the
minimum magnitude of the CWs in a year (Smid et al., 2019).
A CW occurs when the air temperature is below a daily
threshold for more than 3 consecutive days. The threshold
is set to the 10th percentile of the temperature data of the
day and the window of 15 d before and after, throughout the
reference period 1981–2010.

The daily cold magnitude corresponds to Eq. (2):

CMd (Td)=

{
Td−T30y75p

T30y75p−T30y25p
if Td < T30y75p

0 if Td > T30y75p
, (2)

where CMd (Td) corresponds to the cold daily magnitude,
Td the daily temperature, and T30y25p and T30y75p correspond
to the 25th and 75th percentile yearly temperature for the
30 years used as a reference. Inversely to HWMId, the lowest
cumulative magnitude sum is retained for each year and with
only consecutive days with CMd< 0 considered to calculate
it. CWMId always being < 0, its absolute values are retained
for its values to be on a positive interval (similar to HWMId).

3.2.2 Distribution fitting

The HWMId and CWMId yearly values are fitted with
a probability distribution to estimate their return periods.
Considering that HWMId and CWMId are both defined
in [0,+Inf[, we use the Tweedie distribution (Jorgensen,
1987; Tweedie, 1984), a distribution that can act as zero-
inflated, thus accounting for the presence of zeros directly.

The Tweedie distribution is an exponential dispersion model
which has a probability density function of the following
form (Eq. 3):

f (yθ8)= a(y8) · exp
[

1
8
{yθ − κ(θ)}

]
, (3)

where 8 corresponds to its dispersion parameter that is pos-
itive, θ to its canonical parameter, and κ(θ) the cumulant
function. The function a(y, 8) generally cannot be written
in closed form. The cumulant function is related to the mean
(µy = κ ′(θ)) and variance (σy =8·κ ′′(θ)), and in the case of
a Tweedie distribution the variance has a power relationship
with the mean (Eq. 4):

σy =8 · (µy)
p, (4)

where p corresponds to the power parameter that is positive.
Depending on the value of p, the distribution will behave

differently. In the case where p is between 1 and 2, it belongs
to the compound Poisson–gamma distribution with a mass at
zero, while other p values can make the distribution corre-
spond to a normal, Poisson, or gamma distribution, among
others. The use of the Tweedie distribution is retained, per-
mitting us to consider the zero values while also considering
other distributions should there be an absence of zero values.

We fit the distribution to the previously found HWMId
and CWMId values with the help of the Tweedie R pack-
age (Dunn, 2021). It provides distribution density, distri-
bution function, quantile function, and random generation
for the Tweedie distributions. The Tweedie parameters (i.e.,
mean, power, and dispersion) have been estimated by the
“tweedie.profile” function (Dunn, 2021) using the maximum
likelihood as described by Dunn and Smyth (2005). An ex-
ample of the fitted distribution for Bolzano and Trento can
be found in the Supplement (Fig. S1 in the Supplement). It is
also possible to use the same package to estimate a quantile
using the fitted distribution, permitting us to estimate spe-
cific return levels for return periods T for both HWMId and
CWMId. For this study two return levels are retained: 5 years
(HW5Y for HW, and CW5Y for CW) and 10 years (HW10Y
for HWs and CW10Y for CW). This choice aims to account
for both the length of the analyzed period (39 years) and the
type of hazards we are analyzing (HWs and CWs usually do
not occur every year). Higher return level estimations would
be affected by extrapolation effects and higher uncertainties.

For statistical fit verification, the Kolmogorov–Smirnov
(KS) test on two samples is used with one sample being the
HWMId or CWMId values and the other sample being a ran-
domly generated sample using the fitted distribution value.
This goodness-of-fit test is one of the most commonly used in
the literature for zero-inflated Tweedie distribution (Goffard
et al., 2019; Johnson et al., 2015; Rahma and Kokonendji,
2022). The null hypothesis of this test is that the two samples
belong to the same distribution. If the P value for this test
is below the significance level α of 5 %, the null hypothesis
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is rejected, otherwise we cannot reject the null hypothesis at
this significance level.

3.3 Exposure quantification

To quantify the population exposed to HWs and CWs, we use
time-varying population data from the Global Human Settle-
ment Layer (GHSL) (Schiavina et al., 2019). The population
data are available at a resolution of 250 m for the following
years: 1975, 1990, 2000, and 2015. Both these data, as well
as the population count done by the Italian national statisti-
cal institute, indicate a growing population throughout the re-
gion in the period for which data are available (overall 23 %,
1975–2015).

To model more accurately exposure, we created yearly
varying population maps for the period 1980–2018, fol-
lowing the methodology presented in other studies (e.g.,
Formetta and Feyen, 2019; Neumayer and Barthel, 2011).
We linearly interpolated the data in time for the period
1980 to 2015 (assuming a constant rate in between available
years), and we used the closest year for the period 2016–
2018.

Following recent studies (King and Harrington, 2018;
Russo et al., 2019), for each year, a pixel is considered ex-
posed to HW/CW hazard (or to a 5- or 10-year return period
HWs/CWs) if, for that year, the HWMId/CWMId of the pixel
is greater than zero (or greater than the corresponding return
level HW5Y/CW5Y or HW10Y/CW10Y, respectively). This
is the exposition factor, and it is a binary value (0 meaning
unexposed or 1 meaning exposed).

The percentage of population exposed is calculated on an
annual basis over the study period (1980–2018) and with
the help of population data linearly interpolated from 1980
to 2018.

Using this population data, the percentage of population
exposed is then calculated using the following equations
(Eqs. 5 and 6):

Population exposed(t)=
∑
i

EFi · populationi(t) (5)

Percentageof population exposed(t)=
Population exposed(t)

Total population(t)
, (6)

where i corresponds to the pixels, t to the year being ana-
lyzed, and EF to the exposition factor mentioned above (bi-
nary).

3.4 Vulnerability quantification

We express HW and CW vulnerability using eight indicators
as in Ho et al. (2018); they quantify community vulnerabil-
ity to HW and CW events based on extreme age, household
physical characteristics, social status, and economic condi-
tions. The list of variables considered is reported in Table 1.

The spatially varied indicators are freely available in the
census records (i.e., sub-city level) from the Italian national

statistical institute (ISTAT, 2021) for 3different years (1991,
2001, 2011). Given the data time constraints, vulnerability is
thus derived for these 3 years only.

The methodology to quantify vulnerability uses the equal
weight analysis (EWA; e.g., Liu et al., 2020). Firstly, the in-
dividual indicators are standardized between 0 and 1, prior
to aggregation (their sum); the standardization is done at the
city level for the 3 years of record (1991, 2001, 2011) based
on Eq. (7):

Standardized

Indicator(t)=

Indicator(t)−min(
Indicator1991,2001,2011

)
max

(
Indicatorr1991,2001,2011

)
−min(Indicatorr1991,2001,2011)

(7)

Vulnerability(t)=
∑

Standardized indicator(t)
number of indicators

. (8)

This approach was chosen as it is the simplest method for
weighing the vulnerability indicators, and it is commonly ap-
plied in the literature with regards to HWs and CWs (e.g.,
Buscail et al., 2012; Buzási, 2022).

Finally, we created yearly varying vulnerability maps for
the period 1980–2018 following the same linear interpolation
approach used for the population.

3.5 Risk quantification

Risk is a function of hazard, exposure, and vulnerability,
multiplied to quantify risk (UNDRR, 2021). This is one of
the two most commonly used approaches in the literature
(Dong et al., 2020; Quader et al., 2017; Russo et al., 2019),
with the other approach being the addition of the differ-
ent risk components. Multiplication when compared to addi-
tion is found to better highlight the complex relationship be-
tween the different components, due the multiplication of the
multivariate probabilities of independent variables following
a product law (El-Zein and Tonmoy, 2015; Estoque et al.,
2020; Peng et al., 2017).

The risk is calculated as per Dong et al. (2020) (Eq. 9):

Risk= 3
√

Hazard · Exposure · Vulnerability, (9)

with each of the risk components having a value in [0,1].
The hazard is computed as the probability of occurrence of
HWs/CWs using the fitted Tweedie distribution probability
function for each pixel. Exposure is the standardized popu-
lation density. The vulnerability derived from standardized
variables is also between [0,1]. The resulting risk is therefore
bound by 0 and 1, with 0 corresponding to the lowest level
of risk and 1 to the highest level of risk.

The risk is calculated at the municipality level because it
is the lowest level of resolution of the three elements that
compose it.
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Table 1. Vulnerability indicators used (after Ho et al., 2018).

Category Indicator Definition

Extreme age Older age Population over 55 years old

Infants Population under 5 years old

Household People in old houses Percentage of household living in housing built prior to 1960
physical (corresponding to when better insulation started being implemented)

characteristics
People in poor living condition

Percentage of household living in other type of housing not meant
for inhabitation (cellar, attics)

Social status Low-education population Population with low education (no middle-school diploma)

People living alone Number of single-person households

Economic Status Low-income population Population in a household with children and no money-earning members

Unemployed Unemployment rate

In order to further investigate which are the driving fac-
tors of the risk, we disentangle the marginal effect of each
component (i.e., hazard, exposure, and vulnerability) for both
HWs and CWs. In turn, one of them is allowed to vary across
1980–2018 and two of them are kept constant (to their value
at the year 2003, the middle of the analyzed period).

3.6 Trend analysis and statistical significance

The trends are analyzed using the robust regression technique
(Huber, 2011) which is often used to assess trends in natural
hazards (Formetta and Feyen, 2019 for multiple hazards and
Kishore et al., 2022, specifically for HWs). Robust regres-
sion seeks to overcome part of the limitations of traditional
regression analysis.

For example, the linear regression least squares method is
optimal when the regression’s assumptions (normal distribu-
tion, independence, equal variance) are valid (Filzmoser and
Nordhausen, 2021; Khan et al., 2021). This method can be
sensitive to outliers or if normality is dissatisfied (Khan et al.,
2021; Brossart et al., 2011). The robust regression method is
designed to limit the effect that invalid assumptions have on
the regression estimates (Filzmoser and Nordhausen, 2021;
Alma, 2011).

To confirm the statistical significance of the trends, the
false discovery rate (FDR) methodology is used according
to Wilks (2016) and Leung et al. (2019), with a signifi-
cance level α = 0.05. The FDR is defined as the statisti-
cally expected fraction of null hypothesis test rejections at
the grid cell for which the respective null hypotheses are true
(Wilks, 2016).

Figure 2. Regional Heat Wave Magnitude Index daily (HWMId)
and Cold Wave Magnitude index daily (CWMId) maps for single
years with the highest regional average on record (1980–2018).

4 Results

4.1 Hazard quantification and trends

For HW hazard intensities, the most notable year on record
(1980–2018) in the region is 2003, where HWMId reached a
pixel maximum of 30.4 and a median value of 16.9 over the
area (Fig. 2). The second most intense HW occurred in 2015
and the third most intense in 1983. Out of the 6 years with the
highest median HWMId between 1980 and 2018, 4 years oc-
curred in the last decade (2010, 2013, 2015, 2017), suggest-
ing that climate change is already increasing the frequency
of heat waves in the Trentino-Alto Adige region. For CW,
only 1985 stands out, with a maximum and median CWMId
of 27 and 14.5, respectively, or nearly 3 times more than that
of any other year on record. The second strongest cold wave
occurred in 2012.
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Figure 3. Trends in heat waves (HWs) and cold waves (CWs)
using the robust linear model based on yearly HWMId and
CWMId magnitudes from 1980 to 2018 for HWs (a) with
HWMId> 0, (b) with HWMId>HW5Y, (c) HWMId>HW10Y
and for CWs and (d) with CWMId> 0, (e) with CWMId>CW5Y,
(f) CWMId>HW10Y.

The KS test p values (Fig. S2 in the Supplement) indicate
that the fitting of the Tweedie distribution with power param-
eter values between [1,2] cannot be rejected for both HWMId
and CWMId. This enables us to estimate return levels for
both HWs and CWs and analyze trends based on them. The
return levels for return periods of 5 years (HW5Y, CW5Y)
and years (HW10Y, CW10Y) for every pixel are shown in
Fig. S3.

Fitting the robust linear model to the HW values, statis-
tically significant positive trends are found for HWs (i.e.,
HWMId> 0) and HWs with a magnitude larger than the 5-
year event (HWMId>HW5Y) in most pixels of the region
(Fig. 3). For rarer events, those larger than the 10-year event
(HWMId>HW10Y), no statistically significant increase in
HW intensity is found in the region. Regarding location of
these trends, some of the highest elevation parts of the re-
gion have the greatest coefficient of increase (i.e., north of
Bolzano and in the mountains located in the northwest of the
region). For all CWs, we do not find statistically significant
trends in any part of the region.

4.2 Population exposure

Summing the overall number of people exposed over inter-
vals (i.e., one person can be exposed each year and therefore
counted multiple times over the interval), between 1980 and
2000 in the study region, about 900 000 people were exposed
to a 5-year HW event, 250 000 to a 10-year HW event, 3 mil-
lion to a 5-year CW event, and 1.9 million to a 10-year CW
event. More recently, between 2000 and 2018, the population
exposure values increased significantly to over 5 million for
a 5-year HW event and to about 2.5 million for a 10-year HW
event, but the numbers decreased for CW events, to 2.4 mil-
lion for a 5-year CW event and to 500 000 for a 10-year CW
event. Due to the importance of the demographic change in

Figure 4. Percentage of population exposed to heat wave and cold
wave events greater than the return levels of 5 and 10 years over the
span of 1980–2018.

the region over the full study period (increase of population
by 23 %), it is important to analyze the percentage of popu-
lation impacted by these different events. This will help us to
disentangle what is driving these changes, e.g., whether these
changes are due to demographic changes or to the change in
the frequency of events or both.

Figure 4 presents the share of the population exposed to
HW and CW intensities larger than those of 5-year and 10-
year events over the period 1980 to 2018 on a yearly ba-
sis. It shows that a higher share of the population was ex-
posed to HWs more frequently after 2000 compared to the
first 2 decades (1980s and 1990s). For both return periods,
the robust linear model indicates a significant increase in the
share of the population exposed to HWs across the region,
with a coefficient for the increase of nearly 1 % per year for
HWs>HW5Y and 0.02 % for HWs>HW10Y. We did not
find a significant trend in human exposure to CWs in the re-
gion.

4.3 Vulnerability quantification

The vulnerability for the region (Fig. 5) decreases with time,
with an average value of 0.42 in 1991, 0.32 in 2001, and
0.27 in 2011. The main reason for the decrease in vulner-
ability at regional scale is the improvement in overall edu-
cation level and housing conditions (i.e., fewer people liv-
ing in old and poor housing conditions). By contrast, for the
larger cities (those with a population over 30 000: Merano,
Bolzano, Trento, Rovereto), the vulnerability increased from
0.28 in 1991 to 0.30 in 2001 and 0.32 in 2011 (with vul-
nerability values averaged for those cities; see Fig. S4). The
increase in these cities’ vulnerability relates to the rise in
age (i.e., the older age indicator) and change in social status;
with time, there has been a growing portion of the popula-
tion above 55 and an increase in the number of people living
alone in isolated households.
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Figure 5. Calculated extreme temperature vulnerability index for
the 3 years of the census records (1991, 2001, 2011) with the bor-
ders of the municipalities in black.

Figure 6. Trends between 1980 and 2018 of (a) heat waves and
(b) cold waves risks using the robust linear method. Colors indicate
an increase in the risk and grey a decrease. Significance is indicated
with the hashing, the yearly change being the robust linear model
coefficient.

4.4 Risk quantification

Figure 6 shows the trend in risk for the whole region over
the period 1980–2018. The robust linear model shows a sig-
nificant increasing trend for HW risk in 40 % of the region’s
area, with a significant decreasing risk in some isolated parts
of the region of study. While the risk from CWs has de-
creased over most of the region since the 1980s, an increase
is found in the major cities (Trento, Rovereto, Bolzano, and
Merano).

Decadal means of the annual regional risk values confirm
these trends, with the HW risk increasing from 0.119 in the
1980s to 0.133 for the 2010s, while CW risk has decreased
from 0.134 in the 1980s to 0.124 in the 2010s. Decadal means

of HW risk for the large cities show a stronger trend com-
pared to the whole region. We found that the average HW
risk in the main cities increased by nearly 45 % compared to
the 12 % increase in the whole region. Decadal means of CW
risk for the main cities increased by nearly 17 %, whereas in
the whole region it decreased by 7 %.

The highest annual risk levels for both HWs and CWs co-
incide with the years with the highest hazard intensity (2003
for HW and 1985 for CW; see Fig. S5 in the Supplement), in-
dicating that the hazard is potentially the main factor for risk.
However, risks are of course further modulated by exposure
and vulnerability. The risks are found to be the highest in the
largest cities (Bolzano, Merano, Rovereto, and Trento).

Figure 7 shows the marginal effect of the driving factor
behind the trends in HW and CW risks. Figure 7a, c, and e
(b, d, and f) show the trend in HWs (CWs) risks with only
vulnerability, only exposure, and only hazard changing, re-
spectively.

Figure 7a and b show trends in risk due to changes in
vulnerability only, effectively indicating the locations of the
increases/decreases in risk due the changes of vulnerabil-
ity indicators, which are equally weighted (seen in Fig. 5).
These trends are found to be increasing in the main cities
and nearby areas and are found to be decreasing for the rest
of the region.

Figure 7c and d show trends in risk due to change in ex-
posure only, indicating the locations of changing risk due to
the changes in population (exposed) only. The HW and CW
risks are found to be increasing in or near urban areas and
decreasing in zones at high elevations and far from the ur-
ban centers.

Figure 7e shows the trends in HW risk due to hazard only,
with statistically significant increasing trends being more ev-
ident in and around highly populated areas. The figure shows
that hazard is the main driver of risk for HWs, with the sig-
nificant increasing hazard trends canceling (as can be seen in
Fig. 6a) most of the significant decreasing trends of the other
two elements (exposure and vulnerability) seen in the Fig. 7a
and c.

Finally, Fig. 7f shows no significant trends in CW risk
due to change in hazards only. The figure indicates that the
combination of three elements of the risk equation (Eq. 9) is
the main driver of its risk (Fig. 6b) rather than the CW haz-
ard only.

5 Discussion

The hazard analysis presented in this paper relies on the
Crespi et al. (2021) air temperature database. Although the
work of Crespi et al. (2021) is based on a state-of-the-art in-
terpolation approach and represents the best product for the
area, more attention should be given to measuring meteoro-
logical variables in orographically complex areas and at high
elevation. A more in-depth analysis of this sort will in turn
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Figure 7. Trends between 1980 and 2018 of heat wave risks, panel
(a) (c) and (e), and cold wave risks, panel (b) (d) and (f) due to
changes in vulnerability only, i.e. panel (a, b); exposure only, i.e.
panel (c, d), and hazard only, i.e. panel (e, f). Trends are found
with the robust linear method, with red (blue) colors indicating an
increase in the risk and grey a decrease. Significance is indicated
with the hashing, the yearly change (× 10−3) being the robust lin-
ear model coefficient.

reduce uncertainty in spatial interpolation and improve the
quantification of hazards such as HWs and CWs and related
risks.

The findings of this study agree with Russo et al. (2015),
who found the greatest HWs in the region in 1983, 2003,
and 2015 in their analysis of Europe since 1950. The fact
that four of the six largest HWs occurred in the last decade
suggests that climate change is already influencing the inten-
sity and frequency of HWs in the Trentino-Alto Adige re-

gion. Regarding CWs, Jarzyna and Krzyżewska (2021) also
found cold spells in the years 1985 and 2012 using different
methodologies for other locations throughout Europe. Sim-
ilarly, other studies found 1985 to be a year of an excep-
tional CW in Europe (Spinoni et al., 2015; Twardosz and
Kossowska-Cezak, 2016).

Figure 3a indicates that a strong increase in heat wave
trends is observed in the northwest and the north of our study
area. Both areas are at a high elevation (between ∼ 1000 m
and ∼ 3900 m), and one includes the highest mountain in
the analyzed area. These results are consistent with those
presented by Acquaotta et al. (2015), who found higher in-
creases in temperatures at higher elevations in northwest-
ern Italy.

Our results for HWs are also in line with the finding of
Bacco et al. (2020) that analyzed trends in temperature ex-
tremes over northeastern regions of Italy (including Trentino-
Alto Adige) based on homogenized data from dense station
networks. Bacco et al. (2021) also found widespread warm-
ing, with significant positive trends in maximum-related
mean and daytime temperature extremes. The lack of trend in
CW events is also in agreement with previous research that
could not detect any trend in extreme cold spells (Jarzyna and
Krzyżewska, 2021; Piticar et al., 2018).

The trends in vulnerability and their absence of statisti-
cal significance strongly depend on the available data. In our
case the data used are from the specific national census car-
ried out every 10 years and aggregated at the city spatial
scale. These data are freely available and allow us to quantify
the vulnerability to natural hazards, which is a crucial com-
ponent for the risk quantification (e.g., Formetta and Feyen,
2019; Frigerio and De Amicis, 2016).

Consistently with previous studies in other European re-
gions (e.g., López-Bueno et al., 2021; Poumadère et al.,
2005), we found that the elderly population and isolation
were the indicators most affecting the increase in extreme
temperature vulnerability.

The results of our vulnerability analysis contrast with
the findings of Frigerio and De Amicis (2016), who report
increasing vulnerability for municipalities of the Bolzano
province and slightly decreasing to steady vulnerability in
the Trento province. The contrast between their findings and
ours is related to the use of different indicators (i.e., they
use employment, social-economic status, family structures,
race/ethnicity, and population growth) and also a different
methodology for calculating the vulnerability. The method-
ology used by Frigerio and De Amicis (2016) normalizes in-
dicators across all of Italy; by contrast in this study we nor-
malize indicators over the Trentino-Alto Adige region only,
allowing us to better characterize local vulnerability.

Our findings on the increase in HW risks are consistent
with Smid et al. (2019), who showed an increase of risk
in both current and the future period for European capitals;
the same study highlights a future decrease in CW risk for
these same cities. We found that CW risk is still increas-
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ing for the main cities of our study. This is also the case for
other cities in mountainous regions, such as is highlighted
by López-Bueno et al. (2021) for the metropolitan area of
Madrid, where the urban area was found to be more at risk
from CWs compared to the rural areas in the same region.

Our analysis of the risk trends shows that hazard and vul-
nerability are the main driving factors of HW risk in the re-
gion of study. The changes in HW risk due to hazard also
highlight the presence of an urban heat island effect in the
most populated cities of the region (in Fig. 7e these are the
zones of the highest increasing trends in risk). This has also
been found in other studies of urban areas (e.g., Morabito et
al., 2021). The changes in CW risk are explained by the de-
mographic changes (i.e., an increasing and aging population)
and by other vulnerability changes, which are increasing in-
/around urban areas and decreasing elsewhere.

The changes found in HW and CW risk due to changes
in exposure or vulnerability only is partially explained by
rural–urban migration and by an aging population. Findings
of rural–urban migration and aging populations are presented
in other studies such as that of Reynaud and Miccoli (2018),
who demonstrated these in Italy and more specifically our
study area.

6 Summary and conclusions

Our study is one of the first to calculate risks of HWs and
CWs and their trends at the community and city level for
a region over a 39-year period. This is done by first quan-
tifying the historical hazard of extreme temperature events
using HWMId and CWMId indicators, at high spatial res-
olution (250 m) in the Trentino-Alto Adige region for the
period 1980–2018. The hazard probability of occurrences is
then quantified by fitting the Tweedie distribution to HWMId
and CWMId values, explicitly accounting for zero values in
their time series. Two types of population exposure are found
using different hazard return levels (5- and 10-year return
level). Vulnerability is calculated using eight different so-
cioeconomic indicators. Combining these findings, the spa-
tiotemporal HW and CW risk over the time period and at the
city level is calculated.

Over the past 4 decades, HWs, i.e., HWMId> 0 (and
extreme HWs, i.e., HWMId>HW5Y) showed increasing
trends in most of the region, with 98 % (70 %) being sta-
tistically significant. This results in an increasing exposure
of people to extreme heat spells. For CW, we did not find a
trend in hazard frequency, and intensity and exposure to ex-
treme cold remain constant. With regards to risk, a steady
increase (∼ 12 %) in HW risk and a decrease (∼ 7 %) in CW
risk are found for the entire region. However, in larger cities
of the region, a much stronger rise in HW risk (∼ 45 %) and
CW risk (∼ 17 %) occur. This is linked with demographic
changes and the social status of city inhabitants, with an in-

creasing and aging population living in cities and an increase
in the number of one-person households.

The findings of this work show that municipalities and
cities in the Trentino-Alto Adige region have experienced in-
creasing HW risk over the time frame 1980–2018 while po-
tentially experiencing a steady level of CW risk. Our detailed
analysis shows where in the region to prioritize risk mitiga-
tion measures to reduce hazard and vulnerability. Measures
to mitigate heat in cities include, for example, greening of
cities (Alsaad et al., 2022; Taleghani et al., 2019), while vul-
nerability could be decreased by improving the social and liv-
ing conditions of citizens, especially of the elderly, who are
more vulnerable to HWs (Orlando et al., 2021; Poumadère
et al., 2005; Vu et al., 2019), particularly in the cities of this
region where their share of the population is growing. If de-
tailed data are available for temperature, exposure, and vul-
nerability indicators, the methodology presented here could
be applied to other regions within and outside of Italy to help
steer local investments in climate change adaptation at the
city level.

Code availability. The code used for calculating HWMId
and CWMId is free and open source; it is the ex-
tRemes package of R, which is available here: https:
//cran.r-project.org/web/packages/extRemes/index.html
(Gilleland, 2021) and https://doi.org/10.18637/jss.v072.i08
(Gilleland and Katz, 2016). The Tweedie distribution
was implemented using the Tweedie package of R:
https://cran.r-project.org/web/packages/tweedie/index.html (Dunn,
2021).

Data availability. All data used in this study are freely
available and online. The temperature data (Crespi
et al., 2021) are available at the following location:
https://doi.org/10.1594/PANGAEA.924502 (Crespi et al., 2020).
The population data from the GHSL are available at this location:
https://data.jrc.ec.europa.eu/collection/ghsl (European Comission,
2018). The indicator data used to calculate the vulnerable are
available from ISTAT: https://www.istat.it/en/ (ISTAT, 2023).
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line at: https://doi.org/10.5194/nhess-23-2593-2023-supplement.
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